Гидролиз органических соединений

Согласно теории электролитической диссоциации в водном растворе частицы растворенного вещества взаимодействуют с молекулами воды. Такое взаи­модействие может привести к реакции гидролиза.

Гидролиз - это реакция обменного разложе­ния вещества водой.

Гидролизу подвергаются различные вещества: неорганические - соли, карбиды и гидриды метал­лов, галогениды неметаллов; органические - га­логеналканы, сложные эфиры и жиры, углеводы, белки, полинуклеотиды.

Водные растворы солей имеют разные значения рН и различные типы сред - кислотную (рН < 7), щелоч­ную (рН > 7), нейтральную (рН = 7). Это объясняется тем, что соли в водных растворах могут подвергаться гидролизу.

Сущность гидролиза сводится к обменному хи­мическому взаимодействию катионов или анио­нов соли с молекулами воды. В результате этого взаимодействия образуется малодиссоциирующее соединение (слабый электролит). А в водном рас­творе соли появляется избыток свободных ионов Н + или ОН — , и раствор соли становится кислотным или щелочным соответственно.

Классификация солей

Любую соль можно представить как продукт взаимодействия основания с кислотой. Например, соль KClO образована сильным основанием KOH и слабой кислотой HClO.

В зависимости от силы основания и кислоты можно выделить четыре типа солей .

Рассмотрим поведение солей различных типов в растворе.

1. Соли, образованные сильным основанием и слабой кислотой .

Например, соль цианид калия KCN образована сильным основанием KOH и слабой кислотой HCN:

В водном растворе соли происходят два процесса:

2) полная диссоциация соли (сильного электролита):

Образующиеся при этих процессах ионы Н + и CN — взаимодействуют между собой, связываясь в молекулы слабого электролита - цианистоводо­родной кислоты HCN, тогда как гидроксид - ион ОН — остается в растворе, обусловливая тем самым его щелочную среду. Происходит гидролиз по ани­ону CN — .

Запишем полное ионное уравнение происходя­щего процесса (гидролиза):

Этот процесс обратим, и химическое равновесие смещено влево (в сторону образования исходных веществ), т. к. вода - значительно более слабый электролит, чем цианистоводородная кислота HCN:

Уравнение показывает, что:

1) в растворе есть свободные гидроксид-ионы ОН — , и концентрация их больше, чем в чистой воде, поэтому раствор соли KCN имеет щелочную сре­ду (рН > 7);

2) в реакции с водой участвуют ионы CN — , в таком случае говорят, что идет гидролиз по аниону. Другие примеры анионов слабых кислот, кото­рые участвуют в реакции с водой:

Муравьиной HCOOH - анион HCOO — ;

Уксусной CH 3 COOH - анион CH 3 COO — ;

Азотистой HNO 2 - анион NO 2 — ;

Сероводородной H 2 S - анион S 2- ;

Угольной H 2 CO 3 - анион CO 3 2- ;

Сернистой H 2 SO 3 - анион SO 3 2- .

Рассмотрим гидролиз карбоната натрия Na 2 CO 3:

Происходит гидролиз соли по аниону CO 3 2- .

Продукты гидролиза - кис­лая соль NaHCO 3 и гидроксид натрия NaOH.

Среда водного раство­ра карбоната натрия - ще­лочная (рН > 7), потому что в растворе увеличивается концентрация ионов ОН — . Кислая соль NaHCO 3 тоже может подвергаться гидро­лизу, который протекает в очень незначительной степени, и им можно пренебречь.

Подведем итог тому, что вы узнали о гидролизе по аниону:

1) по аниону соли, как правило, гидролизуются обратимо;

2) химическое равновесие в таких реакциях силь­но смещено влево;

3) реакция среды в растворах подобных солей ще­лочная (рН > 7);

4) при гидролизе солей, образованных слабыми многоосновными кислотами, получаются кис­лые соли.

2. Соли, образованные сильной кислотой и сла­бым основанием .

Рассмотрим гидролиз хлорида аммония NH 4 Cl.

В водном растворе соли происходят два про­цесса:

1) незначительная обратимая диссоциация моле­кул воды (очень слабого амфотерного электро­лита), которую упрощенно можно записать с помощью уравнения:

2) полная диссоциация соли (сильного электро­лита):

Образующиеся при этом ионы OH — и NH 4 взаимодействуют между собой с получением NH 3 H 2 O (слабый электролит), тогда как ионы Н + остаются в растворе, обусловливая тем самым его кислотную среду.

Полное ионное уравнение гидролиза:

Процесс обратим, химическое равновесие сме­щено в сторону образования исходных веществ, т. к. вода Н 2 О - значительно более слабый элек­тролит, чем гидрат аммиака NH 3 H 2 O.

Сокращенное ионное уравнение гидролиза:

Уравнение показывает, что:

1) в растворе есть свободные ионы водорода Н + , и их концентрация больше, чем в чистой воде, поэтому раствор соли имеет кислотную среду (pH < 7);

2) в реакции с водой участвуют катионы аммония NH + ; в таком случае говорят, что идет гидролиз по катиону.

В реакции с водой могут участвовать и много­зарядные катионы: двухзарядные М 2+ (например, Ni 2 +, Cu 2 +, Zn 2+ …), кроме катионов щелочноземель­ных металлов, трехзарядные М 3 + (например, Fe 3 +, Al 3 +, Cr 3+ …).

Рассмотрим гидролиз нитрата никеля Ni(NO 3) 2 , гидролиз соли по катиону:

Происходит гидролиз соли по катиону Ni 2+ .

Полное ионное уравнение гидролиза:

Сокращенное ионное уравнение:

Продукты гидролиза - основная соль NiOHNO 3 и азотная кислота HNO 3 .

Среда водного раствора нитрата никеля кислот­ная (рН < 7), потому что в растворе увеличивается концентрация ионов Н + .

Гидролиз соли NiOHNO 3 протекает в значитель­но меньшей степени, и им можно пренебречь. Таким образом:

1) по катиону соли, как правило, гидролизуются обратимо;

2) химическое равновесие реакций сильно смеще­но влево;

3) реакция среды в растворах таких солей кислот­ная (рН < 7);

4) при гидролизе солей, образованных слабыми многокислотными основаниями, получаются основные соли.

3. Соли, образованные слабым основанием и слабой кислотой .

Такие соли подвергаются гидролизу и по кати­ону, и по аниону.

Катион слабого основания связывает ионы ОН — из молекул воды, образуя слабое основание; ани­он слабой кислоты связывает ионы Н + из молекул воды, образуя слабую кислоту. Ре­акция растворов этих солей может быть нейтральной, сла­бокислотной или слабощелоч­ной. Это зависит от констант диссоциации двух слабых электролитов - кислоты и основания, которые об­разуются в результате гидролиза.

Например, рассмотрим гидролиз двух солей: ацетата аммония NH 4 CH 3 COO и формиата аммония NH 4 HCCO:

В водных растворах этих солей катионы сла­бого основания NH + взаимодействуют с гидрок­сид-ионами ОН — (напомним, что вода диссоци­ирует H 2 O = H + + OH —), а анионы слабых кислот CH 3 COO — и HCOO — взаимодействуют с катионами Н + с образованием молекул слабых кислот - ук­сусной CH 3 COOH и муравьиной HCOOH.

Запишем ионные уравнения гидролиза:

В этих случаях гидролиз тоже обратимый, но равновесие смещено в сторону образования про­дуктов гидролиза - двух слабых электролитов.

В первом случае среда раствора нейтральная (рН = 7), т. к. K д (CH 3 COOH) = K д (NH 3 H 2 O) = 1,8 10 -5 . Во втором случае среда раствора будет сла­бокислотной (pH < 7), т. к. K д (HCOOH) = 2,1 10 -4 и K д (NH 3 H 2 O) < K д HCOOH), где K д - константа диссоциации.

Гидролиз большинства солей является обрати­мым процессом. В состоянии химического равно­весия гидролизована лишь часть соли. Однако не­которые соли полностью разлагаются водой, т. е. их гидролиз является необратимым процессом.

