Системный анализ в прогнозировании нефтегазоносности недр. Гидрогазогеохимические критерии нефтегазоносности

В возник­новении и развитии процессов нефте­газообразования и нефтегазонакопле­ния в литосфере большая роль принад­лежит геотермическому фактору.

Между геотермическими условиями каждой области и ее гео­логическим строением и геологической историей существуют тесные взаимо­связи.

Палеогеотермические условия существенно влияли на направ­ленность и течение процесса преоб­разования исходного ОВ, захороняемого в осадках, и на формирование обстановки первичной миграции УВ из нефтегазопродуцирующих отложений в коллекторы.

Глубина активизации процессов образования УВ из ОВ и их первичной миграции при прочих равных условиях в значительной мере контролировались палеогеотермическими параметрами бассейна седиментации в течение каж­дого рассматриваемого отрезка времени геологической истории. В различных частях даже единого бассейна седимен­тации, которые характеризовались раз­ными показателями интенсивности теп­лового потока и палеогеотермического градиента, процессы нефтегазообразо­вания и первичной миграции неф­тяных УВ в коллекторы протекали на неодинаковых глубинах. Там, где тепло­вой поток слабый, палеогеотермичес­кие условия менее благоприятны для развития нефтеобразования и первичной миграции нефтяных УВ из продуцирующих отложений в коллекторы.

Также во многих неф­тегазоносных областях геотермические условия являются одними из решающих факторов формирования вертикаль­ной и площадной регио­нальной геоструктурной зональности размещения скоплений УВ, а также из­менений их физических свойств в прост­ранстве и разрезе.

Критерии прогноза сохранности сформировавшихся зон нефтегазонакопления и скоплений нефти и газа.

Образовавшиеся в земной коре скопления нефти и газа в ходе развития геологической истории, подвергаются воздействию различных физических, биогеохимических и других фактов видоизменяются и при наступлении определенных геологических и термодинамических условий разрушаются.

Важнейший фактор, определяющий сохранность скоплений нефти и газа,- наличие в разрезе слагающих исследуемую территорию отложений сла­бопроницаемых пород-покрышек.

Положительными критериями для оценки сохранности скоплений нефти и газа являются:

преимущественное развитие нисходя­щих форм тектонических движений;

преобладание элизионных этапов во­дообмена в нефтегазоносных комплек­сах и относительно застойный гидро­геологический режим;

наличие хлор-кальциевых и гидрокарбонатонатриевых вод с высокой минерализацией и минимальным содержанием сульфа­тов;

развитие региональных и локаль­ных ловушек, не раскрывавшихся после образования в них скоплений УВ;

наличие в разрезе практически газонефте-непроницаемых пород-покрышек.

Процесс изучения земных недр с целью выявления месторождений нефти и газа и их подготовки к промышленному освоению услов­но делится на ряд этапов и стадий. Этапы и ста­дии грр различаются по масштабу и характеру объекта изучения, по задачам и видам работ и ожида­емым результатам. Суть стадийности геолого-разведочных работ состоит в том, что начало каждой стадии нахо­дится в зависимости от результатов предыдущей стадии..

В соответствии с задачами региональный этап разделя­ют на две стадии: 1)прогноз нефтегазоносности и 2) оценка зон нефтегазонакопления. Целью региональных геолого-геофизических работ являет­ся изучение основных закономерностей геологического строе­ния слабо исследованных осадочных бассейнов и их участков и отдельных литолого-стратиграфических комплексов, оцен­ка перспектив их нефтегазоносности и определение первооче­редных районов и литолого-стратиграфических комплексов для постановки поисковых работ на нефть и газ на конкретных объектах.

Поисково-оценочный этап разделяется на три стадии:1) выявле­ния объектов поискового бурения 2) подготов­ка объек­тов к поисковому бурению и 3) поиски и оценка месторождений (залежей). Целью поисково-оценочных работ является обнаружение новых месторождений нефти и газа или новых залежей на ра­нее открытых месторождениях и оценка их промышленной значимости.

В разведочно-эксплуатационном этапе выделяется стадия разведки и пробной эксплуата­ции. Цель разведочного этапа - изучение характеристик месторождений (залежей), обеспечивающее со­ставление технологической схемы разработки.

Поиски, оценка и разведка могут совмещаться при веде­нии работ на конкретной площади. После открытия одной из залежей поиски могут продолжаться в других продуктивных горизонтах. После введения в эксплуатацию одной из залежей разведочные и даже поисковые работы могут проводиться на других залежах данного месторождения.

Стадийность геологоразведочных работ на НГ.

Этапы и стадии грр на нефть и газ

(Стадии: Объекты изучения:Основные задачи: Итоговая оценка ресурсов)

Региональный этап:

1. Прогноз нГн-ти : Осадочные бассейны и их части: 1. Выявление литолого-стратиграфических комплексов, структурных этажей, ярусов и структурно-фациальных зон, определение характера основных этапов геотектониче­ского развития, тектоническое районирование. 2. Выделение нефтегазоперспективных комплексов (резер­вуаров) и зон возможного нефтегазонакопления, нефтегазогеологическое районирование. 3. Качественная и количественная оценка перспектив нефтегазоносности. 4. Выбор основных направлений и первоочередных объек­тов дальнейших исследований.: Прогнозные ресурсы Д 2 , частично Д 1.

2. Оценка зон нефте-газонакоп-ления : Нефтегазо-перспективные зоны и зоны нефтегазо-накопления: 1. Выявление субрегиональных и зональных структурных соотношений между различными нефтегазоперспективными и литолого-стратиграфическими комплексами, основ­ных закономерностей распределения свойств пород-коллек­торов и флюидоупоров и изменения их свойств. 2. Выделение наиболее крупных ловушек и уточнение нефтегазогеологического районирования. 3. Количественная оценка перспектив нефтегазоносности 4. Выбор районов и установление очередности проведения на них поисковых работ.: Прогнозные ресурсы Д 1 , частично Д 2.

Поисково-оценочный этап

1

2.

3. Подготовлен­ные ловушки, Открытые месторожде­ния (залежи): 1. Выявление в разрезе нефтегазоносных и перспективных комплексов коллекторов и покрышек и определение их гео­лого-геофизических свойств (параметров). 2. Выделение, опробование и испытание нефтегазоперспек­тивных пластов и горизонтов, получение промышленных притоков нефти и газа и установление свойств флюидов и фильтрационно-емкостных характеристик. 3. Открытие месторождения и постановка запасов на Государственный баланс. 4. Выбор объектов для проведения оценочных работ. 5. Установление основных характеристик месторождений (залежей). 6. Оценка запасов месторождений (залежей). 7. Выбор объектов разведки.: Предварительно оцененные запасы С 2 , частично разведанные C 1

Разведочный этап.

1. Разведка и пробная эксплуата­ция: Промышлен­ные место­рождения (залежи): 1. Уточнение геологического строения и запасов залежей. 2. Пробная эксплуатация для получения данных и параметров для составления технологической схе­мы разработки мест-й. 3. Перевод запасов категории С 2 в категорию С 1 . : Разведанные запасы C 1 , частично предварительно оцененные С 2 .

42. ОБЩИЕ ТРЕБОВАНИЯ К ПРОВЕДЕНИЮ РЕГИОНАЛЬНЫХ ГЕОЛОГО-ГЕОФИЗИЧЕСКИХ РАБОТ.

Проведение региональных геолого-геофизических работ регламентируют следующие геологические и экономические требования :

1. Направленность изучения . изучается весь комплекс задач с изучением тект-кой структуры и истории формирования тер-рии.

2. Глубинность изучения. На первой стадии региональных работ изучается земная кора на всю ее мощность опорным бурением. На второй стадии преимущественно изучается осадочный чехол на всю его мощность по сгущенной сети профилей параметрическим и опорным бурением.

3. Сроки работы. Рeгиональные исследования должны проводится в сроки, опережающие развитие поисковых и разведочных работ на 2-3 года, с целью концентрации их на главных направлениях.

4. Ограничение объемов изучения. Рентабельным для региональных работ является ведение их в объемах, составляющих для бурения 10-40% от общего объема и для региональных геофизических работ 15-25% от общего их объема.

5. Комплексность исследований. достигается соединением дистанционных (космических) геологических, геофизических, геохимических и гидрогеологических методов изучения земли и введением в комплекс новых эффективных видов региональных исследований.

6. Обязательное сочетание системы опорных и облегченных наблюдений. Региональные работы должны включать в себя точечные, пунктирные, профильные и площадные наблюдения.

7. Научное обобщение результатов региональных геолого-геофизических работ и составление плана этих работ на перспективу.

СТАДИИ ВЫЯВЛЕНИЯ СТРУКТУР И ПОДГОТОВКИ СТРУКТУР К БУРЕНИЮ.

Цель геолого-разведочных работ на стадии выявления и подготовки объектов к поисковому бурению - выявление и подготовка локальных объектов для ввода их в поисковое бурение.

Основной задачей стадии является создание фонда перс­пективных локальных объектов и оценки их ресурсов для выбора и оп­ределения очередности ввода их в поисковое бурение.

Типовой комплекс работ включает: дешифрирование материалов аэрофото- и космических съемок локального и де­тального уровней; структурно-геологическую съемки; гравиразведку, магниторазведку и электроразведку; сейсморазведку по системе взаимоувязанных профилей; бурение структурных скважин; специальные работы и исследования по прогнозу геологического разреза и пря­мым поискам. Основными методами выявления и подготовки объектов яв­ляются структурное бурение и сейсморазведка.

Поисково-оценочный этап

1 Выявление объек­тов поискового бурения : Районы с установленной или возмож­ной нефтегазоносностью: 1. Выявление условий залегания и других геолого-геофизи­ческих свойств нефтегазоносных и нефтегазоперспектив­ных комплексов.2. Выявление перспективных ловушек. 3. Количественная оценка прогнозных локализованных ресурсов. 4. Выбор объектов для детализационных работ. : Прогнозные локализо­ванные ресурсы Д 1 л.

2. Подготов­ка объек­тов к поисковому бурению: Выявленные ловушки: 1. Детализация выявленных перспективных ловушек, позво­ляющая прогнозировать пространственное положение зале­жей. 2. Количественная оценка ресурсов на объектах, подготов­ленных к поисковому бурению. 3. Выбор объектов и определение очередности их ввода в по­исковое бурение. :Перспективные ресурсы С 3.

