Защита от воздействия ионизирующего излучения на производстве. Защита от ионизирующих излучений (радиации)

В отличие от механических колебаний электромагнитные волны могут распространяться и в вакууме, но они ведут себя подобно механическим волнам, в частности имеют конечную скорость и переносят энергию. Наибольшая скорость электромагнитных волн характерна для вакуума (скорость света 2,998 -10 8 м/с). Энергия электромагнитного поля (ЭМП) пропорциональна четвертой степени частоты его колебаний.

Длина электромагнитных волн - от 107 км до 10 -11 см. В зависимости от длины и частоты волн принято выделять ионизирующие излучения - гамма- и рентгеновское излучение, излучения оптического диапазона - ультрафиолетовое, видимый свет, инфракрасное, радио- и низкочастотный диапазон.

Излучения с различной длиной волны сильно отличаются друг от друга по интенсивности и степени поглощения их веществом. Наиболее интенсивное ионизирующее излучение, особенно гамма-излучение, не поглощается веществами, непрозрачными для волн оптического диапазона.

Гамма-излучение имеет длину волны 10 -13 ... 10~ 10 м, что соответствует частоте 3 10 21 ...3 10 18 Гц. Высокая проникающая и ионизирующая способность гамма-квантов объясняется их большой энергией, которая изменяется в пределах 12,4...0,012 МэВ.

Радиационная безопасность - это комплекс мер, обеспечивающий защиту персонала и населения от вредного воздействия ионизирующих излучений и радиоактивных загрязнений при эксплуатации радиационно опасных объектов или при работе с радиоактивными веществами.

Главной целью радиационной защиты является предотвращение вредных последствий соматических, стохастических и генетических эффектов до некоторого уровня, который считают приемлемым. Этому уровню отвечают нормированные пределы доз (ПД). Дополнительная цель заключается в обосновании целесообразности деятельности, связанной с облучением.

Нормирование ионизирующих излучений определяется характером воздействия ионизирующей радиации на организм человека. В России с 2009 г. введены в действие Нормы радиационной безопасности (НРБ-99/2009), а с 2010 г. действуют Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-20Ю), основанные на международных нормах.

Нормы радиационной безопасности НРБ-99/2009 применяют для обеспечения безопасности человека во всех условиях воздействия на него ионизирующего излучения искусственного или природного происхождения. Они включают в себя определения и термины радиационной безопасности, устанавливают основные дозовые пределы (ПД), ПДК радиоактивных веществ в воздушной зоне, воде открытых водоемов, допустимое содержание радиоактивных веществ в органах человека и т. п.

Установлены следующие категории облучаемых лиц: персонал - лица, работающие с техногенными источниками (группа Л) или находящиеся по условиям работы в сфере их воздействия (группа Б) все население, включая лиц из персонала вне сферы и условий их производственной деятельности.

Доза ионизирующего облучения, создаваемая антропогенными источниками, невелика по сравнению с естественным фоном ионизирующего облучения, что достигается применением средств коллективной защиты промышленных источников излучения. В тех случаях, когда на объектах экономики нормативные требования и правила радиационной безопасности не соблюдаются, уровни ионизирующего воздействия резко возрастают.

Принципы обеспечения радиационной безопасности :

  • нормирование - непревышение допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующего излучения;
  • обоснование - запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда;
  • оптимизация - под держание на возможно низком и достижимом уровне индивидуальных доз облучения и числа облученных лиц при использовании любого источника ионизирующего излучения. Основные принципы радиационной безопасности реализуют с

помощью уменьшения мощности источников излучения до минимальных значений {защита количеством ); сокращения времени работы с источниками {защита временем ); увеличения расстояния от источника до работающих {защита расстоянием)", экранирования источников излучения материалами, поглощающими ионизирующее излучение {защита экранами).

Самый простой способ защиты от гамма-излучения - это удаление персонала от источника излучения на достаточно большое расстояние, так как интенсивность ионизации обратно пропорциональна квадрату расстояния.

Если перечисленные способы (первые три) неосуществимы или недостаточны, то применяют материалы, эффективно ослабляющие излучение, т. е. используют экранирование. Проходя через вещество защиты, ионизирующее излучение ослабляется.

Коэффициент (кратность) ослабления излучения К определяют из соотношения

где X - измеренная или рассчитанная мощность экспозиционной дозы в данной точке рабочего пространства; - допустимая

мощность экспозиционной дозы.

Коэффициент радиационной защиты равен

где Г> + и D~ - мощность поглощенной дозы при отсутствии и наличии защиты; р - линейный коэффициент ослабления, м -1 ; 8 - толщина защитного экрана, м.

Эффективность радиационной защиты, дБ, в этом случае можно найти по формуле

Основными мерами по защите населения от ионизирующих излучений является ограничение поступления в окружающую атмосферу, воду, почву отходов производства, содержащих радионуклиды. В случае необходимости создают санитарно-защитную зону и зону наблюдения.

Выбор защитного экрана зависит от вида ионизирующего излучения. Особой простотой отличается защита от а- и (3-частиц, так как их пробеги в веществе относительно невелики.

Для защиты от a-излучения применяют экраны из стекла, органического стекла толщиной в несколько миллиметров, слой воздуха в несколько сантиметров. Полное поглощение а-частиц, испускаемых a-активными препаратами, обеспечивается слоем воздуха в

8...9 см или листом бумаги.

Пробег (3-частиц в воздухе значительно больше, например, при энергии р-частиц более 3 МэВ он превышает 3 м. В случае р-излуче- ния используют материалы с малой атомной массой (алюминий) и комбинированные. Например, от потока р-частиц с энергиями до 4 МэВ надежно защищает слой пластмассы толщиной 2,5 мм.

Для у-квантов и нейтронов, проникающая способность которых значительно выше, необходима более массивная защита (рис. 7.11).

Рис. 7.11.

Схема прохождения излучений сквозь защиту:

  • 7 - излучение, прошедшее защиту; 2 - однократно взаимодействующее излучение;
  • 3 - многократно взаимодействующее излучение;
  • 4 - рассеянное излучение;
  • 5, 6 - излучение, поглощенное в среде; 7,8 - изменение траектории за защитной средой; 9 - отраженное излучение

Ослабление пучка у-квантов, проходящих защиту, не рассеиваясь в ней (такой пучок называют узким), описывает известный экспоненциальный закон

где Nq и N - интенсивность излучения без защиты и за защитой толщиной 5 ; р - линейный коэффициент ослабления, зависящий от энергии частиц и применяемого для защиты материала.

Для защиты от у-излучений и рентгеновского излучения применяют материалы с большой атомной массой и высокой плотностью (свинец, вольфрам, сталь, чугун, бетон). Для замедления и поглощения нейтронов используют водородосодержащие вещества (вода, парафин).