Сульфид алюминия Al 2 S 3 в воде подвергается необратимому гидролизу, т. к. появляющиеся при гидролизе по катиону ионы Н + связываются обра­зующимися при гидролизе по аниону ионами ОН — . Это усиливает гидролиз и приводит к образова­нию нерастворимого гидроксида алюминия и газо­образного сероводорода:

Поэтому сульфид алюминия Al 2 S 3 нельзя полу­чить реакцией обмена между водными растворами двух солей, например, хлорида алюминия AlCl 3 и сульфида натрия Na 2 S.

В результате гидролиза и по катиону, и по аниону:

1) если соли гидролизуются и по катиону, и по аниону обратимо, то химическое равновесие в реакциях гидролиза смещено вправо; реак­ция среды при этом или нейтральная, или сла­бокислотная, или слабощелочная, что зависит от соотношения констант диссоциации образу­ющихся основания и кислоты;

2) соли могут гидролизоваться и по катиону, и по аниону необратимо, если хотя бы один из про­дуктов гидролиза уходит из сферы реакции.

4. Соли, образованные сильным основанием и сильной кислотой , не подвергаются гидролизу .

Рассмотрим «поведение» в растворе хлорида калия KCl.

Соль в водном растворе диссоциирует на ионы (KCl = K + + Cl —), но при взаимодействии с водой сла­бый электролит образоваться не может. Среда рас­твора нейтральная (рН = 7), т. к. концентрации ио­нов Н + и ОН — в растворе равны, как в чистой воде.

Другими примерами подобных солей могут быть галогениды, нитраты, перхлораты, сульфаты, хроматы и дихроматы щелочных металлов, гало­гениды (кроме фторидов), нитраты и перхлораты щелочноземельных металлов.

Следует также отметить, что реакция обратимого гидролиза полностью подчиняется принципу Ле Шателье . Поэтому гидролиз соли можно усилить (и да­же сделать необратимым) следующими способами:

1) добавить воды (уменьшить концентрацию);

2) нагреть раствор, при этом усиливается эндотер­мическая диссоциация воды:

А значит, увеличивается количество Н + и ОН — , которые необходимы для осуществления гидро­лиза соли;

3) связать один из продуктов гидролиза в труд­норастворимое соединение или удалить один из продуктов в газовую фазу; например, ги­дролиз цианида аммония NH 4 CN будет зна­чительно усиливаться за счет разложения ги­драта аммиака с образованием аммиака NH 3 и воды Н 2 О:

Гидролиз можно подавить (значительно умень­шить количество подвергающейся гидролизу со­ли), действуя следующим образом:

1) увеличить концентрацию растворенного веще­ства;

2) охладить раствор (для ослабления гидролиза растворы солей следует хранить концентриро­ванными и при низких температурах);

3) ввести в раствор один из продуктов гидролиза; например, подкислять раствор, если его среда в результате гидролиза кислотная, или подще­лачивать, если щелочная.


Значение гидролиза

Гидролиз солей имеет и практическое, и био­логическое значение .

Еще в древности в качестве моющего средства использовали золу. В золе содержится карбонат калия K 2 CO 3 , который в воде гидролизуется по аниону, во­дный раствор приобретает мылкость за счет образу­ющихся при гидролизе ионов ОН — .

В настоящее время в бы­ту мы используем мыло, сти­ральные порошки и другие моющие средства. Основной компонент мыла - это на­триевые и калиевые соли высших жирных кар­боновых кислот: стеараты, пальмитаты, которые гидролизуются.

Гидролиз стеарата натрия C 17 H 35 COONa выра­жается следующим ионным уравнением:

т. е. раствор имеет слабощелочную среду.

Соли, создающие необходимую щелочную среду раствора, содержатся в фотографическом прояви­теле. Это карбонат натрия Na 2 CO 3 , карбонат калия K 2 CO 3 , бура Na 2 B 4 O 7 и другие соли, гидролизующи­еся по аниону.

Если кислотность почвы недостаточна, у рас­тений появляется болезнь - хлороз. Ее призна­ки - пожелтение или побеление листьев, отстава­ние в росте и развитии. Если рН > 7,5, то в нее почвы вносят удобрение сульфат аммония (NH 4) 2 SO 4 , которое способствует повышению кислотности благодаря гидролизу по катиону, проходящему в почве:

Неоценима биологическая роль гидролиза не­которых солей, входящих в состав нашего орга­низма.

Например, в состав крови входят соли гидро­карбонат и гидрофосфат натрия. Их роль заклю­чается в поддержании определенной реакции среды.

Это происходит за счет смещения равновесия процессов гидролиза:

Если в крови избыток ионов Н + , они связыва­ются с гидроксид-ионами ОН — , и равновесие сме­щается вправо. При избытке гидроксид-ионов ОН — равновесие смещается влево. Благодаря этому кислотность крови здорового человека колеблется незначительно.

Или например: в составе слюны человека есть ионы HPO 4 — . Благодаря им в полости рта поддер­живается определенная среда (рН = 7-7,5).

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Исследуем действие универсального индикатора на растворы некоторых солей

Как мы видим, среда первого раствора — нейтральная (рН=7), второго — кислая (рН < 7), третьего щелочная (рН > 7). Чем же объяснить столь интересный факт? 🙂

Для начала, давайте вспомним, что такое pH и от чего он зависит.

pH- водородный показатель, мера концентрации ионов водорода в растворе (по первым буквам латинских слов potentia hydrogeni - сила водорода).

pH вычисляется как отрицательный десятичный логарифм концентрации водородных ионов, выраженной в молях на один литр:

В чистой воде при 25 °C концентрации ионов водорода и гидроксид-ионов одинаковы и составляют 10 -7 моль/л (рН=7).

Когда концентрации обоих видов ионов в растворе одинаковы, раствор имеет нейтральную реакцию. Когда > раствор является кислым, а при > - щелочным.

За счет чего же в некоторых водных растворах солей происходит нарушение равенства концентраций ионов водорода и гидроксид-ионов?

Дело в том, что происходит смещение равновесия диссоциации воды вследствие связывания одного из ее ионов ( или ) с ионами соли с образованием малодиссоциированного, труднорастворимого или летучего продукта. Это и есть суть гидролиза.

— это химическое взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита -кислоты (или кислой соли), или основания (или основной соли).

Слово «гидролиз» означает разложение водой («гидро»-вода, «лизис» — разложение).

В зависимости от того какой ион соли вступает во взаимодействие с водой, различают три типа гидролиза:

  1. žгидролиз по катиону (в реакцию с водой вступает только катион);
  2. žгидролиз по аниону (в реакцию с водой вступает только анион);
  3. žсовместный гидролиз — гидролиз по катиону и по аниону (в реакцию с водой вступает и катион, и анион).

Любую соль можно рассматривать как продукт, образованный взаимодействием основания и кислоты:


Гидролиз соли – взаимодействие ее ионов с водой, приводящее к появлению кислотной или щелочной среды, но не сопровождающееся образованием осадка или газа.

Процесс гидролиза протекает только с участием растворимых солей и состоит из двух этапов:
1) диссоциация соли в растворе – необратимая реакция (степень диссоциации, или 100%);
2) собственно , т.е. взаимодействие ионов соли с водой, — обратимая реакция (степень гидролиза ˂ 1, или 100%)
Уравнения 1-го и 2-го этапов – первый из них необратим, второй обратим – складывать нельзя!
Отметим, что соли, образованные катионами щелочей и анионами сильных кислот, гидролизу не подвергаются, они лишь диссоциируют при растворении в воде. В растворах солей KCl, NaNO 3 , NaSO 4 и BaI среда нейтральная .