Анализ фонда структур.

Основной задачей стадии выявления и подготовки объектов к поисковому бурению является создание фонда перс­пективных локальных объектов.

Общий фонд структур, учитываемый на начало каждого года, включает:

а) фонд подготовленных структур, еще не введенных в поисковое (параметрическое)бурение (резервный фонд);

б) фонд структур, находящихся в поисковом бу­рении или консервации (исследуемый фонд);

в) фонд струк­тур, выведенных из поискового бурения (освоенный фонд);

г) структуры, выведенные из фон­да по ревизии.

Анализ резервного фонда проводится с целью:

Оценки качества подготовки структур;

Ревизии фонда и отбраковки бесперспективных структур;

Оценки и уточнения перспективных ресурсов;

Определения очередности ввода структур резервного фонда в поисковое бурение.

В результате анализа фонда структур устанавливаются: общие закономерности размещения подготовленных по поисковым на­правлениям и территории; минимальные размеры ловушек; подтверждаемость объектов; обеспеченность заданных приростов запасов и восполняемость введенных в бурение структур фондом подготовленных структур; успешность глубокого поискового бурения на объектах, подготовленных в районах и т.д.

Для анализа фонда структур используются следующие коэффициенты:

Коэффициент обеспеченности структурами Kоб - отношение количе­ства структур резервного фонда Np к количеству вводимых в бурение за год Nвб:

Коэффициент восполняемости структур - отношение количества структур, подготовленных за год (N ) к количеству структур, вводимых в бурение за год Nвб.

Одним из показателей эффективности являются коэффициент подтверждаемости структур глубоким бурением Кподтв , коэффициент успешности поисковых работ на разбу­ренных структурах Кусп. и коэффициент успешности поисковых скважин Кусп.скв

45. СТАДИЯ ПОИСКА И ОЦЕНКИ МЕСТОРОЖДЕНИЙ (ЗАЛЕЖЕЙ).

Поисково-разведочный этап:

Поиск и оценка месторож­дений (залежей):

Объектами проведения работ: Подготовлен­ные ловушки, Открытые месторожде­ния (залежи):

Решаемые задачи : 1. Выявление в разрезе нефтегазоносных и перспективных комплексов коллекторов и покрышек и определение их гео­лого-геофизических свойств (параметров). 2. Выделение, опробование и испытание нефтегазоперспек­тивных пластов и горизонтов, получение промышленных притоков нефти и газа и установление свойств флюидов и фильтрационно-емкостных характеристик. 3. Открытие месторождения и постановка запасов на Государственный баланс. 4. Выбор объектов для проведения оценочных работ. 5. Установление основных характеристик месторождений (залежей). 6. Оценка запасов месторождений (залежей). 7. Выбор объектов разведки.:

Результаты: Предварительно оцененные запасы С 2 , частично разведанные C 1

Типовой комплекс работ включает: бурение и испытание поисково-оценочных скважин; детализационную скважинную и наземную (морскую) сейсморазведку; специальные работы и исследования по изучению геологического разреза, положения контуров залежей и элементов ограничения залежи.

Поисково-оценочные работы осуществляются по проектам, в том числе по комплексным проектам (КП), которые составляются и ут­верждаются в соответствии с действующими инструкциями.

По заверше­нии поискового бурения оценивается эффективность и обосновываются пред­ложения по дальнейшему проведению или прекращения работ.

Эффективность работ на поисково-оценочном этапе определяется сле­дующими показателями: - успешностью открытия месторождений; - количеством поисковых скважин;

Продолжительностью поисковых работ на площади;

Отношением запасов категорий C l + С 2 по открытым месторождениям (залежам) к затратам, которые потребовались на их открытие.

Лекции. Часть I (6 семестр)

Системный анализ в прогнозировании нефтегазоносности недр

Методологические основы системного анализа при прогнозировании нефтегазоносности недр

А.А.Бакиров выделил в процессе нефтегазообразования и нефтегазонакопления, протекающем в литосфере, шесть стадий: 1) накопления ОВ; 2) генерации УВ; 3) миграции УВ; 4) аккумуляции УВ; 5) консервации скоплений УВ; 6) разрушения или перераспределения УВ.

Каждая из перечисленных стадий протекает в определенных условиях окружающей среды и при воздействии внешних и внутренних источников энергии, тесно взаимосвязанных и взаимообусловленных.

Система нефтегазоносных формаций

К числу основных системообразующих элементов нефтегазовой геологической мегасистемы относятся нефтегазоносные формации.

Сравнительный анализ геологических условий размещения регионально нефтегазоносных территорий и зон нефтегазонакопления на всех континентах нашей планеты показывает, что формирование и пространственное распределение их в разрезе литосферы теснейшим образом связано, с одной стороны, с тектогенезом, причем лишь с определенной направленностью и режимом региональных колебательных движений, а с другой стороны, литогенезом, причем лишь с определенными формациями и фациальными условиями их образования и распространения.

По Н.М.Страхов, тектогенез и литогенез в истории земной коры – две стороны единого историко-геологического процесса.

Общепризнанного определения понятия нефтегазоносной формации не имеется. А.А.Бакировым было рекомендовано к нефтегазоносным формациям (НГФ) относить естественноисторическую ассоциацию горных пород, генетически связанных между собой во времени (геологическом) и пространстве палеотектоническими и фациальными (физико-географическими и геохимическими) условиями образования, благоприятными для возникновения и развития процессов нефтегазообразования и нефтегазонакопления.

Латерально НГФ могут распространяться на сотни, а иногда тысячи километров, охватывая нередко территории нескольких крупных геоструктурных элементов. Мощность их в разрезе литосферы колеблется от сотен до тысяч метров.

НГФ может охватывать одно или несколько крупных литолого-стратиграфических подразделений. НГФ, близкие по вещественному составу, палеогеографическим и палеотектоническим условиям образования, могут быть объединены в вертикальные и латеральные ряды .

Преимущественно они могут быть сложены из одной литологической разности пород или же представлять собой толщу чередующихся пород различного литологического состава.

Основные типы нефтегазоносных формаций

По тектоническому режиму нефтегазоносные формации подразделяются на три группы: НГФ платформенных, геосинклинальных и переходных территорий.

В составе каждой группы выделяются субформации в зависимости от приуроченности к различным тектоническим элементам первого порядка, от палеогеографических условий их накопления, преобладающего литологического состава и тектонического режима крупного структурного элемента, где развита данная нефтегазоносная формация, а также от характера содержащихся в них УВ – преимущественно в жидком или газообразном фазовом состоянии. Например , на платформах выделяются субформации областей синеклиз, характеризующиеся устойчивым прогибанием в течение рассматриваемого отрезка времени геологической истории, полнотой разреза и относительно большой их мощностью; субформации областей региональных поднятий (мегавалов, антеклиз), характеризовавшиеся в течение геологической истории неоднократным чередованием нисходящих и восходящих форм движений, относительным сокращением мощности разреза по сравнению с прилегающими впадинами и т. д.

Типы НГФ подразделяются в зависимости от палеогеографических условий образования и литологии пластов. По палеогеографическим условиям образования выделяются морские, прибрежно-морские, прибрежные, лагунные, континентальные и смешанные нефтегазоносные формации; по литологическому составу – преимущественно терригенные или карбонатные, карбонатно-терригенные, рифогенные, карбонатно-сульфатные, карбонатно-галогенные, терригенно-угленосные, терригенные сероцветные, молассовые, флишевые нефтегазоносные формации, глинистые (типа баженовской и майкопской свит).

Нефтегазоносные формации могут быть сложены преимущественно одной литологической разностью пород, например карбонатными или глинистыми породами, или же толщей чередующихся пород различного литологического состава, например терригенных и карбонатных.

Система геоструктурных, литологических и стратиграфических объектов, контролирующих нефтегазонакопление в литосфере

Геотектоническое районирование. Принципы выделения и классификация геоструктурных элементов

Нефтегазогеологическое районирование должно основываться прежде всего на геотектоническом районировании исследуемых территорий с выделением различных по геологическому строению и особенностям геологической истории геоструктурных элементов разного ранга.

Условия нефтегазонакопления в отложениях отдельных геоструктурных этажей в пределах крупных геотектонических элементов, расположенных даже в одной и той же геологической провинции, могут быть неодинаковы. Следовательно, для правильного, т.е. научно обоснованного, прогнозирования перспектив нефтегазоносности отдельных крупных элементов необходимо знать не только современные черты его строения, но и все особенности его формирования в течение отдельных отрезков времени геологической истории.

Нефтегазоносные области приурочены лишь к определенным генетическим типам геоструктурных элементов и связанных с ними формаций. При этом в формировании нефтегазоносных областей первостепенная роль принадлежит режиму геотектонического развития указанных крупных геоструктурных элементов.

Таким образом, выделение крупных геоструктурных элементов при геотектоническом районировании для целей прогнозирования нефтегазоносности недр должно производиться по генетическому принципу с учетом особенностей геотектонического режима формирования и развития каждого из выделяемых типов в течение отдельных этапов геологической истории, т.е. на палеотектонической основе.

Рассмотрим на платформенных, складчатых и переходных территориях наиболее крупные геоструктурные элементы, которые выделяются с целью нефтегеологического районирования.

Платформенные территории

Для данных территорий характерны следующие наиболее крупные геоструктурные элементы.

Щиты – обширные области поднятий крупных массивов складчатого фундамента в пределах платформ, характеризующиеся относительной устойчивостью с тенденцией к развитию преимущественно восходящих вертикальных колебательных движений в течение нескольких геологических периодов и вследствие этого отсутствием коренных осадочных образований платформенного покрова на большей части их поверхности. Типичные примеры щитов: Балтийский, Украинский.

Плиты – обширные области платформ, в пределах которых складчатый фундамент погружен на различные глубины и перекрыт нормальными осадочными образованиями платформенного покрова, характеризующиеся тенденцией к развитию преимущественно нисходящих движений в течение нескольких геологических периодов. Примеры плит: Туранская, Скифская, Западно-Сибирская.

Сегменты , являющиеся частью плит, – крупные территории, разделенные глубинными разломами, значительно отличающиеся по геотектоническому режиму развития и типу слагающих их геоструктурных элементов меньшего порядка.