Часто встречаются случаи смешанного излучения, состоящего из нейтронов и у-квантов. В природе не встречаются элементы, которые достаточно эффективно ослабляют такие смешанные потоки. Защиту от них создают из смеси веществ с малыми и большими атомными номерами. В случае воздействия у-излучения и нейтронных потоков применяются комбинированные экраны (свинец - вода, свинец - полиэтилен, железо - вода и др.). Примером может служить железоводная защита или тяжелый бетон (смесь бетона с железной или свинцовой дробью).

В настоящее время ионизирующее излучение находит широкое применение в промышленности, технике, сельском хозяйстве, медицине и научных исследованиях. Различают ионизирующее излучение, возникающее при распадах радионуклидов, а также излучения, генерируемые на исследовательских и промышленных установках (ускорителях заряженных частиц, рентгеновских трубках, ядерных реакторах и т.д.).

К ионизирующим излучениям относятся корпускулярные (альфа-, бета-, нейтронные) и электромагнитные (гамма-, рентгеновское и др.) излучения, взаимодействие которых со средой приводит к образованию электрических зарядов разных знаков. Ионизирующие излучения - самые высокочастотные из рассматриваемых электромагнитных излучений. Применение радиоактивных веществ и других источников ионизирующих излучений представляет потенциальную угрозу здоровью и жизни людей. Опасность усугубляется тем, что воздействие ионизирующих (радиоактивных) излучений не обнаруживается до проявления того или иного поражения. Но при соблюдении необходимых мер защиты ионизирующие излучения могут быть безопасны.

Источники и характеристики ионизирующих излучений

Источники излучений подразделяют на естественные и искусственные, открытые и закрытые. Естественный радиоактивный фон существовал всегда. Он создается космическими лучами (0,37 мЗв/год), радиоактивными веществами, распределенными на Земле и верхнем слое почвы (0,38 мЗв/год); находящимися в воде, в воздухе, продуктах питания (1,35 мЗв/год), причем наиболее весом вклад радона, который высвобождается из земли (1 мЗв/год). В кирпичных и железобетонных зданиях радиоактивный фон (0,8-1 мЗв/год) создается строительными материалами. Искусственными источниками ионизирующих излучений являются ядерные реакторы, рентгеновские установки, искусственные радиоактивные изотопы и др. Например, при рентгеноскопии грудной клетки человек получает дозу 9 мЗв.

Корпускулярные излучения состоят из частиц с отличной от нуля массой покоя.

Альфа-излучение представляет собой поток ядер гелия, испускаемых веществом при распаде ядер или при ядерных реакциях. Обладая сравнительно большой массой, альфа- частицы быстро теряют свою энергию при взаимодействии с веществами, что обусловливает их низкую проникающую способность и высокую удельную ионизацию среды.

Бета-излучение - поток электронов или позитронов, возникающих при радиоактивном распаде. Ионизирующая способность бета-частиц ниже, а проникающая способность выше, чем у альфа-частиц, так как они обладают значительно меньшей массой и при одинаковой с альфа-частицами энергии имеют меньший заряд.

Нейтроны (поток которых образует нейтронное излучение) преобразуют свою энергию в упругих и неупругих взаимодействиях с ядрами атомов; при неупругих взаимодействиях возникает вторичное излучение, при упругих торможение нейтронов. Проникающая способность нейтронов зависит от их энергии и атомной массы вещества, с которыми они взаимодействуют.

Гамма-излучение - электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях или аннигиляции частиц (например, вторичное излучение потока нейтронов). Гамма-излучение обладает большой проникающей способностью и малым ионизирующим действием.

Рентгеновское излучение возникает в рентгеновских трубках, ускорителях электронов, в среде, окружающей источник бета-излучения, и представляет собой совокупность тормозного и характеристического фотонных излучений соответственно с непрерывным спектром (излучение, испускаемое при изменении кинетической энергии заряженных частиц) и с дискретным спектром (излучение, испускаемое при изменении энергетического состояния атома). Различают длинноволновое (мягкое) рентгеновское излучение с длиной волны λ > 25 пм и коротковолновое (жесткое) - с λ 25 пм. Как и гамма-излучение, рентгеновское излучение обладает малой ионизирующей способностью и большой глубиной проникновения.

Воздействие на организм ионизирующих излучений

Проходя через вещество, все виды ионизирующих излучений вызывают ионизацию, возбуждение и распад молекул. Аналогичный эффект наблюдается при облучении человеческого организма. Поскольку основную массу (70%) организма составляет вода, его поражение при облучении осуществляется посредством так называемого косвенного воздействия : сначала излучение поглощается молекулами воды, а затем ионы, возбужденные молекулы и фрагменты распавшихся молекул вступают в химические реакции с биологическими веществами, составляющими организм человека, вызывая их повреждение. В случае облучения нейтронами в организме могут дополнительно образовываться радионуклиды за счет поглощения нейтронов ядрами элементов, содержащихся в организме.

Проникая в организм человека, ионизирующие излучения могут стать причиной тяжелых заболеваний. Физические, химические и биологические превращения вещества при взаимодействии с ним ионизирующих излучений называют радиационным эффектом , который может привести к таким серьезным заболеваниям, как лучевая болезнь, белокровие (лейкемия), злокачественные опухоли, заболевания кожи. Могут возникнуть и генетические последствия, ведущие к наследственным заболеваниям.

Ионизация живой ткани приводит к разрыву молекулярных связей и изменению химической структуры соединений. Изменения в химическом составе молекул приводят к гибели клеток. В живой ткани происходит расщепление воды на атомарный водород и гидроксильную группу, которые образуют новые химические соединения, не свойственные здоровой ткани. В результате происшедших изменений нормальное течение биохимических процессов и обмен веществ нарушаются.

Облучение организма человека может быть внешним и внутренним. При внешнем облучении , которое создается закрытыми источниками, опасны излучения, обладающие большой проникающей способностью. Внутреннее облучение происходит, когда радиоактивные вещества попадают в организм при вдыхании воздуха, загрязненного радиоактивными элементами, через пищеварительный тракт (при приеме пищи, загрязненной воды и курении) и в редких случаях через кожу. Внутреннему облучению организм подвергается до тех пор, пока радиоактивное вещество не распадется или не выведется в результате физиологического обмена, поэтому наибольшую опасность представляют радиоактивные изотопы с большим периодом полураспада и интенсивным излучением. Характер повреждений и их тяжесть определяются поглощенной энергией излучения, которая прежде всего зависит от мощности поглощенной дозы, а также от вида излучения, продолжительности облучения, биологических особенностей и размеров облучаемой части тела и индивидуальной чувствительности организма.