Гидролиз по аниону

В случае взаимодействия анионов растворенной соли с водой процесс называется гидролизом соли по аниону .
1) KNO 2 = K + + NO 2 — (диссоциация)
2) NO 2 — + H 2 O ↔ HNO 2 + OH — (гидролиз)
Диссоциация соли KNO 2 протекает полностью, гидролиз аниона NO 2 – в очень малой степени (для 0,1 М раствора – на 0,0014%), но этого оказывается достаточно, чтобы раствор стал щелочным (среди продуктов гидролиза присутствует ион OH —), в нем p H = 8,14.
Гидролизу подвергаются анионы только слабых кислот (в данном примере – нитрит-ион NO 2 , отвечающий слабой азотистой кислоте HNO 2). Анион слабой кислоты притягивает к себе катион водорода, имеющийся в воде, и образует молекулу этой кислоты, а гидроксид-ион остается свободным:
NO 2 — + H 2 O (H +, OH —) ↔ HNO 2 + OH —
Примеры:
а) NaClO = Na + + ClO —
ClO — + H 2 O ↔ HClO + OH —
б) LiCN = Li + + CN —
CN — + H 2 O ↔ HCN + OH —
в) Na 2 CO 3 = 2Na + + CO 3 2-
CO 3 2- + H 2 O ↔ HCO 3 — + OH —
г) K 3 PO 4 = 3K + + PO 4 3-
PO 4 3- + H 2 O ↔ HPO 4 2- + OH —
д) BaS = Ba 2+ + S 2-
S 2- + H 2 O ↔ HS — + OH —
Обратите внимание, что в примерах (в- д) нельзя увеличить число молекул воды и вместо гидроанионов (HCO 3, HPO 4, HS) писать формулы соответствующих кислот (H 2 CO 3, H 3 PO 4, H 2 S). Гидролиз – обратимая реакция, и протекать «до конца» (до образования кислоты) он не может.
Если бы такая неустойчивая кислота, как H 2 CO 3 , образовывалась в растворе своей соли NaCO 3 , то наблюдалось бы выделение из раствора газа CO 2 (H 2 CO 3 = CO 2 + H 2 O). Однако, при растворении соды в воде образуется прозрачный раствор без газовыделения, что является свидетельством неполноты протекания гидролиза аниона с появлением в растворе только гидранионов угольной кислоты HCO 3 — .
Степень гидролиза соли по аниону зависит от степени диссоциации продукта гидролиза – кислоты. Чем слабее кислота, тем выше степень гидролиза. Например, ионы CO 3 2- , PO 4 3- и S 2- подвергаются гидролизу в большей степени, чем ион NO 2 , так как диссоциация H 2 CO 3 и H 2 S по 2-й ступени, а H 3 PO 4 по 3-тей ступени протекает значительно меньше, чем диссоциация кислоты HNO 2 . Поэтому растворы, например, Na 2 CO 3 , K 3 PO 4 и BaS будут сильнощелочными (в чем легко убедиться по мылкости соды на ощупь).

Избыток ионов ОН в растворе легко обнаружить индикатором или измерить специальными приборами (рН-метрами).
Если в концентрированный раствор сильно гидролизующейся по аниону соли,
например Na 2 CO 3 , внести алюминий, то последний (вследствие амфотерности) прореагирует со щелочью и будет наблюдаться выделение водорода. Это – дополнительное доказательство протекания гидролиза, ведь в раствор соды мы не добавляли щелочь NaOH!

Обратите особое внимание на соли кислот средней силы — ортофосфорной и сернистой. По первой ступени эти кислоты диссоциируют довольно хорошо, поэтому их кислые соли гидролизу не подвергаются, и среда раствора таких солей — кислая (из-за наличия катиона водорода в составе соли). А средние соли гидролизуются по аниону — среда щелочная. Итак, гидросульфиты, гидрофосфаты и дигидрофосфаты — не гидролизуются по аниону, среда кислая. Сульфиты и фосфаты — гидролизуются по аниону, среда щелочная.

Гидролиз по катиону

В случае взаимодействия катиона растворенной соли с водой процесс называется
гидролизом соли по катиону

1) Ni(NO 3) 2 = Ni 2+ + 2NO 3 − (диссоциация)
2) Ni 2+ + H 2 O ↔ NiOH + + H + (гидролиз)

Диссоциация соли Ni(NO 3) 2 протекает нацело, гидролиз катиона Ni 2+ − в очень малой степени (для 0,1М раствора − на 0,001%), но этого оказывается достаточно, чтобы среда стала кислотной (среди продуктов гидролиза присутствует ион H +).

Гидролизу подвергаются катионы только малорастворимых основных и амфотерных гидроксидов и катион аммония NH 4 + . Катион металла отщепляет от молекулы воды гидроксид-ион и освобождает катион водорода H + .

Катион аммония в результате гидролиза образует слабое основание − гидрат аммиака и катион водорода:

NH 4 + + H 2 O ↔ NH 3 · H 2 O + H +

Обратите внимание, что нельзя увеличивать число молекул воды и вместо гидроксокатионов (например, NiOH +) писать формулы гидроксидов (например, Ni(OH) 2). Если бы гидроксиды образовались, то из растворов солей выпали бы осадки, чего не наблюдается (эти соли образуют прозрачные растворы).
Избыток катионов водорода легко обнаружить индикатором или измерить специальными приборами. В концентрированный раствор сильно гидролизующейся по катиону соли, вносится магний или цинк, то последние реагируют с кислотой с выделением водорода.

Если соль нерастворимая — то гидролиза нет, т.к ионы не взаимодействуют с водой.

Транскрипт

1 ГИДРОЛИЗ ОРГАНИЧЕСКИХ И НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

2 Гидро лиз (от древне греческого «ὕδωρ» вода и «λύσις» разложение) один из видов химических реакций, где при взаимодействии веществ с водой происходит разложение исходного вещества с образованием новых соединений. Механизм гидролиза соединений различных классов: - соли, углеводы, жиры, сложные эфиры и др. имеет существенные различия

3 Гидролиз органических веществ Живые организмы осуществляют гидролиз различных органических веществ в ходе реакций при участии ФЕРМЕНТОВ. Например, в ходе гидролиза при участии пищеварительных ферментов БЕЛКИ расщепляются на АМИНОКИСЛОТЫ, ЖИРЫ на ГЛИЦЕРИН и ЖИРНЫЕ КИСЛОТЫ, ПОЛИСАХАРИДЫ (например, крахмал и целлюлоза) на МОНОСАХАРИДЫ (например, на ГЛЮКОЗУ), НУКЛЕИНОВЫЕ КИСЛОТЫ на свободные НУКЛЕОТИДЫ. При гидролизе жиров в присутствии щёлочей получают мыло; гидролиз жиров в присутствии катализаторов применяется для получения глицерина и жирных кислот. Гидролизом древесины получают этанол, а продукты гидролиза торфа находят применение в производстве кормовых дрожжей, воска, удобрений и др.

4 1. Гидролиз органических соединений жиры гидролизуются с получением глицерина и карбоновых кислот (с NaOH омыление):

5 крахмал и целлюлоза гидролизуются до глюкозы:

7 ТЕСТ 1. При гидролизе жиров образуются 1) спирты и минеральные кислоты 2) альдегиды и карбоновые кислоты 3) одноатомные спирты и карбоновые кислоты 4) глицерин и карбоновые кислоты ОТВЕТ: 4 2. Гидролизу подвергается: 1) Ацетилен 2) Целлюлоза 3) Этанол 4) Метан ОТВЕТ: 2 3. Гидролизу подвергается: 1) Глюкоза 2) Глицерин 3) Жир 4) Уксусная кислота ОТВЕТ: 3

8 4. При гидролизе сложных эфиров образуются: 1) Спирты и альдегиды 2) Карбоновые кислоты и глюкоза 3) Крахмал и глюкоза 4) Спирты и карбоновые кислоты ОТВЕТ: 4 5. При гидролизе крахмала получается: 1) Сахароза 2) Фруктоза 3) Мальтоза 4) Глюкоза ОТВЕТ: 4

9 2. Обратимый и необратимый гидролиз Почти все рассмотренные реакции гидролиза органических веществ обратимы. Но есть и необратимый гидролиз. Общее свойство необратимого гидролиза - один (лучше оба) из продуктов гидролиза должен быть удален из сферы реакции в виде: - ОСАДКА, - ГАЗА. СаС₂ + 2Н₂О = Са(ОН)₂ + С₂Н₂ При гидролизе солей: Al₄C₃ + 12 H₂O = 4 Al(OH)₃ + 3CH₄ Al₂S₃ + 6 H₂O CaH₂ + 2 H₂O = 2 Al(OH)₃ + 3 H₂S = 2Ca(OH)₂ + H₂

10 Г И Д Р О Л И З С О Л Е Й Гидролиз солей разновидность реакций гидролиза, обусловленного протеканием реакций ионного обмена в растворах (водных) растворимых солей-электролитов. Движущей силой процесса является взаимодействие ионов с водой, приводящее к образованию слабого электролита в ионном или молекулярном виде («связывание ионов»). Различают обратимый и необратимый гидролиз солей. 1. Гидролиз соли слабой кислоты и сильного основания (гидролиз по аниону). 2. Гидролиз соли сильной кислоты и слабого основания (гидролиз по катиону). 3. Гидролиз соли слабой кислоты и слабого основания (необратимый) Соль сильной кислоты и сильного основания не подвергается гидролизу

12 1. Гидролиз соли слабой кислоты и сильного основания (гидролиз по аниону): (раствор имеет щелочную среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени) 2. Гидролиз соли сильной кислоты и слабого основания (гидролиз по катиону): (раствор имеет кислую среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)

13 3. Гидролиз соли слабой кислоты и слабого основания: (равновесие смещено в сторону продуктов, гидролиз протекает практически полностью, так как оба продукта реакции уходят из зоны реакции в виде осадка или газа). Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален.