Выступы складчатого фундамента – области поднятых крупных массивов складчатого кристаллического фундамента в пределах платформенной плиты, на территории которых кристаллические породы местами выходят на дневную поверхность. Геотектонический режим развития выступов характеризуется чередованием нисходящих и восходящих движений с преобладанием последних при сравнительно небольших амплитудах и скоростях этих движений. Области выступов фундамента вследствие этих особенностей характеризуются значительным сокращением (по сравнению с прилегающими впадинами) разреза и мощностей осадочных образований, сопровождающимся выпадением ряда ярусов, отделов, а иногда и целых систем.

Мегантеклизы и антеклизы – обширные территории платформ, обычно изометрических очертаний, измеряемые тысячами и сотнями километров в поперечнике, представляющие собой ассоциацию крупных структурных элементов (сводовых поднятий и впадин), в целом характеризовавшихся значительно меньшими по сравнению с прилегающими к ним территориями синеклиз амплитудами прогибания в течение платформенного этапа их развития. Вследствие указанных особенностей территории антеклиз характеризуются существенно сокращенными мощностями осадочных образований платформенного покрова, выпадением из разреза ряда ярусов и отделов, а иногда и целых систем, развитых в соседних синеклизах.

Мегасинеклизы и синеклизы (гомологи антеклиз и мегантеклиз) – обширные территории платформ обычно изометрических форм, измеряемые тысячами и сотнями километров в поперечнике, представляющие собой в целом ассоциации крупных структурных элементов (сводовых поднятий и впадин), характеризовавшихся значительно большими по сравнению с прилегающими к ним территориями антеклиз амплитудами прогибания в течение платформенного этапа развития. Вследствие этого территории синеклиз характеризуются значительно большими мощностями осадочных образований платформенного покрова и полнотой разреза.

Сводовые поднятия – крупные положительные структурные элементы антиклинального строения с приподнятым залеганием складчатого фундамента под платформенным покровом, характеризующиеся различным геотектоническим режимом в начальных и последующих этапах платформенного развития, с тенденцией к развитию преимущественно восходящих движений в начальных этапах и чередованием восходящих и нисходящих движений (с преобладанием последних) в последующих этапах тектогенеза. Вследствие этого для сводовых поднятий характерны региональное несогласие верхних и нижних структурных этажей осадочного комплекса платформенного покрова и значительное сокращение разреза и мощностей нижней его части по сравнению с прилегающими областями внутриплатформенных впадин. Для них показательно также относительно более замедленное прогибание, чем в прилегающих областях впадин, даже в фазы регионального развития движений всеобщего прогибания. Поэтому области сводовых поднятий характеризуются сокращением мощностей отдельных стратиграфических подразделений по сравнению с прилегающими впадинами.

Среди сводовых поднятий выделяются поднятия унаследованного развития и инверсионного происхождения. Значение их в процессах формирования скоплений нефти и газа в разрезе осадочных образований платформенного покрова различно.

Внутриплатформенные впадины – крупные отрицательные структурные элементы синклинального строения, в пределах которых складчатый фундамент погружен на более значительную глубину по сравнению со сводовыми поднятиями. Геотектонический режим их развития отличается тенденцией преимущественно к погружению в течение нескольких геологических периодов, а иногда и эр, а также сравнительно большими (по сравнению со сводовыми поднятиями) амплитудами нисходящих движений. Вследствие этого Внутриплатформенные впадин характеризуются большими мощностями осадочных образований платформенного покрова и полнотой их разреза.

Среди внутриплатформенных выделяются впадины унаследованного развития, инверсионного происхождения и наложенные.

Мегавалы – области развития крупных линейных форм валоподобных поднятий, простирающихся на несколько сотен километров при ширине от нескольких десятков до сотен километров. Примеры – кряж Карпинского.

Геотектонический режим областей линейно вытянутых поднятий в течение платформенного этапа развития характеризуется неоднократным чередованием восходящих и нисходящих движений с преобладанием последних. Однако общее прогибание происходит более замедленно и с меньшими амплитудами по сравнению с прилегающими областями впадин, в результате чего разрез осадочных образований платформенного покрова имеет меньшие мощности отдельных литолого-стратиграфических комплексов, чем в соседних впадинах, причем местами ряд свит, а иногда и ярусов, развитых в прилегающих впадинах, выпадает.

Выделяются линейно вытянутые поднятия унаследованного развития и инверсионного происхождения.

Линейно вытянутые грабенообразные впадины (авлакогены) – линейно вытянутые области прогибания складчатого фундамента грабенообразного происхождения протяженностью несколько сотен километров при ширине от нескольких десятков до сотен километров.

Образование этих впадин обычно связано с интенсивным прогибанием отдельных районов платформы вдоль системы крупных региональных разрывных нарушений в течение длительных отрезков времени геологической истории. Вследствие этого для территорий авлакогенов характерны значительные мощности осадочных образований платформенного покрова по сравнению с прилегающими районами.

Краевые мегасинеклизы (области перикратонных опусканий) – обширные, в несколько сотен, а иногда и тысяч километров в поперечнике, окраинные территории значительного прогибания платформ обычно" изометрических очертаний. В их пределах складчатый фундамент погружен на значительно большую глубину по сравнению с остальными областями платформы.

Краевые мегасинеклизы по геологическому строению и условиям формирования существенно отличаются от внутриплатформенных большей мобильностью, большими амплитудами и скоростями нисходящих движений, а также значительным увеличением мощностей осадочных образований платформенного покрова, развитием соляной тектоники и др. Они представляют собой промежуточные (переходные) области между платформенными и геосинклинальными территориями. От прилегающих областей платформ краевые впадины обычно отделяются системами флексур или региональных разрывных нарушений. Пример: Прикаспийская на Русской платформе.

Региональные моноклинали – области пологого моноклинального залегания слоев на платформах, обычно нарушенные дополнительными изгибами (флексурами, структурными террасами и т.п.).

Валоподобные поднятия – относительно узкие вытянутые зоны региональных весьма пологих поднятий антиклинального строения, состоящие из ряда локальных структур и осложняющие строение крупных структурных элементов платформ (сводовых поднятий, впадин, авлакогенов и др.). Размеры валоподобных поднятий колеблются в широких пределах, иногда достигая 300–350 км в длину и 30– 40 км в ширину. Среди валоподобных поднятий выделяются унаследованные и инверсионные.

Прогибы – вытянутые обычно вдоль валоподобных поднятий зоны региональных погружений. Прогибы подразделяются на унаследованные и инверсионные.

Палеотектонические критерии

Палеотектонические исследования необходимы на всех этапах нефтегазопоисковых работ, в том числе при:

1) нефтегеологическом районировании крупных территорий с целью сравнительной оценки перспектив нефтегазоносности отдельных ее частей и выборе на этой основе оптимальных направлений поисково-разведочных работ на нефть и газ;

2) прогнозировании и поисках регионально нефтегазоносных комплексов;

3) поисках и разведке различных генетических типов зон нефтегазонакопления и локальных скоплений нефти и газа в отдельных районах изучаемой территории.

В основу прогноза возможностей обнаружения регионально нефтегазоносных комплексов и зон нефтегазонакопления положен палеотектонический принцип с выделением в пределах исследуемой геологической провинции для каждого этапа ее геологической истории палеобассейнов седиментации. Последние подразделяются на отдельные части, различающиеся режимом колебательных движений (преимущественно устойчивым прогибанием; чередованием движений прогибания и воздымания при преобладании движений прогибания и, наоборот, преимущественным воздыманием и т.д.), амплитудами прогибания, т.е. распространением мощностей осадков рассматриваемого подразделения.

Структурные критерии

Для оценки перспектив обнаружения зон нефтегазонакопления исследуемой территории необходимо выяснить наличие:

Региональных геоструктурных элементов, благоприятных для размещения в их пределах различных генетических типов зон нефтегазонакопления;

Структурных условий, благоприятных для формирования зон нефтегазонакопления литологического и литолого-стратиграфического классов, связанных с выклиниванием коллекторов или замещением проницаемых пород непроницаемыми по восстанию пластов на склонах и периклинальных погружениях сводовых поднятий, мегавалов, на бортах региональных впадин и авлакогенов.

Образование зон нефтегазонакопления в пределах перечисленных структурных элементов зависит от ряда дополнительных факторов, связанных с их формированием и развитием:

1) времени заложения региональных структурных ловушек. В тех случаях, когда региональная миграция УВ в рассматриваемом районе происходила до заложения региональных ловушек, последние обычно не содержат скоплений нефти и газа;

2) условий сохранности структурной замкнутости региональных и локальных ловушек в последующие геологические эпохи. Если ловушки в отдельные отрезки времени геологической истории подвергались структурным перестройкам, то они нередко оказывались непродуктивными.

Гидрогеохимические критерии

Косвенными показателями региональной нефтегазоносности недр могут служить и некоторые гидрогеохимические параметры. К числу гидрогеохимических косвенных показателей нефтегазоносности, недр относятся:

Высокая газонасыщенность подземных вод углеводородными газами и повышенная упругость давления насыщения водорастворенных газов;

Специфические особенности химического состава высокоминерализованных подземных вод пониженной сульфатности, характерные для нефтегазоносных территорий;

Сравнительно повышенное содержание в подземных водах микроэлементов (йод, бром, аммоний, и др.) и некоторых органических соединений (нафтеновые кислоты, фенолы и др.).

Геотермические критерии

Глубина активизации процессов образования УВ нефтяного ряда из захороняемого в осадке органического вещества и первичной миграции их из нефтегазопродуцирующих толщ в коллекторы при прочих равных условиях в значительной мере контролировались палеогеотермическими параметрами бассейна седиментации в течение каждого рассматриваемого отрезка времени геологической истории. В различных частях даже единого бассейна седиментации, которые характеризовались разными показателями интенсивности теплового потока и палеогеотермического градиента, процессы нефтегазообразования и первичной миграции нефтяных УВ в коллекторы протекали на неодинаковых глубинах. Там, где тепловой поток слабый, палеогеотермические условия менее благоприятны для развития нефтеобразования и первичной миграции нефтяных УВ.

Установлено, что во многих нефтегазоносных областях геотермические условия являются одними из решающих факторов формирования вертикальной (глубинной) и площадной региональной геоструктурной зональности размещения скоплений УВ, а также изменений их физических свойств в пространстве и разрезе.

Региональный этап

Цели и задачи

Самостоятельно (положение).

Поисково-оценочныйый этап

Стадия выявления и стадия подготовки объектов к поисковому бурению.

Цели и задачи. Виды работ.

