Обстоятельства смягчающие наказания. Понятие и виды смягчающих обстоятельств при определении уголовного наказания. относящиеся к совершенному деянию

Нервно-мышечная передача возбуждения . Выше мы уже показывали, что проведение возбуждения в нервных и мышечных волокнах осуществляется с помощью электрических импульсов, распространяющихся по поверхностной мембране. Передача же возбуждения с нерва на мышцу основана на другом механизме. Она осуществляется в результате выделения нервными окончаниями высокоактивных химических соединений - медиаторов нервного импульса. В синапсах скелетных мышц таким медиатором является ацетилхолин (АХ).

В нервно-мышечном синапсе выделяют три основных структурных элемента - пресинаптическая мембрана на нерве, постсинаптическая мембрана на мышце, между ними - синаптическая щель . Форма синапса может быть разнообразной. В состоянии покоя АХ содержится в так называемых синаптических пузырьках внутри концевой пластинки нервного волокна. От синаптической щели цитоплазма волокна с плавающими в ней синаптическими пузырьками отделена пресинаптической мембраной. При деполяризации пресинаптической мембраны меняется ее заряд и проницаемость, пузырьки подходят близко к мембране и изливаются в синаптическую щель, ширина которой достигает 200-1000 ангстрем. Медиатор начинает диффундировать через щель к постсинаптической мембране.

Постсинаптическая мембрана не электрогенна, но обладает высокой чувствительностью к медиатору за счет наличия в ней так называемых холинорецепторов - биохимических групп, способных избирательно реагировать с АХ. Последний достигает постсинаптической мембраны через 0,2-0,5 мсек. (так называемая "синаптическая задержка" ) и, взаимодействуя с холинорецепторами, вызывает изменение проницаемости мембраны для Na, что приводит к деполяризации постсинаптической мембраны и генерации на ней волну деполяризации, которая носит название возбуждающего постсинаптического потенциала , (ВПСП ), величина которого превышает Ек соседних, электрогенных участков мембраны мышечного волокна. В результате в них возникает ПД (потенциал действия), который распространяется по всей поверхности мышечного волокна, вызывая затем его сокращение, инициируя процесс т.н. электромеханического сопряжения (Каплинг). Медиатор в синаптической щели и на постсинаптической мембране работает очень короткое время, так как разрушается ферментом холинэстеразой, которая готовит синапс к восприятию новой порции медиатора. Показано также, что часть не прореагировавшего АХ может возвращаться в нервное волокно.

При очень частых ритмах раздражения постсинаптические потенциалы могут суммироваться, так как холинэстераза не успевает полностью расщепить выделяющийся в нервных окончаниях АХ. В результате такой суммации постсинаптическая мембрана все более и более деполяризуется. При этом соседние электрогенные участки мышечного волокна приходят в состояние угнетения, сходное с тем, которое развивается при продолжительном действии катода постоянного тока (катодическая депрессия Вериго).

Функции и свойства поперечно-полосатых мышц.

Поперечно-полосатые мышцы являются активной частью опорно-двигательного аппарата. В результате сократительной деятельности этих мышц происходит перемещение тела в пространстве, перемещение частей тела относительно друг друга, поддержание позы. Кроме того, при мышечной работе вырабатывается тепло.

Каждое мышечное волокно обладает следующими свойствами: возбудимостью , т.е. способностью отвечать на действие раздражителя генерацией ПД, проводимостью - способностью проводить возбуждение вдоль всего волокна в обе стороны от точки раздражения, и сократимостью , т.е. способностью сокращаться или изменять свое напряжение при возбуждении. Возбудимость и проводимость являются функциями поверхностной клеточной мембраны - сарколеммы, а сократимость - функцией миофибрилл, расположенных в саркоплазме.

Методы исследования . В естественных условиях возбуждение и сокращение мышц вызывается нервными импульсами. Для того же, чтобы возбудить мышцу в эксперименте или при клиническом исследовании, ее подвергают искусственному раздражению электрическим током. Непосредственное раздражение самой мышцы называется прямым, а раздражение нерва - непрямым раздражением. Ввиду того, что возбудимость мышечной ткани меньше, чем нервной, приложение электродов непосредственно к мышце еще не обеспечивает прямого раздражения - ток, распространяясь по мышечной ткани, действует в первую очередь на находящиеся в ней окончания двигательных нервов. Чистое прямое раздражение получается лишь при внутриклеточном раздражении или после отравления нервных окончаний кураре. Регистрация мышечного сокращения производится с помощью механических приспособлений - миографов, или специальными датчиками. При изучении мышц используются и электронная микроскопия, регистрация биопотенциалов при внутриклеточном отведении и другие тонкие методики, позволяющие исследовать свойства мышц как в эксперименте, так и в клинике.

Механизмы мышечного сокращения .

Структура миофибрилл и ее изменения при сокращении . Миофибриллы представляют собой сократительный аппарат мышечного волокна. В поперечно-полосатых мышечных волокнах миофибриллы разделены на правильно чередующиеся участки (диски), обладающие разными оптическими свойствами. Одни из этих участков анизотропны, т.е. обладают двойным лучепреломлением. В обычном свете они выглядят темными, а в поляризованном - прозрачными в продольном и непрозрачными в поперечном направлении. Другие участки изотропны, и выглядят прозрачными при обыкновенном свете. Анизотропные участки обозначаются буквой А , изотропные - I. В середине диска А проходит светлая полоска Н , а посередине диска I проходит темная полоска Z , представляющая собой тонкую поперечную мембрану, сквозь поры которой проходят миофибриллы. Благодаря наличию такой опорной структуры параллельно расположенные однозначные диски отдельных миофибрилл внутри одного волокна во время сокращения не смещаются по отношению друг к другу.

Установлено, что каждая из миофибрилл имеет диаметр около 1 мк и состоит в среднем из 2500 протофибрилл, представляющих собой удлиненные полимеризованные молекулы белком миозина и актина. Миозиновые нити (протофибриллы) вдвое толще актиновых. Их диаметр составляет примерно 100 ангстрем. В состоянии покоя мышечного волокна нити расположены в миофибрилле таким образом, что тонкие длинные актиновые нити входят своими концами в промежутки между толстыми и более короткими миозиновыми нитями. В таком участке каждая толстая нить окружена 6 тонкими. Благодаря этому диски I состоят только из актиновых нитей, а диски А еще и из нитей миозина. Светлая полоска Н представляет собой зону, свободную в период покоя от актиновых нитей. Мембрана Z, проходя через середину диска I, скрепляет между собой нити актина.

Важным компонентом ультрамикроскопической структуры миофибрилл являются также многочисленные поперечные мостики на миозине. В свою очередь на нитях актина имеются так называемые активные центры, в покое прикрытые, как чехлом, специальными белками - тропонином и тропомиозином. В основе сокращения лежит процесс скольжения нитей актина относительно миозиновых нитей. Такое скольжение вызывается работой т.н. "химического зубчатого колеса", т.е. периодически протекающих циклов изменений состояния поперечных мостиков и их взаимодействия с активными центрами на актине. В этих процессах важную роль играют АТФ и ионы Са+.

При сокращении мышечного волокна нити актина и миозина не укорачиваются, а начинают скользить друг по другу: актиновые нити вдвигаются между миозиновыми, в результате чего длина дисков I укорачивается, а диски А сохраняют свой размер, сближаясь друг с другом. Полоска Н почти исчезает, т.к. концы актина соприкасаются и даже заходят друг за друга.

Роль ПД в возникновении мышечного сокращения (процесс электромеханического сопряжения). В скелетной мышце в естественных условиях инициатором мышечного сокращения является потенциал действия, распространяющийся при возбуждении вдоль поверхностной мембраны мышечного волокна.