14 СХЕМА ГИДРОЛИЗА КАРБОНАТА НАТРИЯ NaOH сильное основание Na₂CO₃ H₂CO₃ слабая кислота > [H]+ ЩЕЛОЧНАЯ СРЕДА СОЛЬ КИСЛАЯ, гидролиз по АНИОНУ

15 Первая ступень гидролиза Na₂CO₃ + H₂O NaOH + NaHCO₃ 2Na+ + CO₃ ² + H₂O Na+ + OH + Na+ + HCO₃ CO₃ ² + H₂O OH + HCO₃ Вторая ступень гидролиза NaHCO₃ + H₂O = NaOH + H₂CO ₃ CO₂ H₂O Na+ + HCO₃ + H₂O = Na+ + OH + CO₂ + H₂O HCO₃ + H₂O = OH + CO₂ + H₂O

16 СХЕМА ГИДРОЛИЗА ХЛОРИДА МЕДИ (II) Cu(OH)₂ слабое основание CuCl₂ HCl сильная кислота < [ H ]+ КИСЛАЯ СРЕДА СОЛЬ ОСНОВНАЯ, гидролиз по КАТИОНУ

17 Первая ступень гидролиза CuCl₂ + H₂O (CuOH)Cl + HCl Cu+² + 2 Cl + H₂O (CuOH)+ + Cl + H+ + Cl Cu+² + H₂O (CuOH)+ + H+ Вторая ступень гидролиза (СuOH)Cl + H₂O Cu(OH)₂ + HCl (Cu OH)+ + Cl + H₂O Cu(OH)₂ + H+ + Cl (CuOH)+ + H₂O Cu(OH)₂ + H+

18 СХЕМА ГИДРОЛИЗА СУЛЬФИДА АЛЮМИНИЯ Al₂S₃ Al(OH)₃ H₂S слабое основание слабая кислота = [H]+ НЕЙТРАЛЬНАЯ РЕАКЦИЯ СРЕДЫ гидролиз необратимый

19 Al₂S₃ + 6 H₂O = 2Al(OH)₃ + 3H₂S ГИДРОЛИЗ ХЛОРИДА НАТРИЯ NaCl NaOH HCl сильное основание сильная кислота = [ H ]+ НЕЙТРАЛЬНАЯ РЕАКЦИЯ СРЕДЫ гидролиз не идет NaCl + H₂O = NaOH + HCl Na+ + Cl + H₂O = Na+ + OH + H+ + Cl

20 Преобразование земной коры Обеспечение слабощелочной среды морской воды РОЛЬ ГИДРОЛИЗА В ЖИЗНИ ЧЕЛОВЕКА Стирка Мытье посуды Умывание с мылом Процессы пищеварения

21 Напишите уравнения гидролиза: А) К₂S Б)FeCl₂ В) (NH₄)₂S Г) BaI₂ K₂S: KOH - сильное основание H₂S слабая кислота ГИДРОЛИЗ ПО АНИОНУ СОЛЬ КИСЛАЯ СРЕДА ЩЕЛОЧНАЯ K₂S + H₂O KHS + KOH 2K+ + S ² + H₂O K+ + HS + K+ + OH S ² + H₂O HS + OH FeCl₂ : Fe(OH)₂ - слабое основание HCL - сильная кислота ГИДРОЛИЗ ПО КАТИОНУ СОЛЬ ОСНОВНАЯ СРЕДА КИСЛАЯ FeCl₂ + H₂O (FeOH)Cl + HCl Fe+² + 2Cl + H₂O (FeOH)+ + Cl + H+ + Cl Fe +² + H₂O (FeOH)+ + H+

22 (NH₄)₂S: NH₄OH - слабое основание; H₂S - слабая кислота ГИДРОЛИЗ НЕОБРАТИМЫЙ (NH₄)₂S + 2H₂O = H₂S + 2NH₄OH 2NH₃ 2H₂O BaI₂ : Ba(OH)₂ - сильное основание; HI - сильная кислота ГИДРОЛИЗА НЕТ

23 Выполните на листе бумаги. На следующем уроке сдайте работу учителю.

25 7. Водный раствор какой из солей имеет нейтральную среду? а) Al(NO₃)₃ б) ZnCl₂ в) BaCl₂ г) Fe(NO₃)₂ 8. В каком растворе цвет лакмуса будет синим? а) Fe₂(SO₄)₃ б) K₂S в) CuCl₂ г) (NH₄)₂SO₄

26 9. Гидролизу не подвергаются 1) карбонат калия 2) этан 3) хлорид цинка 4) жир 10. При гидролизе клетчатки (крахмала) могут образовываться: 1) глюкоза 2) только сахароза 3) только фруктоза 4) углекислый газ и вода 11. Среда раствора в результате гидролиза карбоната натрия 1) щёлочная 2) сильно кислая 3) кислая 4) нейтральная 12. Гидролизу подвергается 1) CH 3 COOK 2) KCI 3) CaCO 3 4)Na 2 SO 4

27 13.Гидролизу не подвергаются 1) сульфат железа 2) спирты 3) хлорид аммония 4) сложные эфиры 14.Среда раствора в результате гидролиза хлорида аммония: 1) слабощёлочная 2) сильнощёлочная 3) кислая 4) нейтральная

28 ПРОБЛЕМА Объясните почему при сливании растворов - FeCl₃ и Na₂CO₃ - выпадает осадок и выделяется газ? 2FeCl₃ + 3Na₂CO₃ + 3H₂O = 2Fe(OH)₃ + 6NaCl + 3CO₂

29 Fe+³ + H₂O (FeOH)+² + H+ CO₃ ² + H₂O HCO₃ + OH CO₂ + H₂O Fe(OH)₃


Гидролиз это реакция обменного разложения веществ водой. Гидролиз Органических веществ Неорганических веществ Солей Гидролиз органических веществ Белков Галогеноалканов Сложных эфиров (жиров) Углеводов

ГИДРОЛИЗ Общие представления Гидролиз обменная реакция взаимодействия веществ с водой, приводящая к их разложению. Гидролизу могут подвергаться неорганические и органические вещества различных классов.