Самостоятельно (положение).

К поисковым относятся все скважины, начатые и законченные бурением на площади до получения в одной из них первого промышленного притока нефти или газа при опробовании испытателями пластов или в эксплуатационной колонне (за исключением опорных, параметрических, структурных и других скважин специального назначения). В связи с этим длительность поисков месторождений (залежей) определяется временем от даты начала бурения первой поисковой скважины до момента получения первого промышленного притока нефти и газа, устанавливающего продуктивность одного или нескольких горизонтов в изучаемом разрезе отложений. Если месторождение нефти или газа открыто структурным, параметрическим или опорным бурением до ввода площади в поиски, то длительность поискового периода рассчитывается от времени заложения скважины-открывательницы до получения промышленного притока.

В процессе поискового бурения для выделения в разрезе продуктивных горизонтов необходимо проводить глубинные геохимические исследования (газовый, битумный каротаж и др.). При опробовании горизонтов большое внимание должно уделяться гидрогеологическим исследованиям водоносных комплексов. С этой целью при опробовании поисковых скважин должны изучаться химический состав вод, дебиты, статические напоры, температура, состав и давление насыщения растворенных газов в воде.

Весьма эффективными в ряде районов могут быть детализованные скважинная и наземная (морская) сейсморазведки, а также геофизические исследования по прогнозированию разреза и оконтуриванию залежи.

Результаты поискового бурения и других исследований должны качественно и своевременно научно обрабатываться, на основе чего составляются детальные стратиграфические разрезы, корреляционные схемы, детальные структурные карты, профили, карты коллекторских свойств и мощностей по продуктивным горизонтам и другие графические материалы, необходимые для оценки результатов поисковых работ.

Задачи поисковой стадии считаются решенными полностью тогда, когда однозначно доказано наличие или отсутствие промышленных скоплений нефти и газа в пределах исследуемой локальной площади. При этом поисковое бурение считается завершенным в следующих геологических ситуациях:

а) доказано наличие залежи получением в одной из поисковых скважин промышленного притока нефти или газа. Здесь следует подчеркнуть, что величина подобного притока не является строго установленной, а может меняться в значительных пределах, поскольку определяется геолого-экономическими условиями и задачами освоения каждого конкретного нефтегазоносного региона. Другими словами одинаковые по величине дебиты нефти или газа могут рассматриваться как промышленные притоки в одном регионе (например, с хорошей обустроенностью промыслов) и не быть таковыми в другом (малоизученном);

б) установлены непромышленные скопления углеводородов, вследствие чего дальнейшее продолжение поисковых работ является нерентабельным. Экономически нецелесообразно также продолжать поиски в случае отнесения открытых залежей к забалансовым;

в) доказано отсутствие месторождения (залежи) в пределах опоисковываемой площади, что может, например, свидетельствовать, в свою очередь, об отсутствии ловушки по перспективным отложениям, пластов коллекторов в изучаемом разрезе или их обводненности и т.п. После анализа причин безуспешных поисков площадь выводится из бурения с отрицательными результатами. Следует иметь в виду, что поисковое бурение считается завершенным только по вскрытой части разреза, когда скважины бурятся на технически доступную глубину.

Задачи поискового бурения в ряде случаев могут быть решены лишь частично (например, из-за плохого качества или отсутствия опробования, низкой информативности методов ГИС, недостаточного отбора керна и т.д.). Иногда встречаются ситуации, когда задачи поисковой стадии вообще могут оказаться нерешенными. Например, если установлено несоответствие структурных построений по исходным данным сейсморазведки и последующего поискового бурения; некачественное проведение ГИС при отсутствии опробований; сложные горно-геологические условия бурения, обусловливающие появление технически неудачных скважин и необходимость применения новых средств и методов для более успешной их проводки и т.д. Решение о прекращении или продолжении поисковых работ в указанных случаях принимается после анализа причин отрицательных результатов бурения.

Поисковые работы на площади могут быть также приостановлены или законсервированы, если появляется необходимость проведения дополнительных детализационных геофизических исследований, применения новых технических средств, передислокации поискового бурения на другие, более перспективные геологические объекты.

По результатам работ на поисковой стадии в случае открытия месторождения (залежи) нефти и газа дается геолого-экономическое заключение о целесообразности проведения дальнейшего бурения для оценки выявленных скоплений углеводородов.

Заканчивается эта стадия подсчетом запасов по категориям С 2 и частично C 1 , на основе чего дается заключение о геолого-экономической оценке выявленного местоскопления или залежи и целесообразности проведения дальнейших разведочных работ. При получении положительных результатов выявленные продуктивные площади передаются в промышленную разведку. При получении отрицательных результатов и установлении бесперспективности разведанной площади дальнейшие геологоразведочные работы прекращаются. В отдельных случаях, когда в результате проведения поискового бурения установлено более сложное строение, дается заключение о необходимости проведения на ней дополнительных геолого-геофизических работ.

Пластовые сводовые залежи

Отличительной чертой всех сводовых залежей является соответствие между структурной формой поднятия и формой связанных с ним залежей. Сводовые залежи приурочены к куполам, брахиантиклиналям, антиклинальным складкам и в отдельных случаях на платформе к тектоническим сводам, например Ромашкинское месторождение, приуроченное к Татарскому своду. К куполам принято относить поднятие с отношением осей, близким к единице; к брахиантиклиналям - с отношением осей от 1 до 3; антиклиналями называются вытянутые складки, у которых длинные оси более чем в 3 раза превышают короткие.

Открытие залежи производится наиболее просто для случая, когда свод возможного пласта-коллектора определяется достаточно точно по данным геологического картирования вышележащих отложений или по данным сейсморазведки близкого по глубине горизонта. В этом случае обычно залежь открывается первой поисковой скважиной.

Для оценки размеров залежи скважины закладываются так, чтобы подсечь водонефтяной контакт. Для крупных сводовых залежей, связанных с брахиантиклиналями, эта задача решается заложением двух профилей по взаимно перпендикулярным направлениям, вдоль и поперек структуры. На крупных куполовидных структурах поисковые скважины целесообразно располагать на радиальных профилях (первая скважина - на своде, последующие три вокруг нее примерно через 120° по окружности). Поиски залежей на линейно вытянутых антиклиналях рекомендуется производить диагональным профилем из 3-4 скважин.

На структурах меньших размеров число поисковых скважин уменьшается до двух-трех. В частности, на брахиантиклинальных складках закладывается один поперечный профиль.

В общем случае скважины размещают с таким расчетом, чтобы вскрыть пласт на различных отметках, близких к предполагаемой отметке водонефтяного контакта. Выбор расстояний между поисковыми скважинами может быть более обоснованным, если имеются статистические данные о коэффициенте заполнения ловушек.

При поисках залежей, приуроченных к малоамплитудным поднятиям, на моноклинальном склоне или на склоне крупного свода следует обращать внимание на характер сочленения структуры с другими структурами, расположенными выше по региональному подъему слоев. Изучение морфологической характеристики структуры по сейсмической карте или по карте структурного бурения позволит найти так называемое «критическое направление», т. е. участок наиболее слабо выраженного замыкания («замок структуры»), который определяет возможность сохранения залежи и ее высоту. В этом случае после бурения сводовой скважины, выявляющей залежи нефти или газа, вторую скважину следует располагать в зоне «замка» с целью выяснения степени самостоятельности открытой залежи и ее высоты. В случае получения во второй скважине нефти или нефти с водой этих сведений может быть достаточно для того, чтобы судить об общих размерах открытой залежи. Если во второй скважине не будет получено притока нефти, то потребуется прорубить еще 2-3 скважины, располагая их на разных отметках.

Своды отдельных горизонтов в ряде случаев имеют смещение с глубиной, которое может быть связано с особенностью структурной формы складки. Это обстоятельство надо учитывать при заложении поисковых скважин, смещая их в сторону соответствующего крыла относительно свода, картируемого по верхним горизонтам.

Пластовые сводовые залежи нефти и газа иногда смещаются относительно свода ловушки под влиянием гидродинамических факторов и ограничиваются наклонным контактом. При этом разность отметок контакта в нефтяных залежах достигает десятков метров. В платформенных условиях такие залежи оказываются смещенными относительно свода на заметные расстояния, что необходимо учитывать при заложении поисковых скважин.

На многокупольной структуре могут быть обнаружены пластовые залежи с единым контуром. При вскрытии первой скважиной залежи нефти или газа на наиболее высоком куполе следующую скважину необходимо заложить в седловине между куполами. Если она вскроет полностью насыщенный пласт, то третья скважина должна быть заложена на участке раскрытия ловушки в пределах изогипсы, охватывающей все поднятие. Такая методика позволит быстро оценить размеры месторождения. Если вторая скважина окажется водоносной, дальнейшие поиски проводятся раздельно на каждом куполе.

Залежи пластовые, сводовые, нарушенные разрывами. Если амплитуда разрывов не связана с разделением залежи на изолированные блоки, поисковое бурение производится по методикам, аналогичным описанным выше. При наличии разрывов, разделяющих залежь на отдельные блоки, обусловливающие изменение конфигурации границ и увеличение изменчивости ее свойств по площади, задача оконтуривания этих блоков усложняется. Для ее решения необходимо определить положение и характер разрывов. Они могут носить характер сбросов или взбросов.

Наличие разрыва устанавливается по ряду признаков. Так, пропуск или повторение части разреза в скважинах указывает на наличие сброса или взброса. Если предполагается наличие сброса, разделяющего пластовую залежь на две части, то для их обнаружения закладываются две поисковые скважины по обе стороны от нарушения. В случае взброса иногда достаточно одной скважины, пересекающей его плоскость и вскрывающей обе части залежи. Оконтуривание залежей производится аналогично ненарушенным ловушкам сходной конфигурации.

Литологические залежи

Среди залежей этого типа выделяют две основные группы: залежи литологически экранированные, и залежи литологически ограниченные.

Залежи первой группы распространены довольно часто наряду с пластовыми залежами и располагаются на периклиналях или крыльях локальных структур (рис. 8). Они обнаруживаются чаще всего попутно при поисках других в основном сводовых залежей. Оконтуривание их также производится по мере изучения других залежей. Однако в некоторых случаях литологически экранированные залежи могут выходить далеко за пределы структуры, и тогда для их оконтуривания и промышленной оценки бурят специальные поисковые скважины, располагая их последовательно в направлении общего погружения пластов.