Если кончик микроэлектрода приложить к поверхности мышечного волокна в области мембраны Z, то при нанесении очень слабого электрического стимула, вызывающего деполяризацию, диски I по обе стороны от места раздражения начнут укорачиваться. при этом возбуждение распространяется вглубь волокна, вдоль мембраны Z. Раздражение других участков мембраны такого эффекта не вызывает. Из этого следует, что деполяризация поверхностной мембраны в области диска I при распространении ПД является пусковым механизмом сократительного процесса.

Дальнейшие исследования показали, что важным промежуточным звеном между деполяризацией мембраны и началом мышечного сокращения является проникновение в межфибриллярное пространство свободных ионов СА++. В состоянии покоя основная часть Са++ в мышечном волокне хранится в саркоплазматическом ретикулюме.

В механизме мышечного сокращения особую роль играет та часть ретикулюма, которая локализована в области мембраны Z. Электронно-микроскопически здесь обнаруживается т.н. триада (Т-система) , каждая из которых состоит из центрально расположенной в области мембраны Z тонкой поперечной трубочки, идущей поперек волокна, и двух боковых цистерн саркоплазматического ретикулюма, в которых заключен связанный Са++. ПД, распространяющийся вдоль поверхностной мембраны, проводится вглубь волокна по поперечным трубочкам триад. Затем возбуждение передается на цистерны, деполяризует их мембрану и она становится проницаема для СА++.

Экспериментально установлено, что существует некоторая критическая концентрация свободных ионов Са++, при которой начинается сокращение миофибрилл. Она равна 0,2-1,5*10 6 ионов на волокно. Увеличение концентрации Са++ до 5*10 6 вызывает уже максимальное сокращение.

Начало мышечного сокращения приурочено к первой трети восходящего колена ПД, когда его величина достигает примерно 50 мв. Полагают, что именно при этой величине деполяризации концентрация Са++ становится пороговой для начала взаимодействия актина и миозина.

Процесс освобождения Са++ прекращается после окончания пика ПД. Тем не менее сокращение продолжает еще нарастать до тех пор, пока не вступает в действие механизм, обеспечивающий возвращение Са++ в цистерны ретикулюма. Такой механизм назван "кальциевым насосом". Для осуществления его работы используется энергия, получаемая при расщеплении АТФ.

В межфибриллярном пространстве Са++ взаимодействует с белками, закрывающими активные центры актиновых нитей - тропонином и тропомиозином, обеспечивая возможность для осуществления реакции поперечных мостиков миозина и нитей актина.

Таким образом, последовательность событий, ведущих к сокращению, а затем к расслаблению мышечного волокна, рисуется в настоящее время так:

Раздражение -- возникновение ПД -- проведение его вдоль клеточной мембраны и вглубь волокна по трубочкам Т-систем -деполяризация мембраны саркоплазматического ретикулюма -- освобождение Са++ из триад и диффузия его к миофибриллам -- взаимодействие Са++ с тропонином и выделение энергии АТФ -- взаимодействие (скольжение) актиновых и миозиновых нитей -- сокращение мышцы -- понижение концентрации Са++ в межфибриллярном пространстве из-за работы Са-насоса -- расслабление мышцы .

Роль АТФ в механизме мышечного сокращения . В процессе взаимодействия актиновых и миозиновых нитей в присутствии ионов Са++ важную роль играет богатое энергией соединение - АТФ. Миозин обладает свойствами фермента АТФ-азы. При расщеплении АТФ освобождается около 10 000 кал. на 1 моль. Под влиянием АТФ изменяются и механические свойства миозиновых нитей - резко увеличивается их растяжимость. Полагают, что расщепление АТФ является источником энергии, необходимой для скольжения нитей. Ионы Са++ повышают АТФ-азную активность миозина. Кроме того, энергия АТФ используется для работы кальциевого насоса в ретикулюме. В соответствии с этим ферменты, расщепляющие АТФ, локализуются в этих мембранах, а не только в миозине.

Ресинтез АТФ, непрерывно расщепляющейся в процессе работы мышц, осуществляется двумя основными путями. Первый состоит в ферментативном переносе фосфатной группы от креатинфосфата (КФ) на АДФ. КФ содержится в мышце в значительно больших количествах, чем АТФ, и обеспечивает ее ресинтез в течение тысячных долей секунды. Однако при длительной работе мышцы запасы КФ истощаются, поэтому важен второй путь - медленный ресинтез АТФ, связанный с гликолизом и окислительными процессами. Окисление молочной и пировиноградной кислот, образующихся в мышце во время ее сокращения, сопровождается фосфорилированием АДФ и креатина, т.е. ресинтезом КФ и АТФ.

Нарушение ресинтеза АТФ ядами, подавляющими гликолиз и окислительные процессы, ведет к полному исчезновению АТФ и КФ, вследствие чего кальциевый насос перестает работать. Концентрация Са++ в области миофибрилл сильно возрастает и мышца приходит в состояние длительного необратимого укорочения - т.н. контрактуры.

Теплообразование при сократительном процессе . По своему происхождению и времени развития теплообразование это делится на две фазы. Первая во много раз короче второй и носит название начального теплообразования. Она начинается с момента возбуждения мышцы и продолжается в течение всего сокращения, включая и фазу расслабления. Вторая фаза теплообразования происходит в течение нескольких минут после расслабления, и носит название запаздывающего, или восстановительного теплообразования. В свою очередь начальное теплообразование может быть разделено на несколько частей - тепло активации, тепло укорочения, тепло расслабления. Тепло, образующееся в мышцах, поддерживает температуру тканей на уровне, обеспечивающем активное протекание физических и химических процессов в организме.

Виды сокращений . В зависимости от условий, в которых происходит сокраще-

ние, различают два его типа - изотоническое и изометрическое . Изотоническим называется такое сокращение мышцы, при котором ее волокна укорачиваются, но напряжение остается прежним. Примером является укорочение без нагрузки. Изометрическим называется такое сокращение, при котором мышца укорачиваться не может (когда ее концы неподвижно закреплены). В этом случае длина мышечных волокон остается неизменной, но напряжение их растет (подъем непосильного груза).

Естественные сокращения мышц в организме никогда не бывают чисто изотоническими или изометрическими.

Одиночное сокращение . Раздражение мышцы или иннервирующего ее двигательного нерва одиночным стимулом вызывает одиночное сокращение мышцы. В нем различают две основные фазы: фазу сокращения и фазу расслабления. Сокращение мышечного волокна начинается уже во время восходящей ветви ПД. Длительность сокращения в каждой точке мышечного волокна в десятки раз превышает продолжительность ПД. Поэтому наступает момент, когда ПД прошел вдоль всего волокна и закончился, волна же сокращения охватила все волокно и оно продолжает быть укороченным. Это соответствует моменту максимального укорочения или напряжения мышечного волокна.

Сокращение каждого отдельного мышечного волокна при одиночных сокращениях подчиняется закону "все или ничего ". Это означает, что сокращение, возникающее как при пороговом, так и при сверхпороговом раздражении, имеет максимальную амплитуду. Величина же одиночного сокращения всей мышцы зависит от силы раздражения. При пороговом раздражении сокращение ее едва заметно, с увеличением же силы раздражения оно нарастает, пока не достигнет известной высоты, после чего уже остается неизменной (максимальное сокращение). Это объясняется тем, что возбудимость отдельных мышечных волокон неодинакова, и поэтому только часть их возбуждается при слабом раздражении. При максимальном сокращении они возбуждены все. Скорость проведения волны сокращения мышцы совпадает со скоростью распространения ПД. В двуглавой мышце плеча она равна 3,5-5,0 м/сек.