11 класс. Тема 6. Урок 6. Гидролиз солей. Цель урока: сформировать у учащихся понятие о гидролизе солей. Задачи: Обучающие: научить учащихся определять характер среды растворов солей по их составу, составлять

МОУ СОШ 1 г.серухова Московской области Антошина Татьяна Александровна, учитель химии «Изучение гидролиза в 11-ом классе». С гидролизами учащиеся знакомятся впервые в 9-м классе на примере неорганических

Гидролиз солей Работу выполнила Учитель высшей категории Тимофеева В.Б. Что такое гидролиз Гидролиз процесс обменного взаимодействия сложных веществ с водой Гидролиз Взаимодействие соли с водой, в результате

Разработал: преподаватель Химии ГБОУ СПО «Закаменский агропромышленный техникум» Салисова Любовь Ивановна Методическое пособие по химии тема «Гидролиз» В данном учебном пособии представлен подробный теоретический

1 Теория. Ионно-молекулярные уравнения реакций ионного обмена Реакциями ионного обмена называют реакции между растворами электролитов, в результате которых они обмениваются своими ионами. Реакции ионного

18. Ионные реакции в растворах Электролитическая диссоциация. Электролитическая диссоциация это распад молекул в растворе с образованием положительно и отрицательно заряженных ионов. Полнота распада зависит

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КРАСНОДАРСКОГО КРАЯ государственное бюджетное профессиональное образовательное учреждение Краснодарского края «Краснодарский информационно-технологический техникум» Перечень

12. Карбонильные соединения. Карбоновые кислоты. Углеводы. Карбонильные соединения К карбонильным соединениям относятся альдегиды и кетоны, в молекулах которых присутствует карбонильная группа Альдегиды

Водородный показатель ph Индикаторы Суть гидролиза Типы солей Алгоритм составления уравнений гидролиза солей Гидролиз солей различных типов Способы подавления и усиления гидролиза Решение тестов В4 Водородный

П\п Тема Урок I II III 9 класс, 2014-2015 учебный год, базовый уровень, химия Тема урока Колво часов Примерные сроки Знания, умения, навыки. Теория электролитической диссоциации (10 часов) 1 Электролиты

Соли Определение Cоли сложные вещества, образованные атомом металла и кислотным остатком. Классификация солей 1. Средние соли, состоят из атомов металла и кислотных остатков: NaCl хлорид натрия. 2. Кислые

Задания А24 по химии 1. Одинаковую реакцию среды имеют растворы хлорида меди(ii) и 1) хлорида кальция 2) нитрата натрия 3) сульфата алюминия 4) ацетата натрия Хлорид меди(ii)- соль, образована слабым основанием

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа 4 г. Балтийска Рабочая программа учебного предмета «Химия» 9 класс, ступень базовый уровень Балтийск 2017год 1.Пояснительная

Банк заданий к промежуточной аттестации учащихся 9 класса А1. Строение атома. 1. Заряд ядра атома углерода 1) 3 2) 10 3) 12 4) 6 2. Заряд ядра атома натрия 1) 23 2) 11 3) 12 4) 4 3. Число протонов в ядре

3 Растворы электролитов Жидкие растворы подразделяют на растворы электролитов, способные проводить электрический ток, и растворы неэлектролитов, которые не электропроводны. В неэлектролитах растворенное

Основные положения теории электролитической диссоциации Фарадей Майкл 22. IX.1791 25.VIII. 1867 Английский физик и химик. В первой половине 19 в. ввел понятие об электролитах и неэлектролитах. Вещества

Требования к уровню подготовки учащихся После изучения материала 9 класса учащиеся должны: Называть химические элементы по символам, вещества по формулам, признаки и условия осуществления химических реакций,

Занятие 14 Гидролиз солей Тест 1 1. Щелочную среду имеет раствор l) Pb(NO 3) 2 2) Na 2 CO 3 3) NaCl 4) NaNO 3 2. В водном растворе какого вещества среда нейтральная? l) NaNO 3 2) (NH 4) 2 SO 4 3) FeSO

СОДЕРЖАНИЕ ПРОГРАММЫ Раздел 1. Химический элемент Тема 1. Строение атомов. Периодический закон и периодическая система химических элементов Д.И. Менделеева. Современные представления о строении атомов.

Химические свойства солей (средних) ВОПРОС 12 Соли это сложные вещества состоящие из атомов металлов и кислотных остатков Примеры: Na 2 CO 3 карбонат натрия; FeCl 3 хлорид железа (III); Al 2 (SO 4) 3

1. Какое из следующих утверждений справедливо для насыщенных растворов? 1) насыщенный раствор может быть концентрированным, 2) насыщенный раствор может быть разбавленным, 3) насыщенный раствор не может

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа 1 станицы Павловской муниципального образования Павловский район Краснодарского края Система подготовки учащихся

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КРАСНОДАРСКОГО КРАЯ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НОВОРОССИЙСКИЙ КОЛЛЕДЖ РАДИОЭЛЕКТРОННОГО ПРИБОРОСТРОЕНИЯ»

I.Требования к уровню подготовки учащихся Учащиеся в результате усвоения раздела должны знать/понимать: химическую символику: знаки химических элементов, формулы химических веществ и уравнения химических

Промежуточная аттестация по химии 10-11 классы Образец А1.Сходную конфигурацию внешнего энергетического уровня имеют атомы углерода и 1) азота 2) кислорода 3) кремния 4) фосфора А2. В ряду элементов алюминий

Повторение А9 и А10 (свойства оксидов и гидроксидов); А11 Характерные химические свойства солей: средних, кислых, оснóвных; комплексных (на примере соединений алюминия и цинка) А12 Взаимосвязь неорганических

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа составлена на основе Примерной программы основного общего образования по химии, а также программы курса химии для учащихся 8 9 классов общеобразовательных учреждений

Тест по химии 11 класс (базовый уровень) Тест «Типы химических реакций (химия 11 класс, базовый уровень) Вариант 1 1. Закончить уравнения реакций и указать их тип: а) Al 2 O 3 +HCl, б) Na 2 O + H 2 O,

Задание 1. В какой из данных смесей можно отделить соли друг от друга, используя воду и прибор для фильтрования? а) BaSO 4 и CaCO 3 б) BaSO 4 и CaCl 2 в) BaCl 2 и Na 2 SO 4 г) BaCl 2 и Na 2 CO 3 Задание

Растворы электролитов ВАРИАНТ 1 1. Написать уравнения для процесса электролитической диссоциации йодноватистой кислоты, гидроксида меди (I), ортомышьяковистой кислоты, гидроксида меди (II). Записать выражения

Урок по химии. (9 класс) Тема: Реакции ионного обмена. Цель: Сформировать понятия о реакциях ионного обмена и условиях их протекания, полном и сокращѐнном ионно-молекулярном уравнениях и ознакомить с алгоритмом

ГИДРОЛИЗ СОЛЕЙ Т. А. Колевич, Вадим Э. Матулис, Виталий Э. Матулис 1. Вода как слабый электролит Водородный показатель (рн) раствора Вспомним строение молекулы воды. Атом кислорода связан с атомами водорода

Тема ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ. РЕАКЦИИ ИОННОГО ОБМЕНА Проверяемый элемент содержания Форма задания Макс. балл 1. Электролиты и неэлектролиты ВО 1 2. Электролитическая диссоциация ВО 1 3. Условия необратимого

18 Ключ к варианту 1 Написать уравнения реакций, соответствующих следующим последовательностям химических превращений: 1. Si SiH 4 SiО 2 H 2 SiО 3 ; 2. Cu. Cu(OH) 2 Cu(NO 3) 2 Cu 2 (OH) 2 CO 3 ; 3. Метан

Усть-Донецкий район х. Крымский муниципальное бюджетное общеобразовательное учреждение Крымская средняя общеобразовательная школа УТВЕРЖДЕНА Приказ от 2016г Директор школы И.Н. Калитвенцева Рабочая программа

Индивидуальное домашнее задание 5. ВОДОРОДНЫЙ ПОКАЗАТЕЛЬ СРЕДЫ. ГИДРОЛИЗ СОЛЕЙ ТЕОРЕТИЧЕСКАЯ ЧАСТЬ Электролиты вещества, проводящие электрический ток. Процесс распада вещества на ионы под действием растворителя

1. Основные свойства проявляет внешний оксид элемента: 1) серы 2) азота 3) бария 4) углерода 2. Какая из формул соответствует выражению степени диссоциации электролитов: 1) α = n\n 2) V m = V\n 3) n =

Задания А23 по химии 1. Сокращённому ионному уравнению соответствует взаимодействие Чтобы подобрать вещества, взаимодействие которых будет давать такое ионное уравнение, надо, используя таблицу растворимости,

1 Гидролиз Ответами к заданиям являются слово, словосочетание, число или последовательность слов, чисел. Запишите ответ без пробелов, запятых и других дополнительных символов. Установите соответствие между

Банк заданий 11 класс химия 1. Электронная конфигурация соответствует иону: 2. Одинаковую кофигурацию имеют частицы и и и и 3. Сходную конфигурацию внешнего энергетического уровня имеют атомы магния и

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ШКОЛА 72» ГОРОДСКОГО ОКРУГА САМАРА РАССМОТРЕНО на заседании методического объединения учителей (Председатель МО: подпись, ФИО) протокол от 20 г.