Литологические залежи, контролируемые локальными структурами, могут иметь и самостоятельное поисковое значение. Выклинивание пластов к своду поднятия приводит к образованию так называемых лысых структур. В этом случае залежь может быть кольцевой или распадаться на отдельные поля. Здесь первые поисковые скважины, располагающиеся по профилю, закладывались не в своде структуры, картируемой по подъему фундамента, а в пониженных частях ее склонов, установленных по сейсмическим картам.

В случае обнаружения залежи первоочередная задача заключается в установлении контура водонефтяного контакта и границы выклинивания пласта. Для этого закладывались профили из двух-трех скважин, приуроченных к понижениям на склонах выступа фундамента. При удачном выборе местоположения скважин первого профиля можно дать промышленную оценку открытой залежи. Последующие профили уже с целью разведки залежей располагались по обе стороны от основных на расстояниях 1,5-2,0 км. Расстояния между скважинами на профилях составляли 0,5-1,5 км.

Поиски залежей второй группы представляют более сложную задачу. Для ее решения необходимо тщательное изучение геологической обстановки, проведение палеогеографических и палеотектонических исследований, которые помогают выявить положение древних береговых зон, направление морских палеотечений и речных русел, зон интенсивного прогибания и древних погребенных поднятий, контролировавших распределение коллекторов и границы их выклинивания. Для обнаружения зон выклинивания коллекторов используются результаты сейсмических исследований в комплексе с профильным бурением.

Ловушки при выклинивании коллекторских пластов могут быть установлены путем построения структурных карт кровли продуктивного пласта, совмещенных с картами изолиний равных значений мощности. Они бывают приурочены к участкам наиболее высокого положения нулевой линии мощности коллекторов.

Поисковое бурение на литологически ограниченные залежи производится профилями, ориентированными вкрест простирания зоны распространения коллекторов и предполагаемой линии их выклинивания. Если в перспективном районе имеются локальные структуры, то первыми скважинами следует проверить их нефтегазоносность. В случае отсутствия на структуре залежей и коллекторов следующую скважину надо пробурить в пониженном участке склона, где возможно присутствие коллекторов. При их обнаружении следующую скважину закладывают для поисков залежи. Скв. 3 будет открыта залежь, а по мощности коллекторов в скв. 2 и 3 можно определить положение линии выклинивания. Скв. 4, размещенная по предполагаемому простиранию коллекторов, уточнит размеры уже открытой залежи и укажет направление увеличения мощности песчаного тела. Тогда скв. 5, вскрыв высокие значения мощности коллекторов, будет началом профиля для поисков второй заливообразной залежи и т.д.

Еще более сложным делом является обнаружение рукавообразных залежей. Для поисков таких залежей И.М. Губкиным было рекомендовано составление наклонных структурных карт с изображением рельефа русла палеореки и мощности песчаных отложений. Такие залежи открываются, как правило, при поисках и разведке залежей других типов. Их изучение и промышленная оценка могут быть произведены только после проведения разведки, при которой скважины размещаются «клином» от известного к неизвестному.

Однако при наличии перспектив открытия целого ряда таких залежей могут быть поставлены специальные работы путем бурения опорных профилей поисковых скважин вкрест регионального простирания зон песчано-алевритовых отложений.

Массивные залежи

Исключительно важна роль подземных вод на всех этапах образования нефти и газа, их миграции, формировании и сохранения их залежей, что определяет возможность использования гидрогеологических критериев при прогнозировании нефтегазоносности недр. Гидрогеологические нефтегазопоискоаые показатели весьма разнообразны, и особенности их использования на разных этапах геологоразведочного процесса могут существенно различаться. Поэтому изучение гидрогеологических критериев следует начинать с классификации и выяснения оптимальных (наиболее благоприятных) их комплексов, методики использования показателей при поисках месторождений нефти и газа.

В настоящее время существует большое число разнообразных схем классификаций гидрогеологических показателей. Наиболее полные сводки исследований, посвященных вопросам изучения гидрогеологических показателен нефтегазоносности. Разработка классификационных схем гидрогеологических показателей оценки перспектив нефтегазоносности идет по трем направлениям: первое ¾ все показатели разделяют на прямые и косвенные, при этом принимают, что прямые однозначно указывают па наличие залежей нефти и газа, а косвенные характеризуют благоприятные условия для сохранения этих залежей; второе - показатели группируют по классам изучаемых информационных объектов, например, различают показатели общегидрогеологические, палеогидрогеологические, гидрохимические, газовые, геотермические и др.; третье - предусматривают выделение специфических показателей для определения наличия нефти и газа, условий формирования, сохранения залежей, условий наличия ловушек и др.

Большинство исследователей справедливо считает, что для всех гидрогеологических бассейнов не существует универсальных гидрогеологических показателей. Бассейны, различаясь по особенностям геологического строения, характеризуются и своим набором гидрогеологических показателей. Результаты многолетних исследований в различных бассейнах и анализ существующих классификаций позволяют определить следующую совокупность гидрогеологических показателей оценки перспектив нефтегазоносности: общегидрогеологические и палеогидрогеологические, гидродинамические, гидрохимические (сюда включаются ВРОВ и газы), геотермические и микробиологические.

Обычно при оценке перспектив нефтегазоносности по гидрогеологическим данным различают региональную, зональную и локальную оценки перспектив нефтегазоносности недр. В процессе региональной оценки рассматриваются гидрогеологические условия нефтегазоносных бассейнов или их частей, а при зональной - отдельных территорий или зон внутри бассейна. Главная задача гидрогеологических исследований при локальной оценке нефтегазоносности заключается в получении информации, которая прямо или косвенно указывала бы па наличие или отсутствие залежей нефти и газа в пределах рекомендуемой для разбуривания локальной площади (объекта).

До сих пор при прогнозировании не всегда используют всю совокупность гидрогеологических показателей, что приводит к снижению эффективности их использования в нефтегазопоисковой практике. Кроме того, степень применимости тех или иных показателей в различных гидрогеохимических обстановках и районах различна. Даже в пределах одного бассейна, но в разных гидрогеохимических обстановках информативность одних и тех же гидрогеохимическигс показателей различна. В связи с этим и методика оценки перспектив нефтегазоносности по результатам глубинного гидрогеологического опробования водоносных горизонтов в конкретных гидрогеохимических обстановках имеет свои особенности. Поэтому региональная, зональная и локальная оценка перспектив нефтегазоносности должна по возможности осуществляться комплексно с использованием всех имеющихся показателей.

Общие гидрогеологические показатели

В группу общегидрогеологических показателей обычно включают следующие характеристики: тип бассейна (или его части), его размеры и объем осадочных пород; особенности водоносных комплексов, их выдержанность и коллекторские свойства; надежность региональных водоупоров; характер распределения по площади и разрезу гидрохимических, газовых и температурных параметров; положение региона или локального участка в пределах бассейна и др.

Перспективы нефтегазоносности бассейнов возрастают с увеличением площади бассейна и объема слагающих бассейн осадочных толщ. Необходимое условие нефтеносности бассейна ¾ достаточная глубина (более 1-2 км) погружения осадочных пород. В зависимости от типа ОВ и возраста пород, температурных условий эта глубина может варьировать. Минимальная граница погружения пород для образования промышленных газовых месторождений снижается - в среднем 300 - 800 м и даже меньше. Гидрогеологические бассейны небольших размеров (1-5 тыс. км 2 и менее), если даже они и заполнены мощной осадочной толщей, характеризуются меньшими перспективами нефтегазоносности, так как в них обычно недостаточна по размерам «нефтегазосборная площадь» и облегчены условия для разрушения УВ инфильтрационными водами.

Важным критерием нефтегазоносности бассейнов или их частей является присутствие водоупоров. Длительная сохранность нефтегазовых залежей обеспечивается наличием региональных водоупоров значительной мощности. Такими водоупорами служат мощные толщи соленосных, гипсоангидритовых, глинистых, глинисто-карбонатных и других изолирующих пород.

Анализ особенностей распределения гидрохимических, газовых и температурных параметров подземных вод позволяет в ряде случаев наметить в разрезе и по площади осадочных бассейнов зоны, благоприятные для сохранения залежей нефти и газа. Например, в направлении возрастания минерализации и содержания микрокомпонентов (брома, йода, бора, алюминия и др.), увеличения общей газонасыщенности вод, упругости газов, степени прогретости недр и т. д. нарастают перспективы нефтегазоносности. Характер распределения гидрогеологических показателей по площади развития водоносных комплексов позволяет проследить, насколько далеко от обрамления бассейнов распространяются области, промытые инфильтрационными водами, с неблагоприятными условиями для сохранности залежей нефти и газа. Здесь рассмотрены только главные общие гидрогеологические показатели перспектив нефтегазоносности, на самом деле их перечень этим не исчерпывается.

Палеогидрогеологические исследования

Основные задачи палеогидрогеологии заключаются в выяснении гидрогеологической обстановки минувших геологических эпох с целью определения влияния подземной гидросферы на процессы образования и миграции нефти и газа, формирования, сохранения и разрушения их залежей.

Формирование и сохранение залежей нефти и газа связаны главным образом с водами седиментационного генезиса, т. е. элизионный водообмен рассматривается как благоприятный показатель нефтегазоносности недр. С инфильтрационным водообменом связываются основные гидрогеологические процессы, приводящие к разрушению скоплений нефти и газа. Поэтому сравнительная оценка интенсивности и времени проявления элизионного и инфильтрационного водообмена в гидрогеологической истории бассейна или водоносного комплекса позволяет получить ценные данные при оценке перспектив нефтегазоности. В результате изучения палеотемпературных условий на различных этапах гидрогеологической истории бассейна или отдельного водоносного комплекса могут быть намечены области повышенной температуры, которая способствовала наиболее полному превращению ОВ и направлении образования УВ, а также определена продолжительность «прогрева:».

Гидродинамические показатели

К собственно гидродинамическим критериям нефтегазоносности относятся показатели процессов водообмена и гидрогеологическая закрытость недр, соотношение пьезометрических уклонов и падения горизонтов, скорость движения подземных под, очаги разгрузки под (пьезоминимумы) и др.

Выше отмечалось, что в вертикальном разрезе нефтегазоносното бассейна выделяют три гидродинамические зоны: активного, затрудненного водообмена и застойного водного режима. В зоне свободного водообмена, как правило, не встречаются промышленные залежи нефти и газа, зато широко представлены твердые нафтиды, а иногда и жидкие окисленные нефти. Основные ресурсы нефти и газа связаны с зоной застойного водного режима и в незначительной степени с зоной за трудней ной циркуляции подземных под.