Суммация сокращений и тетанус . Если в эксперименте на отдельное мышечное волокно или на всю мышцу действуют два быстро следующих друг за другом сильных одиночных раздражения, то возникающее сокращение будет иметь большую амплитуду, чем максимальное одиночное сокращение. Сократительные эффекты, вызванные первым и вторым раздражением, как бы складываются. Это явление носит название суммации сокращений. Для возникновения суммации необходимо, чтобы интервал между раздражениями имел определенную длительность - он должен быть длиннее рефрактерного периода, но короче всей длительности одиночного сокращения, чтобы второе раздражение подействовало на мышцу раньше, чем она успеет расслабиться. При этом возможны два случая. Если второе раздражение поступает, когда мышца уже начала расслабляться, на миографической кривой вершина второго сокращения будет отделяться от первого западением. Если же второе раздражение действует, когда первое сокращение еще не дошло до своей вершины, то второе сокращение как бы сливается с первым, образуя вместе с ним единую суммированную вершину. Как при полной, так и при неполной суммации ПД не суммируются. Такое суммированное сокращение в ответ на ритмические раздражения называются тетанусом. В зависимости от частоты раздражения он бывает зубчатый и гладкий.

Причина суммации сокращений при тетанусе кроется в накоплении ионов Са++ в межфибриллярном пространстве до концентрации 5*10 6 мМ/л. После достижения этой величины дальнейшее накопление Са++ не приводит к увеличению амплитуды тетануса.

После прекращения тетанического раздражения волокна вначале расслабляются не полностью, и их исходная длина восстанавливается лишь по истечении некоторого времени. Это явление называется посттетанической, или остаточной контрактурой. Она связана с тем. что требуется больше времени для удаления из межфибриллярного пространства всего Са++, попавшего туда при ритмических стимулах и не успевшего полностью удалиться в цистерны саркоплазматического ретикулюма работой Са-насосов.

Если после достижения гладкого тетануса еще больше увеличивать частоту раздражения, то мышца при какой-то частоте начинает вдруг расслабляться. Это явление называется пессимумом . Он наступает тогда, когда каждый следующий импульс попадает в рефрактерность от предыдущего.

Моторные единицы . Мы рассмотрели общую схему явлений, лежащих в основе тетанического сокращения. Для того, чтобы более подробно познакомиться с тем, как этот процесс совершается в условиях естественной деятельности организма, необходимо остановиться на некоторых особенностях иннервации скелетной мышцы двигательным нервом.

Каждое моторное нервное волокно, являющееся отростком двигательной клетки передних рогов спинного мозга (альфа-мотонейрона), в мышце ветвиться и иннервирует целую группу мышечных волокон. Такая группа называется моторной единицей мышцы. Количество мышечных волокон, входящих в состав моторной единицы, вариирует в широких пределах, но их свойства одинаковы (возбудимость, проводимость и др.). Вследствие того, что скорость распространения возбуждения в нервных волокнах, иннервирующих скелетные мышцы, очень велика, мышечные волокна, составляющие моторную единицу, приходят в состояние возбуждения практически одновременно. Электрическая активность моторной единицы имеет вид частокола, в котором каждому пику соответствует суммарный потенциал действия многих одновременно возбужденных мышечных волокон.

Следует сказать, что возбудимость различных скелетных мышечных волокон и состоящих из них моторных единиц значительно вариирует. Она больше в т.н. быстрых и меньше в медленных волокнах. При этом возбудимость обоих ниже возбудимости нервных волокон, их иннервирующих. Это зависит от того, что в мышцах разница Е0-Е к больше, и, значит, реобаза выше. ПД достигает 110-130 мв, длительность его 3-6 мсек. Максимальная частота быстрых волокон - около 500 в сек., большинства скелетных - 200-250 в сек. Длительность ПД в медленных волокнах примерно в 2 раза больше, продолжительность волны сокращения - в 5 раз больше, а скорость ее проведения в 2 раза медленнее. Кроме того, быстрые волокна делятся в зависимости от скорости сокращения и лабильности на фазные и тонические.

Скелетные мышцы в большинстве случаев являются смешанными: они состоят как из быстрых, так и медленных волокон. Но в пределах одной моторной единицы все волокна всегда одинаковы. Поэтому и моторные единицы делят на быстрые и медленные, фазные и тонические. Смешанный тип мышцы позволяет нервным центрам использовать одну и ту же мышцу как для осуществления быстрых, фазных движений, так и для поддержания тонического напряжения.

Существуют, однако, мышцы, состоящие преимущественно из быстрых или из медленных моторных единиц. Такие мышцы часто тоже называются быстрыми (белыми) и медленными (красными). Длительность волны сокращения наиболее быстрой мышцы - внутренней прямой мышцы глаза - составляет всего 7,5 мсек., у медленной камбаловидной - 75 мсек. Функциональное значение указанных различий становится очевидным при рассмотрении их ответов на ритмические стимулы. Для получения гладкого тетануса медленной мышцы достаточно раздражать ее с частотой 13 стимулов в сек. в быстрых же мышцах гладкий тетанус возникает при частоте 50 стимулов в сек. В тонических моторных единицах длительность сокращения на одиночный стимул может достигать 1 секунды.

Суммация сокращений моторных единиц в целой мышце . В отличие от мышечных волокон в моторной единице, которые синхронно, одновременно возбуждаются в ответ на приходящий импульс, мышечные волокна различных моторных единиц в целой мышце работают асинхронно. Объясняется это тем, что разные моторные единицы иннервируются различными двигательными нейронами, которые посылают импульсы с различной частотой и разновременно. Несмотря на это суммарное сокращение мышцы в целом имеет в условиях нормальной деятельности слитный характер. Это происходит потому, что соседняя моторная единица (или единицы) всегда успевают сократиться раньше, чем успевают расслабиться те, которые уже возбуждены. Сила мышечного сокращения зависит от числа моторных единиц, вовлеченных одновременно в реакцию, и от частоты возбуждения каждой из них.

Тонус скелетных мышц . В покое, вне работы, мышцы в организме не являются

полностью расслабленными, а сохраняют некоторое напряжение, называемое тонусом. Внешним выражением тонуса является определенная упругость мышц.

Электрофизиологические исследования показывают, что тонус связан с поступлением к мышце редких нервных импульсов, возбуждающих попеременно различные мышечные волокна. Эти импульсы возникают в мотонейронах спинного мозга, активность которых, в свою очередь поддерживается импульсами, исходящими из как из вышестоящих центров, так и из проприорецепторов (мышечных веретен и др.), находящихся в самих мышцах. О рефлекторной природе тонуса скелетных мышц свидетельствует тот факт, что перерезка задних корешков, по которым чувствительные импульсы от мышечных веретен поступают в спинной мозг, приводит к полному расслаблению мышцы.

Работа и сила мышц . Величина сокращения (степень укорочения) мышцы при данной силе раздражения зависит как от ее морфологических свойств, так и от физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие. Умеренное растяжение мышцы увеличивает ее сократительный эффект, при сильном растяжении сокращенные мышцы расслабляются. Если в результате длительной работы развивается утомление мышцы, то величина ее сокращения падает.

Для измерения силы мышцы определяют либо тот максимальный груз, который она в состоянии поднять, либо максимальное напряжение, которое она может развить в условиях изометрического сокращения. Эта сила может быть очень велика. Так, установлено, что собака мышцами челюсти может поднять груз, превышающий вес ее тела в 8,3 раза.

Одиночное мышечное волокно может развивать напряжение, достигающее 100-200 мг. Учитывая, что общее число мышечных волокон в теле человека равно приблизительно 15-30 млн., они могли бы развить напряжение в 20-30 тонн, если бы все они одновременно тянули в одну сторону.