Гидролиз- обменная реакция соли с водой ( сольволизводой ).При этом исходное вещество разрушается водой, с образованием новых веществ.

Так как гидролиз является реакцией ионного обмена, то его движущей силой является образование слабого электролита (выпадение осадка или(и)выделение газа). Важно помнить, что реакция гидролиза является реакцией обратимой(в большинстве случаев), но также существует необратимый гидролиз(протекает до конца, исходного вещества в растворе не будет). Гидролиз- процесс эндотермический (при повышении температуры возрастает и скорость гидролиза, и выход продуктов гидролиза).

Как видно из определения, что гидролиз обменная реакция, то можно предположить, что к металлу идет OH - группа (+ возможный кислотный остаток, если образуется основная соль (при гидролизе соли, образованной сильной кислотой и слабым многокислотным основанием)), а к кислотному остатку идет протон водорода H + (+ возможный ион металла и ион водорода, с образованием кислой соли, если гидролизуется соль, образованная слабой многоосновной кислотой)).

Существует 4 типа гидролиза:

1. Соль, образованная сильным основанием и сильной кислотой. Так как уже было указанно выше гидролиз- реакция ионного обмена, и она протекает лишь в случае образования слабого электролита. Как описанной выше, к металлу идёт OH - группа, а к кислотному остатку идет протон водорода H + , но ни сильное основание, ни сильная кислота не являются слабыми электролитами, следовательно гидролиз в данном случае не идёт:

NaCl+HOH≠NaOH+HCl

Реакция среды близка к нейтральной: pH≈7

2. Соль образованна слабым основанием и сильной кислотой. Как указанно выше:к металлу идёт OH - группа, а к кислотному остатку идет протон водорода H +. Например:

NH 4 Cl+HOH↔NH 4 OH+HCl

NH 4 + +Cl - +HOH↔NH 4 OH+H + +Cl -

NH 4 + +HOH↔NH 4 OH+H +

Как видно из примера-гидролиз идёт по катиону, реакция среды –кислая pH< 7.При написании уравнений гидролиза для солей, образованных сильной кислотой и слабым многокислотным основанием, то в правой части следует писать основную соль, так как гидролиз идёт только по первой ступени:

FeCl 2 + HOH ↔ FeOHCl + HCl

Fe 2+ +2Cl - +HOH↔FeO + +H + +2Cl -

Fe 2+ + HOH ↔ FeOH + + H +

3. Соль образованна слабой кислотой и сильным основанием.Как указанно выше: к металлу идёт OH - группа, а к кислотному остатку идет протон водорода H + Например:

CH 3 COONa+HOH↔NaOH+CH 3 COOH

СH 3 COO - +Na + +HOH↔Na + +CH 3 COOH+OH -

СH 3 COO - +HOH↔+CH 3 COOH+OH -

Гидролиз идёт по аниону, реакция среды- щелочная, pH>7.При написании уравнений гидролиза соли, образованной слабой многоосновной кислотой и сильным основанием, в правой части следует писать образование кислой соли, гидролиз идёт по 1 ступени. Например:

Na 2 CO 3 +HOH↔NaOH+NaHCO 3

2Na + +CO 3 2- +HOH↔HCO 3 - +2Na + +OH -

CO 3 2- +HOH↔HCO 3 - +OH -

4. Соль образованна слабым основанием и слабой кислотой. Это единственный случай, когда гидролиз идёт до конца, является необратимым(до полного расходования исходной соли).Например:

СH 3 COONH 4 +HOH↔NH 4 OH+CH 3 COOH

Это единственный случай, когда гидролиз идёт до конца. Гидролиз идёт и по аниону, и по катиону, реакцию среды предугадать сложно, но она близка к нейтральной: pH≈7.

Также существует константа гидролиза, рассмотрим ее на примере ацетатного иона, обозначив его Ac - . Как видно из примеров выше уксусная(этановая) кислота является слабой кислотой, а, следовательно, ее соли гидролизуются по схеме:

Ac - +HOH↔HAc+OH -

Найдём константу равновесия для этой системы:

Зная ионное произведение воды, мы можем через него выразить концентрацию [ OH ] - ,

Подставляя это выражение в уравнение для константы гидролиза, мы получаем:

Подставляя константу ионизации воды в уравнение, мы получаем:

Но константа диссоциации кислоты(на примере хлороводородной кислоты) равна:

Где представляет собой гидратированный протон водорода: . Аналогично и для уксусной кислоты, как в примере. Подставляя значение для константы диссоциации кислоты в уравнение константы гидролиза, мы получаем:

Как следует из примера, если соль образованна слабым основанием, то в знаменателе будет стоять константа диссоциации основания, вычисляемая по тому же признаку что и константа диссоциации кислоты. Если соль образованна слабым основанием и слабой кислотой, то в знаменателе будет стоять произведение констант диссоциаций кислоты и основания.

Степень гидролиза.

Так же есть еще одна величина, характеризующая гидролиз- степень гидролиза- α.Которая равна отношение количества (концентрации) соли, подвергающейся гидролизу, к общему количеству (концентрации) растворенной соли Степень гидролиза зависит от концентрации соли, температуры раствора. Она увеличивается при разбавлении раствора соли и при увеличении температуры раствора. Напомним, что больше разбавлен раствор, тем меньше молярная концентрация исходной соли; а степень гидролиза возрастает при повышении температуры, так как гидролиз- процесс эндотермический, как было указанно выше.

Степень гидролиза соли тем выше, чем слабее кислота или основание, её образующие. Как следует из уравнения степени гидролиза и типов гидролиза: при необратимом гидролизе α≈1.

Степень гидролиза и константа гидролиза взаимосвязаны через уравнение Оствальда (Вильгельм Фридрих Оствальд-з акон разбавления Оствальда,выведен в 1888году ).Закон разбавления показывает, что степень диссоциации электролита зависит от его концентрации и константы диссоциации. Примем начальную концентрацию вещества за C 0 , а продиссоциировавшую часть вещества- за γ, напомним, схему диссоциации вещества в растворе:

AB↔A + +B -

Тогда закон Оствальда можно выразить следующим образом:

Напомним, что в уравнение стоят концентрации в момент равновесия. Но если вещество малодиссоциировавшее, то (1-γ)→1, что приводит уравнение Оствальда в вид: K д =γ 2 C 0 .

Аналогично связанна степень гидролиза с его константой:

В подавляющем большинстве случаев используется именно эта формула. Но при необходимости, можно выразить степень гидролиза через такую формулу:

Особые случаи гидролиза:

1) Гидролиз гидридов (соединений водорода с элементами (тут мы рассмотрим только металлы 1 и 2 групп и метам), где водород проявляетстепень окисления -1):

NaH+HOH→NaOH+H 2

CaH 2 +2HOH→ Ca(OH) 2 +2H 2

CH 4 +HOH→CO+3H 2

Реакция с метаном- один из промышленных способов получения водорода.

2) Гидролиз пероксидов. Пероксиды щелочных и щелочноземельных металлов разлагаются водой, с образованием соответствующего гидроксида и пероксида водорода (или кислорода):

Na 2 O 2 +2 H 2 O →2 NaOH + H 2 O 2

Na 2 O 2 +2H 2 O→2NaOH+O 2

3) Гидролиз нитридов.

Ca 3 N 2 +6HOH→3Ca(OH) 2 +2NH 3

4) Гидролиз фосфидов.

K 3 P+3HOH→3KOH+PH 3

Выделяющийся газ PH 3 -фосфин, очень ядовит, поражает нервную систему. Так же способен к самовозгоранию при контакте с кислородом. Гуляли когда-нибудь ночью по болоту или ходили мимо кладбищ? Видели редкие всплески огней- «блуждающие огни», появляются, так как горит фосфин.

5) Гидролиз карбидов. Здесь будут приведены две реакции имеющие практическое применение, так как с их помощью получаются 1 члены гомологического ряда алканов (реакция 1) и алкинов (реакция 2):

Al 4 C 3 +12 HOH →4 Al (OH) 3 +3CH 4 (реакция 1)

СaC 2 +2 HOH →Ca(OH) 2 +2C 2 H 2 (реакция 2, продукт – ацителен, по UPA С этин)

6) Гидролиз силицидов. В результате этой реакции образуется 1 представитель гомологического ряда силанов (всего их 8) SiH 4 - мономерный ковалентный гидрид.