При воздействии разных видов радиоактивных излучений на живые ткани определяющими являются проникающая и ионизирующая способности излучения. Проникающая способность излучения характеризуется длиной пробега l - толщиной материала, необходимой для поглощения потока. Например, длина пробега альфа-частиц в живой ткани несколько десятков микрометров, а в воздухе 8-9 см. Поэтому при внешнем облучении кожа предохраняет организм от воздействия альфа- и мягкого бета- излучения, проникающая способность которых невелика.

Разные виды излучений при одинаковых значениях поглощенной дозы вызывают разное биологическое поражение.

Заболевания, вызванные радиацией, могут быть острыми и хроническими. Острые поражения наступают при облучении большими дозами за малое время. Очень часто после выздоровления наступает раннее старение, обостряются прежние заболевания. Хронические поражения ионизирующими излучениями бывают как общими, так и местными. Развиваются они всегда в скрытой форме в результате систематического облучения дозами, превышающими предельно допустимую, полученными как при внешнем облучении, так и при попадании в организм радиоактивных веществ.

Опасность лучевого поражения в значительной степени зависит от того, какой орган подвергся облучению. По избирательной способности накапливаться в отдельных критических органах (при внутреннем облучении) радиоактивные вещества можно разделить на три группы:

  • олово, сурьма, теллур ниобий, полоний и др. распределяются в организме равномерно;
  • лантан, церий, актиний, торий и др. накапливаются в основном в печени;
  • уран, радий, цирконий, плутоний, стронций и др. накапливаются в скелете.

Индивидуальная чувствительность организма сказывается при малых дозах облучения (менее 50 мЗв/год), при увеличении дозы она проявляется в меньшей степени. Организм наиболее устойчив к облучению в возрасте 25-30 лет. Заболевание нервной системы и внутренних органов снижает сопротивляемость организма облучению.

При определении доз облучения основными являются сведения о количественном содержании радиоактивных веществ в теле человека, а не данные о концентрации их в окружающей среде.

Меры защиты от ионизирующих излучений

В связи с тем, что проникающее излучение оказывает вредное биологическое действие, первостепенное значение при работе с радиоактивными веществами приобретает правильная организация труда , обеспечивающая безопасность обслуживающего персонала. Правильно организовать работу с радиоактивными веществами значит создать условия, исключающие превышение пределов доз облучения и предупреждение проникновения радиоактивных веществ внутрь организма. Сюда входит целый комплекс мероприятий, обеспечивающих защиту от внешнего облучения, а также позволяющих предотвратить загрязненность радиоактивными источниками рабочих помещений, рук и тела работающих, осуществить контроль за уровнем радиоактивных излучений.

Условия безопасности при использовании радиоактивных изотопов требуют соблюдения мер защиты не только в отношении людей, непосредственно работающих с радиоактивными веществами или находящихся в смежных помещениях, но также и населения, проживающего недалеко от предприятия, которое может подвергаться радиоактивному облучению. Безопасность работающих с источниками ионизирующих излучений обеспечивается установлением предельно допустимых доз облучения, применением защиты временем и расстоянием, использованием технических и индивидуальных средств защиты.

Нормирование параметров и организационные меры защиты. Нормы радиационной безопасности установлены в СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)». Нормы применяются для обеспечения безопасности человека во всех условиях воздействия на него ионизирующего излучения искусственного или природного происхождения. НРБ-99/2009 устанавливают следующие категории облучаемых лиц :

  • персонал (группы А и Б);
  • все население, включая лиц из персонала вне сферы и условий их производственной деятельности.

Группу А составляют лица, работающие с техногенными источниками излучения. В группу Б входят лица, работающие на радиационном объекте или на территории его санитарно-защитной зоны и находящиеся в сфере воздействия техногенных источников. Основные пределы доз и все остальные допустимые производные уровни для персонала группы Б не должны превышать одной четвертой значений для персонала группы А.

  1. основные пределы доз (ПД), которые приведены в таблице;
  2. допустимые уровни монофакторного воздействия (для одного радионуклида, пути поступления или одного вида внешнего облучения), являющиеся производными от основных пределов доз, - пределы годового поступления (ПГП), допустимые среднегодовые объемные активности (ДОА), среднегодовые удельные активности (ДУА) и др.

Для обеспечения условий, при которых радиационное воздействие будет ниже допустимого, с учетом достигнутого в организации уровня радиационной безопасности администрацией организации дополнительно устанавливаются контрольные уровни (дозы, уровни активности, плотности потоков и др.).

Основные пределы доз облучения не включают в себя дозы от природного и медицинского облучения, а также дозы вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограничения.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) - 1000 мЗв, для населения за период жизни (70 лет) - 70 мЗв. Началом периодов считается 1 января 2000 г.

Годовая эффективная доза облучения персонала за счет нормальной эксплуатации техногенных источников ионизирующего излучения не должна превышать пределов доз, установленных в таблице. Под годовой эффективной дозой понимается сумма эффективной дозы внешнего облучения, полученной за календарный год, и ожидаемой эффективной дозы внутреннего облучения, обусловленной поступлением в организм радионуклидов за этот же год.

При организации работ с источниками малой мощности распространенными способами являются защита временем и защита расстоянием. Защита временем предусматривает такой регламент работ, при котором доза, полученная за время проведения работ, не превысит предельно допустимую. Защита расстоянием означает, что все операции с источниками излучения следует проводить при помощи манипуляторов, а весь процесс работы - в возможно короткий срок, в течение которого доза, полученная работающим, будет наименьшей и не превысит пределов, установленных санитарными нормами и правилами.

При работе с источниками большой активности для защиты работающих необходимы специальные экраны , в десятки и сотни раз ослабляющие интенсивность излучения. Например, для защитных экранов, поглощающих гамма-излучение , используются материалы, содержащие элементы с высоким атомным номером и высокой плотностью (например, свинец); пригодны по своим защитным свойствам также вода, сталь, чугун, бетон, баритобетон. Определение необходимой толщины экрана может быть произведено расчетным путем по справочным данным и по номограммам, приведенным в специальной литературе.

Защита от нейтронов. Обладая огромной проникающей способностью, быстрые нейтроны слабо поглощаются веществом, поэтому задача защиты от нейтронов заключается в замедлении движения быстрых нейтронов с последующим поглощением замедленных нейтронов. Известно, что быстрый нейтрон теряет приблизительно две трети своей энергии при столкновении с атомом водорода, вследствие этого хорошим защитным материалом от нейтронов являются вода и водородосодержащие материалы (парафин). Большое сечение захвата медленных нейтронов имеет бериллий. Нейтроны малой энергии (тепловые) хорошо поглощаются бором и кадмием, поэтому бор в чистом виде или в виде соединений вводится в бетон, свинец и другие материалы, применяемые для защиты от нейтронов и гамма-излучения, которое сопровождает поглощение нейтронов такими материалами, как бериллий, бор и кадмий.