Сила мышц при прочих равных условиях зависит от ее поперечного сечения. Чем больше сумма поперечных сечений всех ее волокон, тем больше тот груз, который она в состоянии поднять. При этом имеется ввиду т.н. физиологическое поперечное сечение, когда линия сечения идет перпендикулярно мышечным волокнам, а не мышце в целом. Сила мышц с косыми волокнами больше, чем с прямыми, так как физиологическое ее сечение больше при одинаковом геометрическом. Чтобы сравнить силу разных мышц, максимальный груз (абсолютная сила мышцы), который мышца в состоянии поднять, делят на площадь физиологического поперечного сечения (кг/см.кв.) Таким образом вычисляют удельную абсолютную силу мышцы. Для икроножной мышцы человека она равна 5,9 кг/см.кв., сгибателя плеча - 8,1 кг/см.кв., трехглавой мышцы плеча - 16,8 кг/см.кв..

Работа мышц измеряется произведением поднятого груза на величину укорочения мышцы. Между грузом, который поднимает мышца, и выполняемой ею работой существует следующая закономерность. Внешняя работа мышцы равна нулю, если мышца сокращается без нагрузки. По мере увеличения груза работа сначала увеличивается, а затем постепенно падает. Наибольшую работу мышца совершает при некоторых средних нагрузках. Поэтому зависимость работы и мощности от нагрузки получила название правила (закона) средних нагрузок .

Работа мышц, при которой происходит перемещение груза и движение костей в суставах, называется динамической. Работа мышцы, при которой мышечные волокна развивают напряжение, но почти не укорачиваются - статической. Пример - вис на шесте. Статическая работа более утомительна, чем динамическая.

Утомление мышцы . Утомлением называется временное понижение работоспособ-

ности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха.

Если длительно раздражать ритмическими электрическими стимулами изолированную мышцу, к которой подвешен небольшой груз, то амплитуда ее сокращений постепенно убывает, пока не сойдет до нуля. Регистрируется кривая утомления. Наряду с изменением амплитуды сокращений при утомлении нарастает латентный период сокращения, удлиняется период расслабления мышцы и увеличивается порог раздражения, т.е. понижается возбудимость. Все эти изменения возникают не сразу после начала работы, существует некоторый период, в течение которого наблюдается увеличение амплитуды сокращений и небольшое повышение возбудимости мышцы. При этом она становится легко растяжимой. В таких случаях говорят, что мышца "врабатывается", т.е. приспосабливается к работе в заданном ритме и силе раздражения. После периода врабатываемости наступает период устойчивой работоспособности. При дальнейшем длительном раздражении наступает утомление мышечных волокон.

Понижение работоспособности изолированной из организма мышцы при ее длительном раздражении обусловлено двумя основными причинами. Первой из них является то, что во время сокращений в мышце накапливаются продукты обмена веществ (фосфорная кислота, связывающая Са++, молочная кислота и др.), оказывающие угнетающее действие на работоспособность мышцы. Часть этих продуктов, а также ионы Са диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее действие на способность возбудимой мембраны генерировать ПД. Так, если изолированную мышцу, помещенную в небольшой объем жидкости Рингера, довести до полного утомления, то достаточно только сменить омывающий ее раствор, чтобы восстановились сокращения мышцы.

Другой причиной развития утомления изолированной мышцы является постепенное истощение в ней энергетических запасов. При длительной работе резко уменьшается содержание в мышце гликогена, вследствие чего нарушаются процессы ресинтеза АТФ и КФ, необходимых для осуществления сокращения.

Следует оговорить, что в естественных условиях существования организма утомление двигательного аппарата при длительной работе развивается совершенно не так, как в эксперименте с изолированной мышцей. Обусловлено это не только тем, что в организме мышца непрерывно снабжается кровью, и, следовательно, получает с ней необходимые питательные вещества и освобождается от продуктов обмена. Главное отличие состоит в том, что в организме возбуждающие импульсы приходят к мышце с нерва. Нервно-мышечный синапс утомляется значительно раньше, чем мышечное волокно, в связи с быстрым истощением запасов наработанного медиатора. Это вызывает блокаду передачи возбуждений с нерва на мышцу, что предохраняет мышцу от истощения, вызываемого длительной работой. В целостном же организме еще раньше утомляются при работе нервные центры, (нервно-нервные контакты).

Роль нервной системы в утомлении целостного организма доказывается исследованиями утомления в гипнозе (гиря-корзина), установлением влияния на утомления "активного отдыха", роли симпатической нервной системы (феномен Орбели-Гинецинского) и др..

Для изучения мышечного утомления у человека пользуются эргографией. Форма кривой утомления и величина произведенной работы чрезвычайно вариирует у разных лиц и даже у одного и того же исследуемого при различных условиях.

Рабочая гипертрофия мышц и атрофия от бездействия . Систематическая интенсивная работа мышцы приводит к увеличению массы мышечной ткани. Это явление названо рабочей гипертрофией мышцы. В ее основе лежит увеличение массы протоплазмы мышечных волокон и числа содержащихся в них миофибрилл, что приводит к увеличению диаметра каждого волокна. При этом в мышце происходит активация синтеза нуклеиновых кислот и белков и увеличивается содержание АТФ и КФЫ, а также гликогена. В результате сила и скорость сокращения гипертрофированной мышцы возрастают.

Увеличению числа миофибрилл при гипертрофии способствует преимущественно статическая работа, требующая большого напряжения (силовая нагрузка). Даже кратковременные упражнения, проводимые ежедневно в условиях изометрического режима, достаточны для того, чтобы произошло увеличение числа миофибрилл. Динамическая мышечная работа, производимая без особых усилий, не приводит к гипертрофии мышцы, но может оказывать влияние на весь организм в целом, повышая устойчивость его к неблагоприятным факторам.

Противоположным рабочей гипертрофии явлением служит атрофия мышц от бездействия. Она развивается во всех случаях, когда мышцы почему-то утрачивают способность совершать свою нормальную работу. Это происходит, например, при длительном обездвиживании конечности в гипсовой повязке, долгом пребывании больного в постели, перерезке сухожилия и т.п. При атрофии мышц диаметр мышечных волокон и содержание в них сократительных белков, гликогена, АТФ и других важных для сократительной деятельности веществ резко уменьшается. При возобновлении нормальной работы мышцы атрофия постепенно исчезает. Особый вид мышечной атрофии наблюдается при денервации мышцы, т.е. после перерезки ее двигательного нерва.

Гладкие мышцы Функции гладких мышц в разных органах .

Гладкая мускулатура в организме находится во внутренних органах, сосудах, коже. Гладкие мышцы способны осуществлять относительно медленные движения и длительные тонические сокращения.

Относительно медленные, часто ритмические сокращения гладких мышц стенок полых органов (желудка, кишок, протоков пищеварительных желез, мочеточников, мочевого пузыря, желчного пузыря и т.д.) обеспечивают перемещение содержимого. Длительные тонические сокращения гладких мышц особенно резко выражены в сфинктерах полых органов; их сокращение препятствует выходу содержимого.

В состоянии постоянного тонического сокращения находятся также гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол. Тонус мышечного слоя стенок артерий регулирует величину их просвета и тем самым уровень кровяного давления и кровоснабжения органов. Тонус и двигательная функция гладких мышц регулируется импульсами, поступающими по вегетативным нервам, гуморальными влияниями.

Физиологические особенности гладких мышц. Важным свойством гладкой мышцы является ее большая пластичность , т.е. способность сохранять приданную растяжением длину без изменения напряжения. Скелетная мышца, наоборот, сразу укорачивается после снятия груза. Гладкая мышца остается растянутой до тех пор, пока под влиянием какого-либо раздражения не возникает ее активного сокращения. Свойство пластичности имеет большое значение для нормальной деятельности полых органов - благодаря ему давление внутри полого органа относительно мало изменяется при разной степени его наполнения.