Mg 2 Si+4HOH→2Mg(OH) 2 +SiH 4

7) Гидролиз галогенидов фосфора. Здесь будут рассмотрены хлориды фосфора 3 и 5, являющиеся хлорангидридами фосфористой и фосфорной кислот соответственно:

PCl 3 +3H 2 O=H 3 PO 3 +3HCl

PCl 5 +4H 2 O=H 3 PO 4 +5HCl

8) Гидролиз органических веществ.Жиры гидролизуются, с образованием глицерина (C 3 H 5 (OH) 3) и карбоновой кислоты(пример предельной карбоновой кислоты) (C n H (2n+1) COOH)

Сложные эфиры:

СH 3 COOCH 3 +H 2 O↔CH 3 COOH+CH 3 OH

Алкоголята:

C 2 H 5 ONa+H 2 O↔C 2 H 5 OH+NaOH

Живые организмы осуществляют гидролиз различных органических веществ в ходе реакций катаболизма при участии ферментов. Например, в ходе гидролиза при участии пищеварительных ферментов белки расщепляются на аминокислоты, жиры - на глицерин и жирные кислоты, полисахариды - на моносахариды (например, на глюкозу).

При гидролизе жиров в присутствии щелочей получают мыло; гидролиз жиров в присутствии катализаторов применяется для получения глицина и жирных кислот.

Задачи

1) Степень диссоциации а уксусной кислоты в 0,1 М растворе при 18 °С равна 1,4·10 –2 . Рассчитайте константу диссоциации кислоты К д.(подсказка- используйте уравнение Оствальда.)

2) Какую массу гидрида кальция нужно растворить в воде, чтобы выделившемся газом восстановить до железа 6,96г оксида железа(II , III )?

3) Напишите уравнение реакции Fe 2 (SO 4) 3 + Na 2 CO 3 + H 2 O

4) Рассчитайте степень, константу гидролиза соли Na 2 SO 3 для концентрации См = 0,03 М, учитывая только 1-ю ступень гидролиза. (Константу диссоциации сернистой кислоты принять равной 6,3∙10 -8)

Решения:

a) Подставим данные задачи в закон разбавления Оствальда:

b) K д = ·[C] = (1,4·10 –2)·0,1/(1 – 0,014) = 1,99·10 –5

Ответ. К д = 1,99·10 –5 .

c) Fe 3 O 4 +4H 2 →4H 2 O+3Fe

CaH 2 +HOH→Ca(OH) 2 +2H 2

Находим количество молей оксида железа(II,III), оно равно отношению массы данного вещества к его молярной массе, получаем 0,03(моль).По УХР находим, что моли гидрида кальция равны 0,06(моль).Значит масса гидрида кальция равна 2,52(грамма).

Ответ: 2,52(грамма).

d) Fe 2 (SO 4) 3 +3Na 2 CO 3 +3H 2 O→3СO2+2Fe(OH) 3 ↓+3Na 2 SO 4

e) Сульфит натрия подвергается гидролизу по аниону, реакция среды раствора соли щелочная (рН > 7):
SO 3 2- + H 2 O <--> OH - + HSO 3 -
Константа гидролиза (уравнение смотрите выше)равна: 10 -14 / 6,3*10 -8 = 1,58*10 -7
Степень гидролиза рассчитывается по формуле α 2 /(1 - α) = К h /С 0 .
Итак, α = (К h /С 0) 1/2 = (1,58*10 -7 / 0,03) 1/2 = 2,3*10 -3

Ответ: K h = 1,58*10 -7 ;α =2,3*10 -3

Редактор: Харламова Галина Николаевна

Процесс образования слабодиссоциированных соединений с изменением водородного показателя среды при взаимодействии воды и соли называется гидролизом.

Гидролиз солей происходит в случае связывания одного иона воды с образованием труднорастворимых или слабодиссоциированных соединений за счет смещения равновесия диссоциации. По большей части этот процесс является обратимым и при разбавлении или увеличении температуры усиливается.

Чтобы узнать, какие соли подвергаются гидролизу, необходимо знать, какие по силе при ее образовании использовались основания и кислоты. Существует несколько видов их взаимодействий.

Получение соли из основания и кислоты слабой силы

Примерами могут служить сульфид алюминия и хрома, а также аммоний ускуснокислый и карбонат аммония. Данные соли при растворении в воде образуют основания и слабодиссоциирующие кислоты. Чтобы проследить обратимость процесса, необходимо составить уравнение реакции гидролиза солей:

Аммоний уксуснокислый + вода ↔ аммиак + уксусная кислота

В ионном виде процесс выглядит как:

CH 3 COO- + NH 4 + + Н 2 О ↔ CH 3 COOH + NH 4 OH.

В вышеприведенной реакции гидролизации образуются аммиак и уксусная кислота, то есть слабодиссоциирующие вещества.

Водородный показатель водных растворов (рН) напрямую зависит от относительной силы, то есть констант диссоциации продуктов реакции. Приведенная выше реакция будет слабощелочной, так как постоянная распада уксусной кислоты меньше константы гидроокиси аммония, то есть 1,75 ∙ 10 - 5 меньше, чем 6,3 ∙ 10 -5 . Если основания и кислоты удаляются из раствора, тогда процесс происходит до конца.

Рассмотрим пример необратимого гидролиза:

Сульфат алюминия + вода = гидроокись алюминия + сероводород

В этом случае процесс необратим, потому как один из продуктов реакции удаляется, то есть выпадает в осадок.

Гидролиз соединений, полученных взаимодествием слабого основания с сильной кислотой

Этот тип гидролиза описывают реакции разложения сульфата алюминия, хлорида или бромида меди, а также хлорида железа или аммония. Рассмотрим реакцию хлорида железа, которая протекает в две стадии:

Стадия первая:

Хлорид железа + вода ↔ гидроксохлорид железа + соляная кислота

Ионное уравнение гидролиза солей хлорида железа принимает вид:

Fe 2+ + Н 2 О + 2Cl - ↔ Fe(OH) + + Н + + 2Cl -

Вторая стадия гидролиза:

Fe(OH)+ + Н 2 О + Cl - ↔ Fe(OH) 2 + Н + + Cl -

По причине дефицита ионов гидроксогруппы и накапливания ионов водорода гидролиз FeCl 2 протекает по первой стадии. Образуется сильная соляная кислота и слабое основание - гидрокись железа. В случае подобных реакций среда получается кислой.

Негидролизующиеся соли, полученные путем взаимодействия сильных оснований и кислот

Примером таких солей могут быть хлориды кальция или натрия, сульфат калия и бромид рубидия. Однако приведенные вещества не гидролизуются, так как при растворении в воде имеют нейтральную среду. Единственным малодиссоциирующим веществом в этом случае является вода. Для подтверждения этого утверждения можно составить уравнение гидролиза солей хлорида натрия с образованием кислоты соляной и гидроокиси натрия:

NaCl + Н 2 О ↔ NaOH + HCl

Реакция в ионном виде:

Na + + Cl - + Н 2 О↔ Na + + ОН - + Н + + Cl -

Н 2 О ↔ Н + + ОН -

Соли как продукт реакции сильной щелочи и кислоты слабой силы

В данном случае гидролиз солей протекает по аниону, что соответствует щелочной среде водородного показателя. В качестве примеров можно назвать ацетат, сульфат и карбонат натрия, силикат и сульфат калия, а также натриевую соль синильной кислоты. Например, составим ионно-молекулярные уравнения гидролиза солей сульфида и ацетата натрия:

Диссоциация сульфида натрия:

Na 2 S ↔ 2Na + + S 2-

Первая стадия гидролиза многоосновной соли, происходит по катиону:

Na 2 S + Н 2 О ↔ NaH S + NaOH

Запись в ионном виде:

S 2- + Н 2 О ↔ HS - + ОН -

Вторая ступень осуществима в случае повышения температуры реакции:

HS - + Н 2 О ↔ H 2 S + ОН -

Рассмотрим еще одну реакцию гидролиза на примере натрия уксуснокислого:

Натрий уксуснокислый + вода ↔ уксусная кислота + едкий натр.