Важный показатель при изучении нефтегазоносности недр - данные о гидродинамических аномалиях, которые выражаются в локальных понижениях и повышениях напоров подземных вод - в пьезоминимумах и пьезомаксимумах. К пьезометрическим минимумам, связанным с очагами разгрузки подземных вод часто приурочены области локализации нефти и газа. Разделяют все пьезоминимумы на переточные, преградные и фронтальные. Особое место при поисках залежей приобретают пьезоминимумы переточного типа. Роль пьезоминимумов и формировании скоплений УВ и их поисковое значение установлены в ряде нефтегазоносных бассейнов, показана связь размещения залежей нефти и газа с глубинными гидродинамическими аномалиями, с которыми также совпадают гидрохимические и геотермические аномалии.

Гидрохимические показатели

Большинство показателей солевого состава вод характеризует геохимическую среду пластовой системы, степень гидрогеологической закрытости недр, возможность протекания тех или иных химических и биохимических процессов. В разное время и качестве показателей солевого состава вод выдвигались самые разнообразные химические компоненты вод и различные коэффициенты, устанавливаемые из их соотношений. В последующем многие из этих показателей были отвергнуты как недостаточно обоснованные. В настоящее время для нефтегазопоисковых целей используют следующие показатели соленого состава вод: тип вод и характер общей минерализации, коэффициенты метаморфизации вод, сульфатность, содержание микроэлементов {аммонии, йода, брома, бора и др.), редких и рассеянных элементов (стронции, ванадия, никеля, меди, молибдена и др.).

Гидрохимические показатели, в первую очередь содержание сульфатов и гидрокарбонатов, для многих разрезов эффективны, нередко связаны с биохимическим и физико-химическим взаимодействием залежей УВ с подземными водами. Эти же показатели мало-аффективны н случае залегания вод в соленосных отложениях и на больших глубинах.

Редкие и рассеянные элементы (ванадий, никель, хром, медь, кобальт, молибден, олово, свинец и др.) для отдельных геолого-гидрогеологических условий могут быть надежными признаками наличия залежей нефти и газа.

Основная часть изучаемых компонентов водорастворенного ОВ связана с залежами нефти и газоконденсата и лишь частично с залежами углеводородных газов. Вокруг залежей в подземных водах образуются ореолы рассеяния ОВ. Фоновое же содержание ОВ, встречаемою практически во всех водах, образуется в результате превращении веществ, содержащихся в самих подземных водах и извлекаемых последними непосредственно из водовмещающих и водоупорных толщ. Какая-то часть этого ВРОВ могла сохраниться, а седиментационных водах с момента осадконакопления. Для нефтегазопоисковых целей наиболее интересна та часть ОВ, которая является продуктом рассеяния УН залежей в окружающие их воды.

Исследованиями в различных нефтегазоносных районах установлено, что по мере приближении к залежам газа, газоконденсата, легкой нефти содержание С ор, обычно возрастает, главным образом за счет летучих компонентов. Отмечается, такай связь между содержанием С ор нелетучих битумоидных веществ, извлекаемых из вод хлороформом, и нефтегазоносностью.

В подземных водах нефтегазоносных бассейнов преобладают те или иные азотистые соединения. Данные о распределении в подземных водах различных форм азота и величины их соотношений, отражающие незакономерное изменение этих показателей в приконтурных водах залежей УВ, затрудняют использование органического азота как прямого показателя при прогнозе нефтегазоносности; его следует отнести в разряд косвенных показателей. К косвенным показателям принадлежат также органические кислоты - нафтеновые, гуминовые и жирные, так как для окончательных выводов об их применимости в качестве прямых нефтегазопоисковых показателей данных недостаточно.

Повышенное содержание летучих фенолов тяготеет к приконтурным водам залежей парафинистой легкой нефти и газоконденсата; летучие фенолы отсутствуют или содержатся в малых количествах в подах газовых залежей и водах, контактирующих с (залежами тяжелых нефтей). Указанное позволяет считать наличие фенолов в подземных водах признаком нефтяных и газоконденсагных наложен

Газовые показатели

Важное значение при нефтегазспоисковых работах имеют углеводородные газы, которые нередко непосредственно связаны с залежами нефти к газа. Однако и другие газы, присутствующие в залежах в незначительных концентрациях и эмигрирующие из них в воды, могут дать ценную поисковую информацию.

При оценке региональной и локальной нефтегазоноскости обычно применяют следующие показатели газовой группы: общая газонасыщенность и упругость газов подземных вод, коэффициент насыщения воды газом, содержание в водорастворенных газах метана, тяжелых УВ (предельные и непредельные УВ), азота, диоксида углерода, сероводорода, водорода, кислорода, гелия и аргона;

Перспективы нефтегазоносности бассейнов с подсчетом прогнозных запасов могут определяться, исходя из особенностей газонасыщенности подземных вод. Возможность такой оценки определяется газонасыщенностью, согласно которой прогнозные запасы УВ составляют лишь, часть водорастворенных газов и общем случае пропорциональны их запасам.

Установленные особенности изменения качественных и количественных характеристик газов подземных вод позволяют считать параметры газоносности вод надежными показателями региональной и локальной оценки перспектив нефтегазоносности.

Геотермические критерии

Данные геотермических исследований используют для установления как региональных условий иефтегазообразования и нефтегазонакопления, так и возможной продуктивности локальных структур. В качестве геотермических показателей обычно используют температуру, геотермические ступень и градиент, плотность теплового потока.

Установлено, что зоны максимальной прогретости осадочных пород являются своеобразными «реакторами», в пределах которых нефтегазовый потенциал ОВ осадочных пород реализуется наиболее полно. При диагностике условий и зон нефтеобразования особую важность приобретают вопросы выяснения палеотемпературной обстановки нефтегазоносных пород.

Температура прямым образом влияет на растворимость УВ.

На основе интерпретации геотермических материалов можно устанавливать вероятные области питания, стока и разгрузки водоносных комплексов, что имеет принципиальное значение при оценке перспектив нефтегазоносности.

В ряде случаев намечается зависимость между нефтегазоносностью и геотермическими условиями недр. Так, в различных районах Волго-Уральского мегабассейна на региональном геотемпературном фоне выявляются зоны с аномально высокой напряженностью теплового поля, приуроченные к тектонически ослабленным участкам (Доно-Медведицкий вал, Степновско-Советские, Жигулевские системы дислокаций), с которыми связана региональная нефтегазоносность. Эти зоны, обычно являющиеся областями межпластовой разгрузки пластовых вод и УВ, фиксируются на общем фоне аномалиями повышенной температуры и пониженной геотермической ступени. Указанную зависимость можно учитывать при оценке перспектив нефтегазоносности как крупных территорий, так и локальных площадей.

В сводовых частях локальных структур часто отмечаются температурные максимумы. С температурными аномалиями обычно совпадают газогидрохимические и газодинамические аномалии, свидетельствующие о вертикальной разгрузке подземных вод. Однако не все структуры, в недрах которых выявлены залежи нефти и газа, отмечаются геотермическими максимумами. Ряд продуктивных площадей на региональном геотемпературном поле отмечается фоновой или даже пониженной температурой.

Микробиологические критерии

К микробиологическим показателям нефтегазоносности относятся микроорганизмы, использующие в качестве источников жизнедеятель ности различные УВ. Установлена приуроченность к месторождениям УВ различных видов микроорганизмов, избирательно использующих метан и его гомологи. Наиболее показательны и нефтегазипоисковом отношении бактерии, окисляющие пропан, бутан и частично пентан.

Микроорганизмы разных видов, используемые при поисках нефти и газа, могут служить прямыми, окисляющие газо- и парообразные УВ), косвенными (водородокисляющие) и контрольными (организмы, разрушающие клетчатку, метан- и водород образующие) показателями нефтегазоносности.

Распространение жизнеспособной микрофлоры и. в частности, образующей и окисляющей УВ имеет большую глубину развития, чем это представлялось ранее. Основным фактором, ограничивающим распространение па глубину микрофлоры, является температура. Вместе с тем количество микроорганизмов и их интенсивность развития с глубиной обычно уменьшаются.

Анализ материалов позволяет считать микробиологические показатели (наличие бактерий, окисляющих газообразные и жидкие УВ, сульфатредуцирующих, денитрифицирующих и др.) главным образом косвенными индикаторами нефтегазоносности. Отсутствие микрофлоры в подземных водах в ряде случаев нельзя рассматривать как отрицательный показатель, так как жизнедеятельность микроорганизмов зависит от различных факторов (температуры, рН среды, минерализации и др.). Важное значение микробиологические показатели приобретают при нефтегазопоисковых работах, проводимых по приповерхностным водам.

Оптимальный комплекс гидрогеологических показателей при оценке перспектив нефтегазоносности

Для оценки перспектив нефтегазоносности и разное время было предложено более 100 различных гидрогеологических показателей. Наиболее важные рассмотрены выше. В процессе практической деятельности изучать все показатели не представляется возможным, так как это занимает очень много времени и не обеспечивает экспрессности выдачи необходимой информации при геологоразведочных работах на нефть и газ. Среди гидрогеологических показателей имеются более или менее надежные, информативные во многих районах или только на ограниченных участках.

Одни и те же показатели могут быть использованы и при региональной, и при локальной оценке перспектив нефтегазоносности.

Региональные и зональные показатели. Оценка перспектив нефтегазоносности в пределах осадочного бассейна (или его части) и отдельных территорий (или зон) заключается в выяснении потенциальных возможностей нефтегазообразования и нефтегазонакопления в недрах крупной территории (всего осадочного бассейна или его части) и отдельных районов. Указанные задачи могут решаться на основе изучения отмеченных выше гидрогеологических показателей с использованием других геологических материалов. По результатам изучения палеогидрогеологических показателей и современных гидрогеологических условий представляется возможным определять прогнозные запасы нефти и газа в недрах как всего осадочного бассейна, так и его частей и отдельных зон.

Локальные показатели. Оптимальный комплекс гидрогеологических показателей локальной оценки перспектив нефтегазоносности, как это делают и другие исследователи, рекомендуется подразделять на группу прямых и косвенных показателей. Среди прямых локальных показателей различают показатели ореольного рассеяния компонентов из залежей и показатели биохимического и физико-химического взаимодействия залежей нефти и газа с подземными водами.