Существуют различные типы гладких мышц. В стенках большинства полых органов находятся мышечные волокна длиной 50-200 мк и диаметром 4-8 мк, которые очень тесно примыкают друг к другу, и потому при рассмотрении их в микроскоп создается впечатление, что они морфологически составляют одно целое. Электронно-микроскопическое исследование показывает, однако, что они отделены друг от друга межклеточными щелями, ширина которых может быть равна 600-1500 ангстрем. Несмотря на это, гладкая мышца функционирует как одно целое. Это выражается в том, что ПД и медленные волны деполяризации беспрепятственно распространяются с одного волокна на другое.

В некоторых гладких мышцах, например, в ресничной мышце глаза, или мышцах радужной оболочки, волокна расположены раздельно, и каждое имеет свою иннервацию. У большинства же гладких мышц двигательные нервные волокна расположены только на небольшом числе волокон.

Потенциал покоя гладкомышечных волокон, обладающих автоматией, обнаруживает постоянные небольшие колебания. Величина его при внутриклеточном отведении равна 30-70 мв. Потенциал покоя гладкомышечных волокон, не обладающих автоматией, стабилен и равен 60-70 мв. В обоих случаях его величина меньше потенциала покоя скелетной мышцы. Это связано с тем, что мембрана гладкомышечных волокон в покое характеризуется относительно высокой проницаемостью для ионов Na. Потенциалы действия в гладких мышцах также несколько ниже, чем в скелетных. Превышение над потенциалом покоя - не больше 10-20 мв.

Ионный механизм возникновения ПД в гладких мышцах несколько отличается от имеющегося в скелетных. Установлено, что регенеративная деполяризация мембраны, лежащая в основе потенциала действия в ряде гладких мышц, связана с повышением проницаемости мембраны для ионов Са++, а не Na+.

Многим гладким мышцам свойственна спонтанная, автоматическая активность. Для нее характерно медленное снижение мембранного потенциала покоя, которое при достижении определенного уровня сопровождается возникновением ПД.

Проведение возбуждения по гладкой мышце . В нервных и скелетных мышечных волокнах возбуждение распространяется посредством локальных электрических токов, возникающих между деполяризованным и соседними покоящимися участками клеточной мембраны. Этот же механизм свойственен и гладким мышцам. Однако, в отличие от того, что имеет место в скелетных мышцах, в гладких потенциал действия, возникающий в одном волокне, может распространяться на соседние волокна. Обусловлено это тем, что в мембране гладкомышечных клеток в области контактов с соседними имеются участки относительно малого сопротивления, через которые петли тока, возникшие в одном волокне, легко переходят на соседние, вызывая деполяризацию их мембран. В этом отношении гладкая мышца сходна с сердечной. Отличие заключается только в том, что в сердце от одной клетки возбуждается вся мышца, а в гладких мышцах ПД, возникший в одном участке, распространяется от него лишь на определенное расстояние, которое зависит от силы приложенного стимула.

Другая существенная особенность гладких мышц заключается в том, что распространяющийся ПД возникает в низ только в том случае, если приложенный стимул возбуждает одновременно некоторое минимальное число мышечных клеток. Эта "критическая зона" имеет диаметр около 100 мк, что соответствует 20-30 параллельно лежащим клеткам. Скорость проведения возбуждения в различных гладких мышцах составляет от 2 до 15 см/сек. т.е. значительно меньше, чем в скелетной мышце.

Так же, как и в скелетной мускулатуре, в гладкой потенциалы действия имеют пусковое значение для начала сократительного процесса. Связь между возбуждением и сокращением здесь также осуществляется с помощью Са++. Однако в гладкомышечных волокнах саркоплазматический ретикулюм плохо выражен, поэтому ведущую роль в механизме возникновения сокращения отводят тем ионам Са++, которые проникают внутрь мышечного волокна во время генерации ПД.

При большой силе одиночного раздражения может возникнуть сокращение гладкой мышцы. Латентный период сокращения ее значительно больше, чем скелетной, достигая 0,25-1 сек. Продолжительность самого сокращения тоже велика - до 1 минуты. Особенно медленно протекает расслабление после сокращения. Волна сокращения распространяется по гладкой мускулатуре с той же скоростью, что и волна возбуждения (2-15 см/сек). Но эта медленность сократительной активности сочетается с большой силой сокращения гладкой мышцы. Так, мускулатура желудка птиц способная поднимать 2 кг на 1 кв.мм. своего поперечного сечения.

Вследствие медленности сокращения гладкая мышца даже при редких ритмических раздражениях (10-12 в мин) легко переходит в длительное состояние стойкого сокращения, напоминающее тетанус скелетных мышц. Однако энергетические расходы при таком сокращении очень низки.

Способность к автоматии гладких мышц присуща их мышечным волокнам и регулируется нервными элементами, которые находятся в стенках гладко мышечных органов. Миогенная природа автоматии доказана опытами на полосках мышц кишечной стенки, освобожденных от нервных элементов. На все внешние воздействия гладкая мышца реагирует изменением частоты спонтанной ритмики, следствием чего являются сокращения или расслабления мышцы. Эффект раздражения гладкой мускулатуры кишки зависит от соотношения между частотой стимуляции и собственной частотой спонтанной ритмики: при низком тонусе - редких спонтанных ПД - приложенное раздражение усиливает тонус, при высоком тонусе в ответ на раздражение возникает расслабление, так как чрезмерное учащение импульсации приводит к тому, что каждый следующий импульс попадает в фазу рефрактерности от предыдущего.

Раздражители гладких мышц . Одним из важных физиологически адекватных раздражителей гладких мышц является их быстрое и сильное растяжение. Оно вызывает деполяризацию мембраны мышечного волокна и возникновение распространяющегося ПД. В результате мышца сокращается. Характерной особенностью гладких мышц является их высокая чувствительность к некоторым химическим раздражителям, в частности, к ацетилхолину, норадреналину, адреналину, гистамину, серотонину, простагландинам. Эффекты, вызываемые одним и тем же химическим агентом, в разных мышцах и при различном их состоянии могут быть неодинаковы. Так, АХ возбуждает гладкие мышцы большинства органов, но тормозит мышцы сосудов. Адреналин расслабляет небеременную матку, но сокращает беременную. Эти различия связаны с тем, что указанные агенты реагируют на мембране с различными химическим рецепторами (холино-рецепторами, альфа и бета адренорецепторами), и в итоге по разному изменяют ионную проницаемость и мембранный потенциал гладкомышечных клеток. В тех случаях, когда раздражающий агент вызывает деполяризацию мембраны, возникает возбуждение, и, наоборот, гиперполяризация мембраны под влиянием химического агента приводит к торможению активности и расслаблению гладкой мышцы.

Мышечное сокращение является жизненно важной функцией организма, связанной с оборонительными, дыхательными, пищевыми, половыми, выделительными и другими физиологическими процессами. Все виды произвольных движений – ходьба, мимика, движения глазных яблок, глотание, дыхание и т. п. осуществляются за счет скелетных мышц. Непроизвольные движения (кроме сокращения сердца) – перистальтика желудка и кишечника, изменение тонуса кровеносных сосудов, поддержание тонуса мочевого пузыря – обусловлены сокращением гладких мышц. Работа сердца обеспечивается сокращением сердечной мускулатуры.

Структурная организация скелетной мышцы

Мышечное волокно и миофибрилла (рис. 1). Скелетная мышца состоит из множества мышечных волокон, имеющих точки прикрепления к костям и расположенных параллельно друг другу. Каждое мышечное волокно (миоцит) включает множество субъединиц – миофибрилл, которые построены из повторяющихся в продольном направлении блоков (саркомеров). Саркомер является функциональной единицей сократительного аппарата скелетной мышцы. Миофибриллы в мышечном волокне лежат таким образом, что расположение саркомеров в них совпадает. Это создает картину поперечной исчерченности.