Технические меры защиты. К техническим мерам защиты от ионизирующих излучений относятся автоматизация и дистанционное управление, герметизация источников, защитное экранирование. При выборе технических средств защиты необходимо учитывать условия облучения (внешнее или внутреннее). При работе с радиоактивными веществами в открытом виде наряду с опасностью внешнего облучения имеется возможность поступления этих веществ внутрь организма. Для защиты персонала используется радиационно-защитное технологическое оборудование (камеры, боксы, вытяжные шкафы), а также сейфы, контейнеры и мешки для радиоактивных отходов. Герметичность вытяжных устройств - шкафов, боксов и камер обеспечивается созданием разрежения воздуха (100-200 Па).

Радиохимический шкаф более герметичен, чем обычный химический, рабочие отверстия закрыты перчатками, скорость воздуха в открывающихся проемах (в зависимости от класса работ) составляет 1-1,5 м/с. Боксы - герметичные укрытия, применяемые для проведения операций с радиоизотопами в открытом виде. Для проведения операций в заданных газовых средах (например, восстановления металлов в инертных средах) применяют боксы с замкнутой циркуляцией воздуха . Такие боксы имеют собственную вентиляционную систему, обеспечивающую очистку в индивидуальном фильтре бокса загрязненного радиоактивными аэрозолями воздуха (или другого газа) и подачу очищенного воздуха в бокс. В вытяжных шкафах и боксах используют манипуляторы копирующие, шпатовые и другой дистанционный инструмент, приспособления для вскрытия пеналов, запайки ампул и др. Кроме того, манипуляторные боксы снабжены контейнерами для твердых отходов, тележками для подачи контейнеров, блоком сварки пластиковых мешков. Для вакуумной плавки и литья радиоактивных металлов применяют дистанционно управляемую установку, которая размещается в герметичном боксе, оборудованном автоматическими транспортными коммуникациями.

Для работ с веществами высоких уровней активности используют камеры , полностью герметизированные, с дистанционным управлением рабочими операциями и наблюдением через защищенные отверстия. Работы с веществами большой активности выполняются на полностью автоматизированном оборудовании с дистанционным управлением.

Защита от внешнего облучения предусматривает создание таких ограждений (экранов) , которые снижали бы дозу внешнего облучения до предельно допустимой. Выбор типа ограждения или экрана прежде всего зависит от вида излучения, а также от активности и энергии источника излучения, условий его эксплуатации. Стационарными ограждениями служат защитные стены, перекрытия пола и потолка, смотровые окна; экранами - стенки контейнеров для перевозки радиоактивных изотопов, сейфов для их хранения, боксов и др.

При выборе материала экрана (ограждения) во внимание принимаются спектральный состав излучения, его интенсивность, а также расстояние от источника, на котором находится обслуживающий персонал, и время пребывания под действием излучений. Например, для защиты от альфа-излучения достаточен слой воздуха в 10 см от источника, так как пробег альфа-частиц в воздухе не превышает 8-9 см. Применяют также экраны из плексигласа или стекла толщиной в несколько миллиметров. Практически при работе с альфа-активными препаратами приходится защищаться не только от альфа-, но и от бета- или гамма- излучения.

Экраны для защиты от бета-излучения изготовляют из материалов с малой атомной массой (например, алюминия) или из плексигласа. Толщину экрана определяют с учетом максимального пробега бета-частиц (для алюминия при энергии бета-частиц Е = 0,1÷0,6 МэВ пробег l = 0,07÷1 мм). Но при прохождении бета-частиц через вещество не только ионизируются атомы, но и возникает тормозное излучение, поэтому для защиты от бета-излучений высоких энергий экран снаружи покрывают слоем тяжелого материала (например, свинца) для поглощения тормозного излучения. Возникающие в материале внутреннего слоя экрана кванты с малой энергией поглощаются внешним слоем материала с большой атомной массой. Толщину наружного слоя определяют по рассчитанному значению энергии тормозного излучения и создаваемой им дозе излучения.

Сложнее осуществить защиту от внешнего гамма-излучения , проникающая способность которого гораздо выше, чем у альфа- и бета-частиц. Обеспечить полную защиту от гамма-излучения не представляется возможным. Защитные устройства позволяют только снизить величину дозы этого излучения в любое число раз. Материалы защитных устройств - вещества с большой атомной массой и высокой плотностью: свинец, вольфрам и т.п. Часто используют более легкие материалы, но менее дефицитные и более дешевые: сталь, чугун, сплавы меди. Стационарные ограждения, являющиеся частью строительных конструкций, целесообразнее изготовлять из бетона и баритобетона. Смотровые системы изготовляют из специального стекла: свинцового с жидким наполнителем (бромидом и хлоридом цинка) и др. В качестве защищающего от гамма-лучей материала применяют и свинцовую резину.

Защиту от гамма-излучения можно осуществить также временем, расстоянием, количеством радиоактивного вещества. Для обеспечения условий безопасности доза облучения не должна превышать ПДД (5 бэр в год).

Сложность создания защиты от нейтронного излучения состоит в том, что нейтроны вследствие отсутствия заряда не взаимодействуют с электрическим полем и поэтому распространяются в веществе, пока не столкнутся с ядрами. Таким образом, поглощение веществом нейтронного излучения проходит в два этапа: вначале быстрые нейтроны в результате упругих столкновений с ядрами рассеиваются, энергия нейтронов уменьшается до тепловой, а затем тепловые нейтроны при неупругих взаимодействиях поглощаются средой. Максимальное рассеивание происходит при упругих столкновениях частиц равной массы - для нейтронов это ядра водорода.

Для защиты от нейтронного излучения применяют воду, парафин, а также графит, бериллий и др. Нейтроны малой энергии поглощаются бором и кадмием, поэтому в применяемый для защиты от нейтронов бетон добавляют соединения бора: буру, колеманит. При поглощении нейтронов происходит испускание гамма-квантов. Для комбинированной защиты от нейтронов и гамма-излучения используют смеси тяжелых материалов с водой или водородсодержащими материалами, а также комбинации слоев тяжелых и легких материалов: железо - вода, свинец - вода, свинец - полиэтилен и т.п. Толщина экрана определяется по таблицам, номограммам или расчетам.

Средства индивидуальной защиты предназначены для защиты от внутреннего облучения радиоактивными веществами, а также - при внешнем облучении - от альфа- и мягкого бета-излучений (от гамма- и нейтронного излучений они не защищают). Индивидуальные средства защиты включают спецодежду, средства защиты органов дыхания и зрения.

При работах I класса и отдельных работах II класса работники обеспечиваются комбинезонами или костюмами, шапочками, легкой пленочной обувью или специальными ботинками, перчатками, бумажными полотенцами или носовыми платками разового пользования, а также средствами защиты органов дыхания. При работах II и III классов работники снабжаются халатами, шапочками, легкой обувью, перчатками, а при необходимости - средствами защиты органов дыхания.