Установлено, что крупные и гигантские зоны нефтегазоносности приурочены к областям палеовпадин или палеосводов, которые характеризуются значительными размерами и устойчивым прогибанием со значительными амплитудами. Максимальные скопления нефти и газа приурочены к частям структур, которые, в соответствующие периоды времени, испытывали максимальные по площади и амплитуде прогибания. Амплитуда прогибания хорошо фиксируется по мощности осадочного чехла. Например на Западно-Сибирской плите за мезозойскую и кайнозойскую эпохи прогиба на территории Томской области накопилось, в среднем, 2500-3500м осадочных пород. Мощность осадочного чехла на континентальной окраине плиты до 7000м.

2. Структурные критерии определяют условия формирования ловушек УВ.

1.1. Благоприятные структурные условия для формирования скоплений УВ структурного типа: структурно-литологического, литолого-стратиграфического и литологического типов.

Образование и сохранность зон нефтегазонакопления зависит от следующих структурно-тектонических факторов:

1.Времени заложения ловушки. В тех случаях, когда миграция УВ происходила до заложения ловушки, то такие ловушки не содержат скоплений УВ, а только следы миграции УВ (рис.1.1 ).

2.Условий сохранности структурной замкнутости ловушки. Если структура в течении геологической истории испытывала структурные изменениям, то такие перестройки могут нарушить замкнутость ловушки (нарушить целостность покрышки) и сформировавшаяся залежь будет разрушена.

3. Палеогеографические критерии.

Благоприятными для формирования скоплений УВ являются прибрежные зоны палеоморей. Поскольку именно в таких палеофациальных условиях возможно накопление значительных по площади и по мощности покровных, хорошо отсортированных, и соответственно, с хорошими ФЕС песчаных пластов-коллекторов или крупных рифовых массивов. Таким образом, важным становится выяснение очертания береговых линий палеоморей, областей палеошельфа. Картирование областей сноса терригенного материала и областей седиментации пород-коллекторов повышенной емкости. Конечным результатом этих исследований являются палеогеографические карты или схемы.

4. Литолого-фациальные критерии.

Литолого-фациальные условия накопления осадков контролируют литологический состав и коллекторских свойств пород. Песчаные тела прибрежно-морского генезиса (рис.1.3 ) и аллювиального (рис.1.4 ) имеют радикально отличающиеся характеристики геометрии тел коллекторов и фильтрационно-емкостные характеристики.

Литолого-фациальные условия обуславливают формирование ловушек, связанных с зонами регионального литологического выклинивания.

Рис.1.3 Прогноз размещения прибрежно-морских фациальных обстановок

5.Геохимические критерии контролируют условия формирования и развития нефтематеринских толщ.

Например, баженовская свита формировалась в условиях теплого тропического внутреннего Западносибирского моря с богатой фито-и зообиотой. Сохранению и переработке сапропелевого осадка способствовала геохимическая среда на дне водоема (рис. 1.5 и1.6 ).

Рис. 1.4 Схема континентальных фациальных условий седиментации Пласта Ю 1 1-2

Рис. 1.5

Рис. 1.6 Основные параметры углефикации (Н.Б. Вассоевич)

6.Палеогидрогеологические критерии определяют условия сохранности залежей УВ, контролируются областями затрудненного флюидообмена, гидрогеологически застойным режимом и отсутствие промытости инфильтрационными водами.

Например, висячие залежи результат активного гидродинамического режима залежи, увеличение давления флюида может привести к полному разрушению скопления УВ, особенно если залежь малоамплитудная (рис.1.7).

Рис.1.7 Висячие залежи

Специфические геологические условия, в которых оказываются подземные воды, сопутствующие залежам нефти и газа, а также из-менения в их составе, обусловленные первичной миграцией жидких и газообразных флюидов, перемещением нефти и газа в резервуарах при формировании и разрушении залежей, взаимодействие с угле-водородами позволяют использовать некоторые гидрогеологические и гидрохимические показатели для прогнозирования нефтегазоносности территорий.

Различают показатели нефтегазоносности:

  • прямые — повышенные концентрации УВ в составе водораство-ренных газов, наличие ОВ, пьезоминимумы (области разгрузки);
  • косвенные — повышенное содержание в водах сероводорода, пре-обладание метана в составе растворенного газа, повышенный коэффициент подземного водообмена (Не/Аr), повышенные со-держания аммиака, йода, брома, отсутствие или минимальное содержание сульфатов, хлоридно-кальциевый тип вод, наличие микроорганизмов, осуществляющих сульфатредукцию высших гомологов метана и окисляющих метан и ВУВ при наличии мо-лекулярного кислорода, гидрогеологическая закрытость недр на протяжении длительного геологического времени, значи-тельная мощность зон затрудненного водообмена.

Выделяют следующие группы гидрогеологических показателей нефтегазоносности.

1. Гидрогеохимические показатели нефтегазоносности.

Среди них наиболее важное значение имеют газовый состав вод, по которому можно определить давление насыщения (упругость) растворенных в воде газов — надежный критерий наличия или отсутствия залежей газа; коэффи-циент газонасыщенности, равный отношению упругости водораст-воренных газов к пластовому давлению, создаваемому водой в водоносном пласте, К г = Р г /Р в. Зная состав водорастворенных газов, по формуле А.Ю. Намиота и М.М. Бондарева можно рассчитать парциальные упругости газов. Наряду с этими показателями исполь-зуют коэффициент метан/этан и метан/пропан+высшее, аргон/азот. В водах нефтегазоносных бассейнов содержится огромное коли-чество водорастворенных газов. Так, по оценке Л.М. Зорькина, В.Н. Корценштейна и др., в водах Прикаспийской впадины содер-жится 980 трлн м 3 водорастворенных газов, в Западно-Сибирском — 1000, в Тимано-Печорском — 280, Азово-Кубанском — 180 трлн м 3 . Газонасыщенность подземных вод изменяется от 2—3 м 3 /м 3 в Западно-Сибирском мегабассейне, 4—5 м 3 /м 3 — Средне-Каспийский, 8 м 3 /м 3 — Азово-Кубанский бассейны.

В пределах Прикаспийской впадины (Астраханский свод) отме-чается высокая газонасыщенность вод, которая колеблется в пре-делах 1101-17 500 м 3 /м 3 . Водорастворенные газы представлены ди-оксидом углерода 24-28%, сероводородом 60-40%, метаном 53-77% с подчиненным количеством азота 0,4-5%. Коэффициент газонасыщенности вод 0,3-0,6.

2. Органо-гидрогеохимические показатели нефтегазоносности.

К органо-гидрогеохимическим компонентам, присутствующим в составе подземных вод месторождений нефти и газа, относятся: сумма и состав жидких УВ, бензол, толуол, летучие жирные кислоты, фенолы, спирты, органи-ческая сера и фосфор. Из минерально-гидрогеохимических компо-нентов в водах месторождений присутствуют аммоний, йод, бром, бор, никель, ванадий, ртуть, медь, хром (см. таблицу ниже). Среди гидрохи-мических показателей существенным является коэффициент сульфатности вод.

Распределение микрокомпонентов по разрезу Астраханского свода

Стратиграфический индекс

Интервал залегания, м

Нижний карбон С 1

Средний карбон С 2

Нижняя пермь, кунгур Р 1 к

Средняя юра J 2

Верхняя юра J 3

Верхний мел К 1

Верхний мел К 2

Палеоген Pg

3. Общегидрогеологические показатели нефтегазоносности.

Общегидрогеологические показатели — общая минерализация воды (более 50 г/дм3), т.е. ее химический состав и генетический тип (по В.А. Сулину) хлоридно-кальциевый с преобладанием ионов натрия и хлора, коэффициент метаморфизации вод (rNa/rCl < 0,85), хлор-бромный коэффициент (rBr/rCl < 300), изотопный состав вод, застойный режим и преобладание элизионного водообмена над инфильтрационным, длительное прогибание артезианского бассейна и большая мощность осадочного чехла.

Использование масс-спектрометрических методов анализа ста-бильных изотопов водорода и кислорода позволяет наиболее точно определить генетическую природу вод. Наличие пресных и опрес-ненных конденсационных вод, которые связаны с газовыми скопле-ниями УВ (конденсируются из парогазовой смеси при эксплуатации газоконденсатных залежей) свидетельствует о высоких перспективах газоносности. Для таких вод характерны сравнительно низкое содер-жание D и крайне высокое содержание изотопа кислорода О (А.А. Карцев), слабая минерализация 0,5-8 г/дм 3 , низкое содер-жание микрокомпонентов.

4. Гидродинамические и общегидрогеологические показатели нефтегазоносности.

Гидро-динамическая обстановка недр — наличие АВПД и аномально вы-соких температур, низкая скорость движения вод. На формирование АВПД существенное влияние оказывают гидрогеологические условия — гравитационное уплотнение, наличие мощных толщ флюидоупоров (глин и соли), тектонические сжатия и повышенная сей-смичность территории АВПД отмечается в бассейнах с интенсивным прогибанием и мощным осадочным чехлом и в бассейнах складчатых областей и предгорных прогибов. К таким бассейнам относятся Восточно-Предкавказский, Прикаспийский, Южно-Таджикский и Предкарпатский артезианские бассейны. Коэффициент аномаль-ности пластового давления в таких бассейнах составляет 1,5-2,0.

Фиксируемые при бурении подсолевых отложений Прикаспий-ской впадины АВПД по сути являются индикаторами концентрации газа в ловушках, содержащих разнородные флюиды (нефть, газ или воду), т.е. служат явным признаком УВ скоплений бывших или со-временных. Коэффициенты аномальности пластового давления ко-леблются в пределах 1,5—2,03.

Долговременное существование системы АВПД в подсолевых от-ложениях Прикаспийской впадины, в частности и Астраханского свода, по мнению большинства исследователей, обусловлено герме-тичностью мощной соленосной кунгурской покрышки, высокой закрытостью недр и, вероятно, связано с постоянным подтоком глу-бинных флюидов из недр. Более жесткие термобарические условия отмечаются с возрастанием глубины.