Саркомер и филламенты. Саркомеры в миофибрилле отделены друг от друга Z -пластинками, которые содержат белок бета-актинин. В обоих направлениях от Z -пластинки отходят тонкие актиновые филламенты. В промежутках между ними располагаются более толстые миозиновые филламенты .

Актиновый филламент внешне напоминает две нитки бус, закрученные в двойную спираль, где каждая бусина – молекула белкаактина . В углублениях актиновых спиралей на равном расстоянии друг от друга лежат молекулы белка тропонина , соединенные с нитевидными молекулами белка тропомиозина.

Миозиновые филламенты образованы повторяющимися молеку­лами белка миозина . Каждая молекула миозина имеет головку ихвост . Головка миозина может связываться с молекулой актина, образуя так называемый поперечный мостик .

Клеточная мембрана мышечного волокна образует инвагинации (поперечные трубочки ), которые выполняют функцию проведения возбуждения к мембране саркоплазматического ретикулума. Саркоплазматичекий ретикулум (продольные трубочки) представляет собой внутриклеточную сеть замкнутых трубочек и выполняет функцию депонирования ионов Са++ .

Двигательная единица. Функциональной единицей скелетной мышцы является двигательная единица (ДЕ) . ДЕ – совокупность мышечных волокон, которые иннервируются отростками одного мотонейрона. Возбуждение и сокращение волокон, входящих в состав одной ДЕ, происходит одновременно (при возбуждении соответствующего мотонейрона). Отдельные ДЕ могут возбуждаться и сокращаться независимо друг от друга.

Молекулярные механизмы сокращения скелетной мышцы

Согласно теории скольжения нитей , мышечное сокращение происходит благодаря скользящему движению актиновых и миозиновых филламентов друг относительно друга. Механизм скольжения нитей включает несколько последовательных событий.

Головки миозина присоединяются к центрам связывания актинового филламента (рис. 2, А).

Взаимодействие миозина с актином приводит к конформационным перестройкам молекулы миозина. Головки приобретают АТФазную активность и поворачиваются на 120 ° . За счет поворота головок нити актина и миозина передвигаются на «один шаг» друг относительно друга (рис. 2, Б).

Рассоединение актина и миозина и восстановление конформации головки происходит в результате присоединения к головке миозина молекулы АТФ и ее гидролиза в присутствии Са++ (рис. 2, В).

Цикл «связывание – изменение конформации – рассоединение – восстановление конформации» происходит много раз, в результате чего актиновые и миозиновые филламенты смещаются друг относительно друга, Z -диски саркомеров сближаются и миофибрилла укорачивается (рис. 2, Г).

Сопряжение возбуждения и сокращения в скелетной мышце

В состоянии покоя скольжения нитей в миофибрилле не происходит, так как центры связывания на поверхности актина закрыты молекулами белка тропомиозина (рис. 3, А, Б). Возбуждение (деполяризация) миофибриллы и собственно мышечное сокращение связаны с процессом элетромеханического сопряжения, который включает ряд последовательных событий.

В результате срабатывания нейромышечного синапса на постсинаптической мембране возникает ВПСП, который генерирует развитие потенциала действия в области, окружающей постсинаптическую мембрану.

Возбуждение (потенциал действия) распространяется по мембране миофибриллы и за счет системы поперечных трубочек достигает саркоплазматического ретикулума. Деполяризации мембраны саркоплазматического ретикулума приводит к открытию в ней Са++ -каналов, через которые в саркоплазму выходят ионы Са++ (рис. 3, В).

Ионы Са++ связываются с белком тропонином. Тропонин изменяет свою конформацию и смещает молекулы белка тропомиозина, которые закрывали центры связывания актина (рис. 3, Г).

К открывшимся центрам связывания присоединяются головки миозина, и начинается процесс сокращения (рис. 3, Д).

Для развития указанных процессов требуется некоторый период времени (10–20 мс). Время от момента возбуждения мышечного волокна (мышцы) до начала ее сокращения называют латентным периодом сокращения .

Расслабление скелетной мышцы

Расслабление мышцы вызывается обратным переносом ионов Са++ посредством кальциевого насоса в каналы саркоплазматического ретикулума. По мере удаления Са++ из цитоплазмы открытых центров связывания становится все меньше и в конце концов актиновые и миозиновые филламенты полностью рассоединяются; наступает расслабление мышцы.

Контрактурой называют стойкое длительное сокращение мышцы, сохраняющееся после прекращения действия раздражителя. Кратковременная контрактура может развиваться после тетанического сокращения в результате накопления в саркоплазме большого количества Са++ ; длительная (иногда необратимая) контрактура может возникать в результате отравления ядами, нарушений метаболизма.

Фазы и режимы сокращения скелетной мышцы

Фазы мышечного сокращения

При раздражении скелетной мышцы одиночным импульсом электрического тока сверхпороговой силы возникает одиночное мышечное сокращение, в котором различают 3 фазы (рис. 4, А):

Латентный (скрытый) период сокращения (около 10 мс), во время которого развивается потенциал действия и протекают процессы электромеханического сопряжения; возбудимость мышцы во время одиночного сокращения изменяется в соответствии с фазами потенциала действия;

Фаза укорочения (около 50 мс);

Фаза расслабления (около 50 мс).

Режимы мышечного сокращения

В естественных условиях в организме одиночного мышечного сокращения не наблюдается, так как по двигательным нервам, иннервирующим мышцу, идут серии потенциалов действия. В зависимости от частоты приходящих к мышце нервных импульсов мышца может сокращаться в одном из трех режимов (рис. 4, Б).

Одиночные мышечные сокращения возникают при низкой частоте электрических импульсов. Если очередной импульс приходит в мышцу после завершения фазы расслабления, возникает серия последовательных одиночных сокращений.

При более высокой частоте импульсов очередной импульс может совпасть с фазой расслабления предыдущего цикла сокращения. Амплитуда сокращений будет суммироваться, возникнет зубчатый тетанус – длительное сокращение, прерываемое периодами неполного расслабления мышцы.

При дальнейшем увеличении частоты импульсов каждый следующий импульс будет действовать на мышцу во время фазы укорочения, в результате чего возникнет гладкий тетанус – длительное сокращение, не прерываемое периодами расслабления.

Оптимум и пессимум частоты

Амплитуда тетанического сокращения зависит от частоты импульсов, раздражающих мышцу. Оптимумом частоты называют такую частоту раздражающих импульсов, при которой каждый последующий импульс совпадает с фазой повышенной возбудимости (рис. 4, A) и соответственно вызывает тетанус наибольшей амплитуды. Пессимумом частоты называют более высокую частоту раздражения, при которой каждый последующий импульс тока попадает в фазу рефрактерности (рис. 4, A), в результате чего амплитуда тетануса значительно уменьшается.

Работа скелетной мышцы

Сила сокращения скелетной мышцы определяется 2 факторами:

Числом ДЕ, участвующих в сокращении;

Частотой сокращения мышечных волокон.

Работа скелетной мышцы совершается за счет согласованного изменения тонуса (напряжения) и длины мышцы во время сокращения.

Виды работы скелетной мышцы:

динамическая преодолевающая работа совершается, когда мышца, сокращаясь, перемещает тело или его части в пространстве;

статическая (удерживающая) работа выполняется, если благодаря сокращению мышцы части тела сохраняются в определенном положении;

динамическая уступающая работа совершается, если мышца функционирует, но при этом растягивается, так как совершаемого ею усилия недостаточно, чтобы переместить или удержать части тела.