Для выполнения ремонтных работ, при которых загрязнения могут быть очень большими, разработаны пневмокостюмы из пластических материалов с принудительной подачей воздуха под костюм. Пневмокостюм защищает основную спецодежду, органы дыхания и кожные покровы от радиоактивной пыли. Вследствие полной герметичности костюм можно дезактивировать на работающем после его выхода из загрязненной зоны.

Органы дыхания при работе с изотопами защищают посредством респираторов, пневмошлемов, противогазов. Наиболее надежен шланговый противогаз.

Для защиты глаз применяют очки закрытого типа со стеклами, содержащими свинец или фосфат вольфрама. При работах с источниками альфа- и бета-излучений для защиты лица и глаз используют защитные щитки из оргстекла.

Безопасность работы с радиоактивными веществами и источниками излучения можно обеспечить, организуя систематический дозиметрический контроль за уровнями внешнего и внутреннего облучения персонала, а также за уровнем радиации в окружающей среде (воздухе, воде и др.). Объем дозиметрического контроля зависит от характера работы с радиоактивными веществами. При работе с закрытыми источниками достаточно измерять дозы гамма-излучения на рабочих местах постоянного и временного пребывания персонала.

Осуществление работ с открытыми источниками требует кроме измерения уровней потоков излучения проведения контроля уровней загрязненности воздуха и рабочих поверхностей радиоактивными веществами, а также контроля уровней загрязненности рук и одежды работающих. Персонал, контактирующий с радиоактивными веществами, должен иметь индивидуальные дозиметры для контроля гамма-излучения.

Ионизирующее излучение – это любые излучения, взаимодействие которых со средой приводит к образованию электрических зарядов разных знаков, т.е. ионизации атомов и молекул в облучаемом веществе. Все ионизирующие излучения по своей природе делятся на фотонные (квантовые) и корпускулярные.

К фотонному (квантовому) ионизирующему излучению относятся:

· гамма-излучение, возникающее при изменении энергетического состояния атомных ядер или аннигиляции частиц

· тормозное излучение, возникающее при уменьшении кинетической энергии заряженных частиц

· характеристическое излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома

· рентгеновское излучение, состоящее из тормозного и/или характеристического излучений.

Корпускулярное излучение – это ионизирующее излучение, состоящее из частиц с массой покоя, отличной от нуля. Выделяют две их разновидности:

заряженные частицы: бета-частицы (электроны), протоны (ядра водорода), дейтроны (ядра тяжелого водорода - дейтерия), альфа-частицы (ядра гелия);

тяжелые ионы – ядра других элементов, ускоренные до больших энергий. При прохождении через вещество заряженная частица, теряя свою энергию, вызывает ионизацию и возбуждение атома. К незаряженным частицам относятся нейтроны, которые не взаимодействуют с электронной оболочкой атома, беспрепятственно проникают вглубь атома, вступая в реакцию с ядрами. При этом испускают альфа-частицы или протоны. Протоны приобретают в среднем половину кинетической энергии нейтронов и вызывают на своем пути ионизацию. Плотность ионизации протонов велика. В веществах, содержащих много атомов водорода (вода, парафин, графит), нейтроны быстро растрачивают свою энергию и замедляются, что используется в целях радиационной защиты. Нейтронное и гамма излучение принято называть проникающей радиацией или проникающим излучением.

Различают два вида радиоактивности: естественную (природную) и искусственную. Наиболее реальную опасность представляют искусственные источники излучений. Совершенствование авиакосмической техники может привести к использованию в будущем бортовых радиоизотопных, ядерно-энергетических и ядерно-силовых установок, являющихся источниками ионизирующих излучений. Возникновение радиационной ситуации возможно при перевозках радионуклидов, а также при взрыве ядерного оружия, аварийном выбросе технологических продуктов атомного предприятия в окружающую среду и местном выпадении радиоактивных веществ.

Ионизирующие излучения по своему энергетическому составу делятся на моноэнергетические (монохроматические) и немоноэнергетические (немонохроматические). Моноэнергетическое (однородное) излучение - это излучение, состоящее из частиц одного вида с одинаковой кинетической энергией или из квантов одинаковой энергии. Немоноэнергетическое (неоднородное) излучение - это излучение, состоящее из частиц одного вида с разной кинетической энергией или из квантов различной энергии. Ионизирующее излучение, состоящее из частиц различного вида или частиц и квантов, называется смешанным излучением.



Источники ионизирующих излучений

Источником ионизирующего излучения называют объект, содержащий радиоактивный материал, или техническое устройство, испускающее или способное (при определенных условиях) испускать ионизирующее излучение.

Современные ядерно-технические установки обычно представляют собой сложные источники излучений. Например, источниками излучений действующего ядерного реактора, кроме активной зоны, являются система охлаждения, конструкционные материалы, оборудование и др. Поле излучения таких реальных сложных источников обычно представляется как суперпозиция полей излучения отдельных, более элементарных источников.

Любой источник излучения характеризуется:

1. Видом излучения - основное внимание уделяется наиболее часто встречающимся на практике источникам излучения.

2. Геометрией источника (формой и размерами) - геометрически источники могут быть точечными и протяженными. Протяженные источники представляют суперпозицию точечных источников и могут быть линейными, поверхностными или объемными с ограниченными, полубесконечными или бесконечными размерами. Физически точечным можно считать такой источник, максимальные размеры которого много меньше расстояния до точки детектирования и длины свободного пробега в материале источника (ослаблением излучения в источнике можно пренебречь). Поверхностные источники имеют толщину много меньшую, чем расстояние до точки детектирования и длина свободного пробега в материале источника. В объемном источнике излучатели распределены в трехмерной области пространства.

3. Мощностью и ее распределением по источнику - источники излучения наиболее часто распределяются по протяженному излучателю равномерно, экспоненциально, линейно или по косинусоидальному закону.

4. Энергетическим составом - энергетический спектр источников может быть моноэнергетическим (испускаются частицы одной фиксированной энергии), дискретным (испускаются моноэнергетические частицы нескольких энергий) или непрерывным (испускаются частицы разных энергий в пределах некоторого энергетического диапазона).

5. Угловым распределением излучения - среди многообразия угловых распределений излучений источников для решения большинства практических задач достаточно рассматривать следующие: изотропное, косинусоидальное, мононаправленное. Иногда встречаются угловые распределения, которые можно записать в виде комбинаций изотропных и косинусоидальных угловых распределений излучений.

Источниками ионизирующих излучений являются радиоактивных элементы и их изотопы, ядерные реакторы, ускорители заряженными частиц и др. рентгеновские установки и высоковольтные источники постоянного тока относятся к источникам рентгеновского излучения.