В ионном виде:

CH 3 COO - + Н 2 О ↔ CH 3 COOH + ОН -

В результате реакции образуется слабая уксусная кислота. В обоих случаях реакции будут иметь щелочную среду.

Равновесие реакции по принципу Ле-Шателье

Гидролиз, как и остальные химические реакции, бывает обратимым и необратимым. В случае обратимых реакций один из реагентов расходуется не весь, в то время как необратимые процессы протекают с полным расходом вещества. Это связано со смещением равновесия реакций, которое основано на изменении физических характеристик, таких как давление, температура и массовая доля реагентов.

Согласно понятию принципа Ле-Шателье, система будет считаться равновесной до тех пор, пока на нее не будет изменено одно или несколько внешних условий протекания процесса. К примеру, при уменьшении концентрации одного из веществ равновесие системы постепенно начнет смещаться в сторону образования этого же реагента. Гидролиз солей также имеет способность подчиняться принципу Ле-Шателье, с помощью которого можно ослабить или усилить протекание процесса.

Усиление гидролиза

Гидролиз можно усилить до полной необратимости несколькими способами:

  • Повысить скорость образования ионов ОН - и Н + . Для этого нагревают раствор, и за счет увеличения поглощения теплоты водой, то есть эндотермической диссоциации, этот показатель повышается.
  • Прибавить воды.
  • Перевести один из продуктов в газообразное состояние либо связать в тяжело растворимое вещество.

Подавление гидролиза

Подавить процесс гидролизации, так же как и усилить, можно несколькими способами.

Ввести в раствор один из образующихся в процессе веществ. Например, подщелачивать раствор, в случае если рН˃7, или же наоборот подкислять, где реакционная среда меньше 7 по водородному показателю.

Взаимное усиление гидролиза

Взаимное усиление гидролизации применяется в том случае, если система стала равновесной. Разберем конкретный пример, где системы в разных сосудах стали равновесны:

Al 3+ + Н 2 О ↔ AlOH 2+ + Н +

СО 3 2- + Н 2 О ↔ НСО 3 - + ОН -

Обе системы мало гидролизованы, поэтому, если смешать их друг с другом, произойдет связывание гидроксоинов и ионов водорода. В результате получим молекулярное уравнение гидролиза солей:

Хлорид алюминия + карбонат натрия + вода = хлорид натрия + гидроокись алюминия + диоксид углерода.

По принипу Ле-Шателье равновесие системы перейдет в сторону продуктов реакции, а гидролиз пройдет до конца с образованием гидроксида алюминия, выпавшего в осадок. Такое усиление процесса возможно лишь в том случае, если одна из реакций протекает по аниону, а другая по катиону.

Гидролиз по аниону

Гидролиз водных растворов солей осуществляется за счет соединения их ионов с молекулами воды. Один из способов гидролизации производится по аниону, то есть прибавление водного иона Н + .

В большинстве своем этому способу гидролиза подвержены соли, которые образуются посредством взаимодействия сильного гидроксида и слабой кислоты. Примером солей, разлагающихся по аниону, может выступать сульфат или сульфит натрия, а также карбонат или фосфат калия. Водородный показатель при этом более семи. В качестве примера разберем диссоциацию натрия уксуснокислого:

В растворе это соединение разделяется на катион - Na + , и анион - СН 3 СОО - .

Катион диссоциированного натрия уксуснокислого, образованный сильным основанием, не может вступить в реакцию с водой.

При этом анионы кислоты с легкостью реагируют с молекулами Н 2 О:

СН 3 СОО - + НОН = СН 3 СООН +ОН -

Следовательно, гидролизация осуществляется по аниону, и уравнение принимает вид:

CH3COONa + НОН = СН 3 СООН + NaOH

В случае, если гидролизу подвергаются многоосновные кислоты, процесс происходит в несколько стадий. В нормальных условиях подобные вещества гидролизуются по первой стадии.

Гидролиз по катиону

Катионному гидролизу в основном подвержены соли, образованные путем взаимодействия сильной кислоты и основания малой силы. Примером служит бромид аммония, нитрат меди, а также хлорид цинка. При этом среда в растворе при гидролизации соответствует менее семи. Рассмотрим процесс гидролиза по катиону на примере хлорида алюминия:

В водном растворе он диссоциирует на анион - 3Cl - и катион - Al 3+ .

Ионы сильной хлороводородной кислоты не взаимодействуют с водой.

Ионы (катионы) основания, напротив, подвержены гидролизу:

Al 3+ + НОН = AlOH 2+ + Н +

В молекулярном виде гидролизация хлорида алюминия выглядит следующим образом:

AlCl3 + Н 2 О = AlOHCl + HCl

При нормальных условиях предпочтительно пренебрегать гидролизацией по второй и третьей ступени.

Степень диссоциации

Любая реакция гидролиза солей характеризуется степенью диссоциации, которая показывает отношение между общим числом молекул и молекулами, способными переходить в ионное состояние. Степень диссоциации характеризуется несколькими показателями:

  • Температура, при которой осуществляется гидролиз.
  • Концентрация диссоциируемого раствора.
  • Происхождение растворяемой соли.
  • Природа самого растворителя.

По степени диссоциации все растворы делятся на сильные и слабые электролиты, которые, в свою очередь, при растворении в различных растворителях проявляют разную степень.


Константа диссоциации

Количественным показателем возможности вещества распадаться на ионы является константа диссоциации, также называемая константой равновесия. Говоря простым языком, постоянная равновесия есть отношение разложившихся на ионы электролитов к непродиссоциированным молекулам.

В отличие от степени диссоциации, этот параметр не зависит от внешних условий и концентрации солевого раствора в процессе гидролизации. При диссоциации многоосновных кислот степень диссоциации на каждой ступени становится на порядок меньше.

Показатель кислотно-основных свойств растворов

Водородный показатель или рН - мера для определения кислотно-основных свойств раствора. Вода в ограниченном количестве диссоциирует на ионы и является слабым электролитом. При расчете водородного показателя используют формулу, которая является отрицательным десятичным логарифмом скопления водородных ионов в растворах:

рН = -lg[Н + ]

  • Для щелочной среды этот показатель будет равен более семи. Например, [Н + ] = 10 -8 моль/л, тогда рН = -lg = 8, то есть рН ˃ 7.
  • Для кислой среды, напротив, водородный показатель должен быть менее семи. Например, [Н + ] = 10 -4 моль/л, тогда рН = -lg = 4, то есть рН ˂ 7.
  • Для нейтральной среды, рН = 7.

Очень часто для определения рН-растворов используют экспресс-метод по индикаторам, которые, в зависимости от рН, меняют свой цвет. Для более точного определения пользуются иономерами и рН-метрами.

Количественные характеристики гидролиза

Гидролиз солей, как и любой другой химический процесс, имеет ряд характеристик, в соответствии с которыми протекание процесса становится возможным. К наиболее значимым количественным характеристикам относится константа и степень гидролиза. Остановимся подробнее на каждом из них.

Степень гидролиза

Чтобы узнать, какие соли подвергаются гидролизу и в каком количестве, используют количественный показатель - степень гидролиза, который характеризует полноту протекания гидролизации. Степенью гидролиза называют часть вещества от общего количества молекул, способного к гидролизации, записывается в процентном соотношении:

h = n/N∙ 100%,

где степень гидролиза - h;

количество частиц соли, подвергнутых гидролизации - n;

общая сумма молекул соли, участвующих в реакции - N.

К факторам, влияющим на степень гидролизации, относятся:

  • постоянная гидролизации;
  • температура, при повышении которой степень возрастает за счет усиления взаимодействия ионов;
  • концентрация соли в растворе.

Константа гидролиза

Она является второй по значимости количественной характеристикой. В общем виде уравнения гидролиза солей можно записать как:

МА + НОН ↔ МОН + НА

Отсюда следует, что константа равновесия и концетрация воды в одном и том же растворе есть величины постоянные. Соответственно, произведение этих двух показателей будет также постоянной величиной, что и означает константу гидролиза. В общем виде Кг можно записать, как:

Кг = ([НА]∙[МОН])/[МА],

где НА - кислота,

МОН - основание.

В физическом смысле константа гидролиза описывает способность определенной соли подвергаться процессу гидролизации. Этот параметр зависит от природы вещества и его концентрации.