Астраханский карбонатный массив — самостоятельная гидроди-намическая аномалия (Ю.А. Волож). К северу от него выделяется зона с давлениями, достигающими 130 МПа, к югу — зона с давле-ниями, близкими к гидростатическим. Такое распределение давлений обусловливает направление флюидных потоков: одного более интенсивного с севера, питающего верхние горизонты подсолевого разреза; второго — менее интенсивного — южного, питающего нижние горизонты.

В областях тектонических растяжений возникают зоны пьезоми-нимумов, где имеют место аномально низкие гидростатические дав-ления (субгидростатические) — Восточная Сибирь.

5. Гидрогеотермические показатели нефтегазоносности.

Гидрогеотермические иссле-дования НГБ позволяют оценить роль подземных вод в формиро-вании и перераспределении теплового поля Земли и формировании термического режима недр.

Пластовая температура и давление оказывают значительное влияние на процессы ката- и диагенетического преобразования осадков и заключенного в них ОВ, на фазовое состояние углеводо-родов, процессы генерации и аккумуляции УВ и относятся к числу значимых показателей при прогнозе нефтегазоносности недр, вы-боре конструкции скважины, параметров бурового раствора и спо-соба разработки залежей.

Температурный режим контролирует процессы первичной миг-рации нефти, созревание и аккумуляцию ее в залежах, определяет саму возможность существования залежей, а также площадную и вертикальную зональность их размещения.

Тепловой поток, идущий из глубин Земли, воздействует на фи-зико-химические свойства осадочных пород, что объясняется их разной теплопроводностью, и на фазовое состояние заключенных в них флюидов. Теплопроводность флюидов при сходном литологи-ческом составе пород может определять различие геотермических градиентов над продуктивными и водоносными структурами.

Подземные воды, являясь наиболее теплоемким веществом земной коры, играют важную роль в распределении теплового по-тока, рассеянии и смешении восходящих тепловых потоков при ла-теральном движении вод из областей инфильтрации к областям разгрузки. Области питания характеризуются низкой напряженностью теплового поля, а области разгрузок подземных вод отличаются по-вышенной напряженностью теплового поля — высокими темпера-турами, геотермическими градиентами и низкими значениями гео-термической ступени, вследствие чего результаты термометрических исследований используются для выяснения динамичности или за-стойности подземных вод.

Передача теплоты в недрах представляет собой сложный процесс распределения тепловой энергии между минеральным скелетом по-роды и заполняющих поры породы жидкостей и газов. Теплоперенос в литосфере осуществляется в основном за счет теплопроводности (перенос теплоты горными породами) и конвекции (перенос теплоты подземными водами), причем на долю последней приходится до 25- 50%.

Коэффициент теплопроводности зависит от состава пород, их петрофизических свойств и термодинамических условий. Наибольшая теплопроводность у каменной соли, ангидритов, наи-меньшая — у глины. При изучении термического режима недр Ас-траханского ГКМ установлено, что над сводами высокоподнятых соляных куполов температура недр на 8—10 °С ниже, чем в глубоких межкупольных мульдах, где соль практически отжата. На темпера-туру существенное влияние оказывает скорость движения подземных вод. По данным М.М. Миника (1989), над сводами поднятия теп-лового потока больше, чем над крыльями. Чем выше скорость филь-трации, тем больше плотность теплового потока, поэтому над сво-дами структур формируются положительные тепловые и темпера-турные аномалии. Основными параметрами, характеризующими термический режим недр, выступают: геотермический градиент, геотермическая ступень и плотность теплового потока, которые за-висят от термических свойств пород, их состава и водонасыщенности. Геотермический градиент изменяется по территории России в широких пределах — от 1,8 °С/100 м в областях докембрийской складчатости до 4-5 “С/100 м в межгорных впадинах и прогибах (Южно-Мангышлакская впадина, Терско-Каспийский прогиб).

В пределах Прикаспийской впадины геотермический градиент составляет 0,5-2,0 °С/100 м в надсолевом комплексе и до 2,5—3,6 °С/100 м в подсолевом комплексе отложений (со средним значе-нием геотермического градиента (2,36 ± 0,46). Распределение глу-бинной теплоты в недрах Прикаспийской впадины неравномерно: наиболее прогреты недра южного обрамления впадины, располо-женные в области сочленения впадины с молодой Центрально-Ев-разийской платформой. Повышенный температурный режим в подсолевой толще южного обрамления впадины обусловлен также бли-зостью хорошо прогретых недр Предкавказья и преобладанием в надсолевой части разреза мощных терригенных теплоэкраниру-ющих толщ, создающих охлаждающий эффект для подстилающих подсолевых отложений.

Прогретость подсолевых отложений увеличивается, достигает максимума в Астраханской зоне (геотермический градиент составляет 3,0-3,6 °С/100 м). Геотермический градиент подсолевых про-дуктивных отложений на Астраханском своде варьирует от 2,4—3,1 °С/100 м, составляя в среднем 2,5—2,7 °С/100 м.

На общем фоне значений теплового поля отмечаются относи-тельные максимумы и минимумы температуры, соответствующие, как правило, крупным структурам, впадинам и поднятиям, выделя-ющимся в подсолевом комплексе. Интенсивность этих аномалий обычно не превышает 15-20 °С, а общая конфигурация соответ-ствует очертаниям структурных элементов, над которыми они выде-ляются. Температурным максимумам в тепловом поле соответствуют Астраханское, Тенгизское, Жанажольское, Каратюбинское, Кенкиякское месторождения УВ.

В целом распределение температуры в пределах Астраханского свода (карбонатного массива) хорошо согласуется со структурной поверхностью подсолевых отложений. Выявленные температурные максимумы соответствуют крупным подсолевым поднятиям — Пра-вобережной АСЗ и Девонской структуре, над которыми они выяв-лены. Из этих структур в процессе бурения скважин получены при-токи газоконденсата (скважине Правобережная-1, Девонская-2, Северо-Астраханская-1) и нефти (скважина Володарская-2).

Газоконденсатная залежь Астраханского ГКМ, залегающая в ин-тервале глубин 3880-4100 м, находит отражение по изотерме 114 °С. На отдельных участках залежи зафиксированы температурные мак-симумы 123-125 °С, пространственно приуроченные к глубоким мульдам, где кунгурская соль отжата, и минимумы (по отношению к среднему значению) 106—110 °С, приуроченные соответственно — к соляным куполам с высоким положением кровли соли (Сеиговский, Айдикский, Ахтубинский соляные купола).

Увеличение температуры отмечается в направлении к склоновым частям Астраханского свода. На Заволжской, Табаковской и Еленовской площадях северо-восточного склона свода температура камен-ноугольных отложений составляет 110—115 °С, на правобережной части свода она равна 120—127 °С, южнее в зоне Южно-Астраханских поднятий — 130-135 °С. Так, в скважине Южно-Астраханская-14 на глубине 5 км температура недр равна 145 °С, в скважине Южно- Астраханекая-5 на этой же глубине она составляет 133 °С (Бочкарева и др., 2001), западнее Астраханского свода температура постепенно уменьшается до 90-100 °С.

В геотермических исследованиях глубоких скважин (Девонская-2, Правобережная-1) установлено, что температура составляет 130— 140 °С на глубине 5000 м, 150—158 °С на глубине 6000 м, и превышает 160-180 °С на глубине 6200-6500 м (рисунок ниже).

Графики распределения температуры 1 и геотермического градиента 2 по глубине для разных скважин

а - 623; б - 402; в - 407; г - 85-Д

Столь высокие температуры, зафиксированные в скважинах, объясняются, вероятно, местоположением скважины Девонская-2 в глубокой бессолевой мульде и наличием глубинного тектонического нарушения (что подтверждено сейсмическими исследованиями) и местоположением скважины Правобережная-1 в пределах крупной зоны тектонической трещиноватости, что создает жесткие термобарические условия, которые обусловлены наличием региональной соленосной покрышки кунгурского яруса, близостью Предкавказья и, возможно, наличием глубинных трещинных каналов, откуда идет подток высокотемпературных флюидов. Примером таких каналов может служить скважина 1П Мынтобе (центральная часть Прикаспийской впадины), в которой измеренная пластовая температура на глубине 4780 м составила 243 °С. По мнению ряда исследователей, скважина попала в термически напряженную зону, в зону глубинного разлома, по которому проникает теплота из глубинной части земли.

Гидрогеотермические данные позволяют судить о процессах нефтегазообразования и нефтегазонакопления, поскольку темпера-турные условия оказывают влияние на преобразование ОБ, фазовое состояние УВ и их миграционные способности, физические свойства флюидов, они необходимы при подсчете запасов УВ и разработке месторождений, при поиске термальных вод, при геологическом кар-тировании и выявлении перспективных в нефтегазогеологическом отношении районов; к ним относятся районы, где геотермический градиент превышает 3 °С/100 м с минерализацией вод более 100 г/дм 3 .

6. Пмеогидрогеологтеские показатели нефтегазоносности.

Как известно, химический состав воды определяется условиями их формирования в опреде-ленной природной обстановке. Этими вопросами занимается палеогидрогеология. Палеогидрогеологические исследования позволяют установить обстановку накопления того или иного типа вод и бази-руются на взаимосвязи геологических и гидрогеологических фак-торов и их роли в формировании подземных вод. Взаимосвязь гео-логических и гидрогеологических структур наблюдается в совре-менных условиях и прослеживается в геологическом прошлом. Среди геологических факторов доминирующую роль играют текто-нический и литологический факторы, определяющие пространст-венное распределение бассейнов седиментации, условия осадконакопления, фильтрационно-емкостные параметры пород-коллек-торов.

Литогенетические и тектонические процессы оказывают значи-тельное влияние на гидрогеологические процессы — изменение емкостных и фильтрационных свойств водовмещающих и флюидо-упорных толш, условия миграции. В развитии гидрогеологических процессов важная роль принадлежит цикличности, т.е. выделению циклов — периодов гидрогеологической истории развития водо-носных комплексов. Такие циклы охватывают инфильтрационный и элизионный этапы, тесно связанные с тектоническими процес-сами. Если элизионный этап гидрогеологического развития пре-обладает над инфильтрационным, соответствующие гидрогеологи-ческие бассейны следует рассматривать в качестве перспективных в отношении нефтегазоносности. Изучение палеогидрогеологических условий позволяет проводить палеогидрогеологические рекон-струкции и строить палеотектонические, палеогидродинамические, палеотемпературные карты, разрезы, схемы, с помощью которых можно воспроизводить положение палеопьезометрических напоров, значения палеотемператур и др.