Здесь следует отметить, что при нормальном режиме их эксплуатации радиационная опасность незначительна. Она наступает при возникновении аварийного режима и может долго проявлять себя при радиоактивном заражении местности.

Радиоактивный фон, создаваемый космическими лучами (0,3 мЗв/год), дает чуть меньше половины всего внешнего облучения (0,65 мЗв/год), получаемого населением. Нет такого места на Земле, куда бы ни проникали космические лучи. При этом надо отметить, что Северный и Южный полюса получают больше радиации, чем экваториальные районы. Происходит это из-за наличия у Земли магнитного поля, силовые линии которого входят и выходят у полюсов.

Однако более существенную роль играет место нахождения человека. Чем выше поднимается он над уровнем моря, тем сильнее становится облучение, ибо толщина воздушной прослойки и ее плотность по мере подъема уменьшается, следовательно, падают защитные свойства.

Те, кто живет на уровне моря, в год получают дозу внешнего облучения приблизительно 0,3 мЗв, на высоте 4000 метров - уже 1,7 мЗв. На высоте 12 км доза облучения за счет космических лучей возрастает приблизительно в 25 раз по сравнению с земной. Экипажи и пассажиры самолетов при перелете на расстояние 2400 км получают дозу облучения 10 мкЗв (0,01 мЗв или 1 мбэр), при полете из Москвы в Хабаровск эта цифра уже составит 40 - 50 мкЗв. Здесь играет роль не только продолжительность, но и высота полета.

Земная радиация, дающая ориентировочно 0,35 мЗв/год внешнего облучения, исходит в основном от тех пород полезных ископаемых, которые содержат калий - 40, рубидий - 87, уран - 238, торий - 232. Естественно, уровни земной радиации на нашей планете неодинаковы и колеблются большей частью от 0,3 до 0,6 мЗв/год. Есть такие места, где эти показатели во много раз выше.

Внутренне облучение населения от естественных источников на две трети происходит от попадания радиоактивных веществ в организм с пищей, водой и воздухом. В среднем человек получает около 180 мкЗв/год за счет калия - 40, который усваивается организмом вместе с нерадиоактивным калием, необходимым для жизнедеятельности. Нуклиды свинца - 210, полония - 210 концентрируются в рыбе и моллюсках. Поэтому люди, потребляющие много рыбы и других даров моря, получают относительно высокие дозы внутреннего облучения.

Жители северных районов, питающиеся мясом оленя, тоже подвергаются более высокому облучению, потому что лишайник, который употребляют олени в пищу зимой, концентрирует в себе значительные количества радиоактивных изотопов полония и свинца.

Недавно ученые установили, что наиболее весомым из всех естественных источников радиации является радиоактивный газ радон - это невидимый, не имеющий ни вкуса, ни запаха газ, который в 7,5 раз тяжелее воздуха. В природе радон встречается в двух основных видах: радон - 222 и радон - 220. Основная часть радиации исходит не от самого радона, а от дочерних продуктов распада, поэтому значительную часть дозы облучения человек получает от радионуклидов радона, попадающих в организм вместе с вдыхаемым воздухом.

Радон высвобождается из земной коры повсеместно, поэтому максимальную часть облучения от него человек получает, находясь в закрытом, непроветриваемом помещении нижних этажей зданий, куда газ просачивается через фундамент и пол. Концентрация его в закрытых помещениях обычно в 8 раз выше, чем на улице, а на верхних этажах ниже, чем на первом. Дерево, кирпич, бетон выделяют небольшое количество газа, а вот гранит и железо - значительно больше. Очень радиоактивны глиноземы. Относительно высокой радиоактивностью обладают некоторые отходы промышленности, используемые в строительстве, например, кирпич из красной глины (отходы производства алюминия), доменный шлак (в черной металлургии), зольная пыль (образуется при сжигании угля).

Приборы радиационной разведки

За последние 30 лет в связи с бурным развитием электроники созданы новые современные приборы для регистрации всех видов ионизирующего излучения, что оказало существенное влияние на качество и достоверность измерений. Повысилась надежность средств измерения, значительно снизились энергопотребление, габариты, масса приборов, повысилось разнообразие, и расширилась сфера их применения.

Приборы для регистрации ионизирующего излучения предназначены для измерения величин, характеризующих источники и поля ионизирующих излучений, взаимодействие ионизирующих излучений с веществом.

Приборы и установки, используемые для регистрации ионизирующих излучений, подразделяются на следующие основные группы:

1. Дозиметры – приборы для измерения дозы ионизирующего излучения (экспозиционной, поглощенной, эквивалентной) , а также коэффициента качества.

2. Радиометры – приборы для измерения плотности потока ионизирующего излучения.

3. Универсальные приборы – устройства, совмещающие функции дозиметра и радиометра, радиометра и спектрометра и пр.

4. Спектрометры ионизирующих излучений – приборы, измеряющие распределение (спектр) величин, характеризующих поле ионизирующих излучений.

В соответствии с проверочной схемой по методологическому назначению приборы и установки для регистрации ионизирующих излучений подразделяются на образцовые и рабочие. Образцовые приборы и установки предназначены для поверки по ним других средств измерений, как рабочих, так и образцовых, менее высокой точности. Заметим, что образцовые приборы запрещается использовать в качестве рабочих. Рабочие приборы и установки – средства для регистрации и исследования ионизирующих излучений в экспериментальной и прикладной ядерной физике и многих других областях народного хозяйства. Приборы для регистрации ионизирующего излучения разделяются также по виду измеряемого излучения, по эффекту взаимодействия излучения с веществом (ионизационные, сцинтилляционные, фотографические и т.д.) и другим признакам. По оформлению приборы для регистрации ионизирующего излучения подразделяют на стационарные, переносные и носимые, а также на приборы с автономным питанием, питанием от электрической сети и не требующие затрат энергии.

Влияние ионизирующего излучения на организм человека

Всем известно, что все ткани организма способны поглощать энергию излучения, которая преобразуется в энергию химических реакций и тепло. В тканях содержится 60-80% воды. Следовательно, большая часть энергии излучения поглощается водой, а меньшая - растворенными в ней веществами. Поэтому при облучении в организме появляются свободные радикалы – продукты разложения (радиолиза) воды, которые в химическом отношении очень активны, могут вступать в реакцию с белками и другими молекулами.

При воздействии очень больших доз в результате первичного действия ионизирующего излучения наблюдаются изменения в любых биомолекулах.

При умеренных же дозах лучевого воздействия первично страдают в основном только высокомолекулярные органические соединения: нуклеиновые кислоты, белки, липопротеиды и полимерные соединения углеводов. Нуклеиновые кислоты обладают чрезвычайно высокой радиочувствительностью. При прямом попадании достаточно 1 -3 актов ионизации, чтобы молекулы ДНК вследствие разрыва водородных связей распалась на две части и утратила свою биологическую активность. При воздействии ионизирующего излучения в белках происходят структурные изменения, приводящие к потере ферментативной и иммунной активности.