Во время выполнения работы мышца может сокращаться:

изотонически – мышца укорачивается при постоянном напряжении (внешней нагрузке); изотоническое сокращение воспроизводится только в эксперименте;

изометричеки – напряжение мышцы возрастает, а ее длина не изменяется; мышца сокращается изометрически при совершении статической работы;

ауксотонически – напряжение мышцы изменяется по мере ее укорочения; ауксотоническое сокращение выполняется при динамической преодолевающей работе.

Правило средних нагрузок – мышца может совершить максимальную работу при средних нагрузках.

Утомление – физиологическое состояние мышцы, которое развивается после совершения длительной работы и проявляется снижением амплитуды сокращений, удлинением латентного периода сокращения и фазы расслабления. Причинами утомления являются: истощение запаса АТФ, накопление в мышце продуктов метаболизма. Утомляемость мышцы при ритмической работе меньше, чем утомляемость синапсов. Поэтому при совершении организмом мышечной работы утомление первоначально развивается на уровне синапсов ЦНС и нейро-мышечных синапсов.

Структурная организация и сокращение гладких мышц

Структурная организация. Гладкая мышца состоит из одиночных клеток веретенообразной формы (миоцитов ), которые располагаются в мышце более или менее хаотично. Сократительные филламенты расположены нерегулярно, вследствие чего отсутствует поперечная исчерченность мышцы.

Механизм сокращения аналогичен таковому в скелетной мышце, но скорость скольжения филламентов и скорость гидролиза АТФ в 100–1000 раз ниже, чем в скелетной мускулатуре.

Механизм сопряжения возбуждения и сокращения. При возбуждении клетки Cа++ поступает в цитоплазму миоцита не только из саркоплазматичекого ретикулума, но и из межклеточного пространства. Ионы Cа++ при участии белка кальмодулина активируют фермент (киназу миозина), который переносит фосфатную группу с АТФ на миозин. Головки фосфорилированного миозина приобретают способность присоединяться к актиновым филламентам.

Сокращение и расслабление гладких мышц. Скорость удаления ионов Са++ из саркоплазмы значительно меньше, чем в скелетной мышце, вследствие чего расслабление происходит очень медленно. Гладкие мышцы совершают длительные тонические сокращения и медленные ритмические движения. Вследствие невысокой интенсивности гидролиза АТФ гладкие мышцы оптимально приспособлены для длительного сокращения, не приводящего к утомлению и большим энергозатратам.

Физиологические свойства мышц

Общими физиологическими свойствами скелетных и гладких мышц являются возбудимость и сократимость . Сравнительная характеристика скелетных и гладких мышц приведена в табл. 6.1. Физиологические свойства и особенности сердечной мускулатуры рассматриваются в разделе «Физиологические механизмы гомеостаза».

Таблица 7.1. Сравнительная характеристика скелетных и гладких мышц

Свойство

Скелетные мышцы

Гладкие мышцы

Скорость деполяризации

медленная

Период рефрактерности

короткий

длительный

Характер сокращения

быстрые фазические

медленные тонические

Энергозатраты

Пластичность

Автоматия

Проводимость

Иннервация

мотонейронами соматической НС

постганглионарными нейронами вегетативной НС

Осуществляемые движения

произвольные

непроизвольные

Чувствительность к химическим веществам

Способность к делению и дифференцировке

Пластичность гладких мышц проявляется в том, что они могут сохранять постоянный тонус как в укороченном, так и в растянутом состоянии.

Проводимость гладкой мышечной ткани проявляется в том, что возбуждение распространяется от одного миоцита к другому через специализированные электропроводящие контакты (нексусы).

Свойство автоматии гладкой мускулатуры проявляется в том, что она может сокращаться без участия нервной системы, за счет того, что некоторые миоциты способны самопроизвольно генерировать ритмически повторяющиеся потенциалы действия.

Мышечное сокращение является сложным механо-химическим процессом, в ходе которого происходит преобразование химической энергии гидролитического расщепления АТФ в механическую работу, совершаемую мышцей.

В настоящее время этот механизм еще полностьюне раскрыт. Но достоверно известно следующее:

1. Источником энергии, необходимой для мышечной работы является АТФ;

2. Гидролиз АТФ, сопровождающийся выделением энергии, катализируется миозином, который как уже отмечалось, обладает ферментативной активностью;

3. Пусковым механизмом мышечного сокращения является повышение концентрации ионов Са 2+ в саркоплазме миоцитов, вызываемое двигательным нервным импульсом;

4. Во время мышечного сокращения между толстыми и тонкими нитями миофибрилл возникают поперечные мостики или спайки;

5. Во время мышечного сокращения происходит скольжение тонких нитей вдоль толстых, что приводит к укорочению миофибрилл и всего мышечного волокна в целом.

Имеется много гипотез, пытающихся объяснить молекулярный механизм мышечного сокращения. Наиболее обоснованной в настоящее время является гипотеза «весельной лодки » или «гребная гипотеза » Х. Хаксли. В упрощенном виде её суть заключается в следующем.

В мышце, находящейся в состоянии покоя, толстые и тонкие нити миофибрилл друг с другом не соединены, так как участки связывания на молекулах актина закрыты молекулами тропомиозина.

Мышечное сокращение происходит под воздействием двигательного нервного импульса, представляющего собою волну повышенной мембранной проницаемости, распространяющуюся по нервному волокну. Эта волна повышенной проницаемости передается через нервно-мышечный синапс на Т-систему саркоплазматической сети и в конечном итоге достигает цистерн, содержащих ионы кальция в большой концентрации. В результате значительного повышения проницаемости стенки цистерн (это тоже мембрана!) ионы кальция выходят из цистерн и их концентрация в саркоплазме за очень короткое время (около 3 мс) возрастает примерно в 1000 раз. Ионы кальция, находясь в высокой концентрации, присоединяются к белку тонких нитей — тропонину и меняют его пространственную форму (конформацию). Изменение конформации тропонина, в свою очередь, приводит к тому, что молекулы тропомиозина смещаются вдоль желобка фибриллярного актина, составляющего основу тонких нитей, и освобождают тот участок актиновых молекул, который предназначен для связывания с миозиновыми головками. В результате этого между миозином и актином (т.е. между толстыми и тонкими нитями) возникает поперечный мостик, расположенный под углом 90º . Поскольку в толстые и тонкие нити входит большое число молекул миозина и актина (около 300 в каждую) . то между мышечными нитями образуется довольно большое количество поперечных мостиков или спаек. На электронной микрофотографии (рис. 15) хорошо видно, что между толстыми и тонкими нитями имеется большое количество поперечно расположенных мостиков.

Рис. 15. Электронная микрофотография продольного среза

участка миофибриллы (увеличение 300000 раз) (Л.Страйнер, 1985)

Образование связи между актином и миозином сопровождается повышением АТФ-азной активности последнего (т.е. актин действует подобно аллостерическим активаторам ферментов) . в результате чего происходит гидролиз АТФ:

Глава 1. ВОЗБУДИМЫЕ ТКАНИ

ФИЗИОЛОГИЯ МЫШЕЧНОЙ ТКАНИ

Скелетные мышцы

Механизм мышечного сокращения

Скелетная мышца представляет собой сложную систему, преоб­разующую химическую энергию в механическую работу и тепло. В настоящее время хорошо исследованы молекулярные механизмы этого преобразования.

Структурная организация мышечного волокна. Мышечное во­локно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат - миофибриллы. Кроме этого, важнейшими компонентами мышечного волокна являются митохондрии, системы продольных трубочек - саркоплазматическая сеть (ретикулум) и система поперечных тру­бочек - Т-система. Функциональной единицей сократительного аппарата мышечной клетки является саркомер (рис. 2.20,А); из саркомеров состоит миофибрилла. Саркомеры отделяются друг от друга Z-пластинками. Саркомеры в миофибрилле расположены по­следовательно, поэтому сокращение саркомеров вызывает сокраще­ние миофибриллы и общее укорочение мышечного волокна.