В результате этих процессов, протекающих практически моментально, образуются новые химические соединения (радиотоксины), несвойственные организму в норме. Все это приводит к нарушению сложных биохимических процессов обмена веществ и жизнедеятельности клеток и тканей, т.е. к развитию лучевой болезни.

Острая лучевая болезнь (ОЛБ) возникает при воздействии на человека больших доз излучения за короткий промежуток времени и имеет три стадии:

1-ая стадия (доза облучения 1-2 Зв (зиверт), скрытый период 2-3 недели) сопровождается симптомами: общая слабость, утомляемость, апатия, головокружение, головная боль, нарушение сна. Исключение облучения и соответствующее лечение позволяют полностью восстановить здоровье.

2-ая стадия (доза облучения 2-3 Зв (зиверт), скрытый период 1 неделя) характеризуется усилением болезненных ощущений, появлением сильных болей в области сердца, живота, кровотечение из носа. Срок лечения 2 месяца.

3-ая стадия (доза облучения 3-5 Зв), характеризуется необратимыми последствиями в организме через 3-7 часов и даже летальным исходом.

Доза более 5 Зв является смертельной.

Способы и средства обеспечения радиационной безопасности

При попадании радиоактивных веществ на открытые участки тела, одежду, снаряжение основная задача сводится к быстрому их удалению, чтобы воспрепятствовать попаданию радионуклидов в организм. Если радиоактивное вещество все же проникло внутрь, то пострадавшему сразу вводят адсорбенты в желудок, промывают его, дают рвотные, слабительные, отхаркивающие средства, способные прочно связать радиоактивные вещества и препятствовать отложению их в тканях.

Профилактика радиационных поражений осуществляется путем проведения комплекса санитарно-гигиенических, санитарно-технических и специальных медицинских мероприятий.

Средства противохимической защиты (защитная одежда, противогазы или респираторы и т. п.) оказывают известный защитный эффект от воздействия радиоактивных веществ. В случае, когда неизбежно облучение в дозах, превышающих ПДД, профилактика осуществляется методом фармакохимической защиты.

В результате многочисленных радиобиологических исследований обнаружены вещества, которые при введении в организм за определенное время до облучения снижают в той или иной степени радиационное поражение. Такие вещества называются радиозащитными, или радиопротекторами. Большинство изученных в настоящее время радиопротекторов оказывают положительный эффект при введении их в организм за сравнительно короткое время до облучения. Они улучшают течение лучевой болезни, ускоряют восстановительные процессы, повышают эффективность терапии и увеличивают выживаемость.

Кроме радиопротекторов, должное внимание следует уделять биологической защите, которая осуществляется с помощью адаптогенов. Эти вещества не обладают специфическим действием, но зато повышают общую сопротивляемость организма к различным неблагоприятным факторам, в том числе и к ионизирующим излучениям. Адаптогены назначают многократно за несколько дней или недель до облучения. К ним следует отнести препараты элеутерококка, женьшеня, лимонника китайского, витаминно-аминокислотные комплексы, некоторые микроэлементы и др. Механизм действия этих препаратов необычайно широк. В понятие биологической защиты входят и такие мероприятия, как акклиматизация к гипоксии, вакцинация, хорошее питание, занятия спортом и т. д. Все это, безусловно, повышает устойчивость организма.

Основные принципы радиационной безопасности

Для обеспечения радиационной безопасности необходимо соблюдение следующих принципов:

  1. Принцип нормирования. При соблюдении обеспечивает непревышение допустимых лимитов индивидуальной дозы облучения людей от всех имеющихся источников ионизирующего излучения.
  2. Принцип обоснования. Подразумевает запрет всех видов деятельности, связанных с ионизирующим излучением, при которых полученная польза для общества оказывается меньше риска возможного вреда.
  3. Принцип оптимизации. Состоит в поддержании на как можно более низком достижимом уровне полученных индивидами доз облучения и количества облученных людей при использовании любого из источников ионизирующего излучения.

Нормирование радиационного воздействия

Нормирование уровня ионизирующих излучений связано с учетом характера воздействия ионизирующей радиации на человеческий организм. С 1999 г. в нашей стране оно соответствует международным нормам. Нормирование касается как искусственного, так и природного излучения. Нормированию подлежат основные дозовые пределы, предельно допустимые концентрации содержания радиоактивных веществ в атмосфере, в воде, органах и тканях человека и т.п.

Требования в области радиационной безопасности касаются регулируемых природных источников излучения: изотопов радона и продуктов их распада в воздухе жилых и производственных помещений, гамма-излучения природных радионуклидов, входящих в состав строительных изделий, природных радионуклидов в питьевой воде, удобрениях и полезных ископаемых.

В целях ограничения попадания в окружающую атмосферу, воду, почву содержащих радионуклиды отходов производства и воздействия этих отходов на людей, применяют зонирование территорий, окружающих опасные промышленные предприятия. При необходимости организуют санитарно-защитную зону и зону наблюдения .

Определение 1

Санитарно-защитная зона это территория, окружающая источник ионизирующего излучения, где уровень облучения людей при нормальной эксплуатации этого источника может превышать нормативный показатель дозы облучения населения.

Определение 2

Зона наблюдения – выходящая за пределы санитарно-защитной зоны территория, где возможно влияние радиоактивных выбросов данного предприятия на здоровье проживающего там населения.

Способы защиты населения

Способы защиты от ионизирующих излучений определяются их физическими свойствами. При воздействии жесткого излучения и высокоэнергетических частиц на другие вещества происходит их ионизация. Излучения с разной длиной волны принципиально отличаются друг от друга по интенсивности и степени поглощения их веществом. Самое интенсивное ионизирующее излучение, в первую очередь γ-излучение, практически не поглощается веществами, непрозрачными для лучей с длиной волны оптического диапазона.

Принципы радиационной безопасности осуществляются через уменьшение мощности источников излучения до наименьшей величины; ограничение возможностей поступления радионуклидов в окружающую среду; уменьшение времени работы с источниками радионуклидов; увеличение дистанции между источником и людьми; экранирование источников излучения поглощающими его материалами. К основным методам защиты населения относятся защита расстоянием, экранированием и ограничением поступления радионуклидов в окружающую среду, а также проведение комплекса специальных организационных, технических и лечебно-профилактических мероприятий.

Один из наиболее эффективных способов защиты людей – это применение материалов, эффективно ослабляющих излучение. Их выбирают в зависимости от типа ионизирующего излучения.

В целях защиты от α-излучения используют экраны из стекла или плексигласа толщиной до нескольких миллиметров.

Против β-излучения эффективны материалы с небольшой атомной массой (используют, алюминий). От γ-квантов и нейтронов, обладающих высокой проникающей способностью, требуется более мощная защита.

γ-излучению препятствуют вещества с большой атомной массой и высокой плотностью (свинец, вольфрам), применяют и более дешевые материалы – сталь, чугун, бетон.

Для экранирования от нейтронного облучения используются бериллий, графит и материалы, содержащие водород (парафин, вода).

Защита от ионизирующих излучений включает в себя :

    организационные мероприятия (выполнение требований безопасности при размещении предприятий, устройстве рабочих помещений и организации рабочих мест, при работе с закрытыми и открытыми источниками, при транспортировке, хранении и захоронении радиоактивных веществ, проведение общего и индивидуального дозиметрического контроля);

    медико-профилактические мероприятия (сокращенный рабочий день, дополнительный отпуск, медицинские осмотры, лечебно-профилактическое питание и др.);

    инженерно-технические методы и средства (защита расстоянием и временем, применение средств индивидуальной защиты, защитное экранирование и др.).

Средства индивидуальной защиты

Средства индивидуальной защиты предназначены для защиты от попадания радиоактивных загрязнений на кожу тела работающих и внутрь организма, а также от альфа- и бета-излучений.

Для защиты всего тела применяется спецодежда в виде халатов, шапочек, резиновых перчаток и др. При работах с изотопами большой активности (>10 мКи) применяются комбинезоны, спецбелье, пленочные хлорвиниловые фартуки и нарукавники, клееночные халаты, тапочки или ботинки, для защиты рук - перчатки из просвинцованной резины, а защиты ног - специальная пластиковая обувь.

Для защиты глаз применяются очки, стекло которых может быть обычным (при альфа- и мягких бета-излучениях), силикатным или органическим (при бета-излучениях высоких энергий), свинцовое или с фосфатом вольфрама (при гамма-излучениях), с боросиликатом кадмия или фтористыми соединениями (при нейтронном облучении) и др.

Для защиты органов дыхания применяются респираторы или шланговые приборы (противогазы), пневмокостюмы и пнев-мошлемы.

Для предотвращения или частичного ослабления воздействия радионуклидов, попавших в организм , а также для предупреждения отложения их в организме и ускорения выведения рекомендуются такие меры как промывание желудка и кишечника, использование адсорбентов, веществ для замещения радионуклидов или комплексообразования с последующим ускоренным их выведением из организма (сернокислый барий, глюканат кальция, хлористый кальций, хлористый аммоний, пентацин, йодная настойка или йодистый калий и др.).

Защитное экранирование

При проектировании и расчете защитных экранов определяют их материал и толщину, которые зависят от вида излучения, энергии частиц и квантов и необходимой кратности ослабления.

Расчет защитных экранов основывается на особенностях и закономерностях взаимодействия различных видов излучения с веществом.

Для защиты от альфа-частиц необходимо, чтобы толщина экрана превышала длину пробега альфа-частиц в данном материале экрана. Для защиты от внешнего облучения альфа-частицами обычно применяют тонкую металлическую фольгу (20-100 мкм), силикатное стекло, плексиглас или несколько сантиметров воздушного зазора.

Для защиты от бета-излучений применяют экраны из материалов с малым атомным весом (алюминий, оргстекло, полистирол и др.), т.к. при прохождении бета-излучений через вещество, возникает вторичное излучение, энергия которого увеличивается с ростом атомного номера вещества.

При высоких энергиях бета-частиц(>3 МэВ), применяют двухслойные экраны, наружный слой которых выполняется из алюминия. Внутренняя облицовка экрана изготавливается из материалов с малым атомным номером, чтобы уменьшить первоначальную энергию электронов.

Толщина слоя различных материалов для поглощения бета-излучения определяется также максимальным пробегом бета-частиц.

При проектировании защитного экранирования от нейтронов выбирают вещества с малым атомным номером (вода, полиэтилен, парафин, органические пластмассы и др.), т.к. при каждом столкновении с ядром нейтрон теряет тем большую часть своей энергии, чем ближе масса ядра к массе нейтрона.

При защите от нейтронного излучения необходимо учитывать , что процесс поглощения эффективен для тепловых, медленных и резонансных нейтронов, поэтому быстрые нейтроны должны быть предварительно замедлены. Средняя потеря энергии при упругом рассеянии максимальна на легких ядрах (например, водороде) и минимальна на тяжелых. Вероятность потери энергии при неупругом рассеянии возрастает на тяжелых ядрах и с увели­чением энергии нейтрона. Тепловые нейтроны диффундируют через защиту до тех пор, пока не будут захвачены или не выйдут за ее пределы, поэтому важно обеспечить быстрое поглощение тепловых нейтронов выбором наиболее эффективных поглотителей. После захвата тепловых нейтронов почти всегда возникает гамма-излучение, которое необходимо ослабить. Таким образом,защита от нейтронов должна иметь в своем составе водород или другое легкое вещество для замедления быстрых и промежуточных нейтронов при упругом рассеянии, тяжелые элементы с большой атомной массой для замедления быстрых нейтронов в процессе неупругого рассеяния и ослабления от захватного гамма-излучения, элементы с высоким эффективным сечением поглощения тепловых нейтронов.

Для защиты от гамма-лучей применяются экраны из металлов высокой плотности (свинец, висмут, вольфрам), средней плотности (нержавеющая сталь, чугун, медные сплавы) и некоторые строительные материалы (бетон, баритобетон и др.).

В практике расчета защиты от гамма-излучения широко применяются универсальные таблицы ,позволяющие определить толщину защиты по заданному уменьшению мощности дозы, а при известной толщине защиты легконайти кратность ослабления излучения и определить допустимое время работы за защитой или допустимое значение активности источника.По этим таблицам определяют также дополнительную защиту к уже существующей, требуемый набор толщины слоев различных материалов, линейные или массовые эквиваленты отдельных защитных материалов, слои полуослабления в различных интервалах толщины материала и т.п. Однако указанные таблицы пригодны только для моноэнергетических источников гамма-излучения. В тех случаях, когда источник имеет сложный спектр излучения, расчет толщины защиты, обеспечивающий необходимую кратность ослабления, ведут методом "конкурирующих" линий.

При защите от рентгеновского излучения толщина защитного экрана определяется необходимой степенью ослабления мощности дозы излучения.

Для экранирования от рентгеновского излучения используются такие материалы как свинец, бетон, свинцовое стекло и др.

В отдельных случаях, когда по характеру выполняемых работ использование стационарной защиты затруднено, допускается обеспечение защиты путем использования переносных защитных ширм, экранов, а также средств индивидуальной защиты (защитные фартуки, рукавицы, щитки и пр.)

Защита высоковольтных электронных приборов или всей установки , генерирующих мягкое рентгеновское излучение, достигается помещением этих приборов в металлические кожухи, шкафы или блоки.