Изучение структуры мышечных волокон в световом микроскопе позволило выявить их поперечную исчерченность. Электронно-мик­роскопические исследования показали, что поперечная исчерчен­ность обусловлена особой организацией сократительных белков миофибрилл - актина (молекулярная масса 42 000) и миозина (молекулярная масса около 500 000). Актиновые филаменты представ­лены двойной нитью, закрученной в двойную спираль с шагом около 36,5 нм. Эти филаменты длиной 1 мкм и диаметром 6-8 нм, количество которых достигает около 2000, одним концом прикреп­лены к Z-пластинке. В продольных бороздках актиновой спирали располагаются нитевидные молекулы белка тропомиозина. С шагом, равным 40 нм, к молекуле тропомиозина прикреплена молекула другого белка - тропонина. Тропонин и тропомиозин играют важ­ную роль в механизмах взаимодействия актина и миозина. В сере­дине саркомера между нитями актина располагаются толстые нити миозина длиной около 1,6 мкм. В поляризационном микроскопе эта область видна в виде полоски темного цвета (вследствие двойного лучепреломления) - анизотропный А-диск. В центре его видна более светлая полоска Н. В ней в состоянии покоя нет актиновых нитей. По обе стороны А-диска видны светлые изотропные полоски - I-диски, образованные нитями актина. В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. При электронной микроскопии в центре Н-полоски обнаружена М-ли-ния - структура, которая удерживает нити миозина. На поперечном срезе мышечного волокна можно увидеть гексагональную органи­зацию миофиламента: каждая нить миозина окружена шестью ни­тями актина (рис. 2.20, Б).

При электронной микроскопии видно, что на боковых сторонах миозиновой нити обнаруживаются выступы, получившие название поперечных мостиков. Они ориентированы по отношению к оси миозиновой нити под углом 120°. Согласно современным представ­лениям, поперечный мостик состоит из головки и шейки. Головка приобретает выраженную АТФазную активность при связывании с актином. Шейка обладает эластическими свойствами и представляет собой шарнирное соединение, поэтому головка поперечного мостика может поворачиваться вокруг своей оси.

Использование микроэлектродной техники в сочетании с интер­ференционной микроскопией позволило установить, что нанесение электрического раздражения на область Z-пластинки приводит к сокращению саркомера, при этом размер зоны диска А не изменяется, а величина полосок Н и I уменьшается. Эти наблюдения свиде­тельствовали о том, что длина миозиновых нитей не изменяется. Аналогичные результаты были получены при растяжении мышцы - собственная длина актиновых и миозиновых нитей не изменялась. В результате этих экспериментов выяснилось, что изменялась об­ласть взаимного перекрытия актиновых и миозиновых нитей. Эти факты позволили Н. Huxley и A. Huxley предложить независимо друг от друга теорию скольжения нитей для объяснения механизма мышечного сокращения. Согласно этой теории, при сокращении происходит уменьшение размера саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых мио­зиновых. В настоящее время выяснены многие детали этого меха­низма и теория получила экспериментальное подтверждение.

Механизм мышечного сокращения. В процессе сокращения мы­шечного волокна в нем происходят следующие преобразования:

А. Электрохимическое преобразование:

2. Распространение ПД по Т-системе.

3. Электрическая стимуляция зоны контакта Т-системы и саркоплазматического ретикулума, активация ферментов, образование инозитолтрифосфата, повышение внутриклеточной концентрации ионов Са2+.

Б. Хемомеханическое преобразование:

4. Взаимодействие ионов Са2+ с тропонином, освобождение ак­тивных центров на актиновых филаментах.

5. Взаимодействие миозиновой головки с актином, вращение го­ловки и развитие эластической тяги.

6. Скольжение нитей актина и миозина относительно друг друга, уменьшение размера саркомера, развитие напряжения или укоро­чение мышечного волокна.

Передача возбуждения с двигательного мотонейрона на мышечное волокно происходит с помощью медиатора ацетилхолина (АХ). Взаимодействие АХ с холинорецептором концевой пластинки приводит к активации АХ-чувствительных каналов и появлению потенциала концевой пластинки, который может достигать 60 мВ. При этом область концевой пластинки становится источником раздражающего тока для мембраны мышечного волокна и на участках клеточной мембраны, прилегающих к концевой пластинке, возникает ПД, который распространяется в обе стороны со скоростью примерно 3-5 м/с при температуре 36 oС. Таким образом, генерация ПД является первым этапом мышечного сокращения.

Вторым этапом является распространение ПД внутрь мы­шечного волокна по поперечной системе трубочек, которая служит связующим звеном между поверхностной мембраной и сократитель­ным аппаратом мышечного волокна. Т-система тесно контактирует с терминальными цистернами саркоплазматической сети двух со­седних саркомеров. Электрическая стимуляция места контакта при­водит к активации ферментов, расположенных в месте контакта и образованию инозитолтрифосфата. Инозитолтрифосфат активирует кальциевые каналы мембран терминальных цистерн, что приводит к выходу ионов Са2+ из цистерн и повышению внутриклеточной концентрации Са2+ с 107до 105 M. Совокупность процессов, при­водящих к повышению внутриклеточной концентрации Са2+ состав­ляет сущность третьего этапа мышечного сокращения. Таким образом, на первых этапах происходит преобразование электриче­ского сигнала ПД в химический - повышение внутриклеточной концентрации Са2+, т. е. электрохимическое преобразование.

При повышении внутриклеточной концентрации ионов Са2+ тропомиозин смещается в желобок между нитями актина, при этом на актиновых нитях открываются участки, с которыми могут взаимодействовать поперечные мостики миозина. Это смещение тропомиозина обусловлено изменением конформации молекулы белка тропонина при связывании Са2+. Следовательно, участие ионов Са2+ в механизме взаимодействия актина и миозина опосредовано через тропонин и тропомиозин.

Существенная роль кальция в механизме мышечного сокращения была доказана в опытах с применением белка экворина, который при взаимодействии с кальцием излучает свет. После инъекции экворина мышечное волокно подвергали электрической стимуляции и одновременно измеряли мышечное напряжение в изометрическом режиме и люминесценцию экворина. Обе кривые полностью кор­релировали друг с другом (рис. 2.21). Таким образом, четвертым этапом электромеханического сопряжения является взаимодейст­вие кальция с тропонином.

Следующим, пятым, этапом электромеханического сопря­жения является присоединение головки поперечного мостика к актиновому филаменту к первому из нескольких последовательно расположенных стабильных центров. При этом миозиновая головка поворачивается вокруг своей оси, поскольку имеет несколько ак­тивных центров, которые последовательно взаимодействуют с соот­ветствующими центрами на актиновом филаменте. Вращение голов­ки приводит к увеличению упругой эластической тяги шейки по­перечного мостика и увеличению напряжения. В каждый конкретный момент в процессе развития сокращения одна часть головок попе­речных мостиков находится в соединении с актиновым филаментом, другая свободна, т. е. существует последовательность их взаимо­действия с актиновым филаментом. Это обеспечивает плавность процесса сокращения. На четвертом и пятом этапах происходит хемомеханическое преобразование.

Читайте также: Когда заканчивается отпуск по уходу за ребенком до 3 лет

Последовательная реакция соединения и разъединения головок поперечных мостиков с актиновым филаментом приводит к сколь­жению тонких и толстых нитей относительно друг друга и умень­шению размеров саркомера и общей длины мышцы, что является шестым этапом. Совокупность описанных процессов составляет сущность теории скольжения нитей

Первоначально полагали, что ионы Са2+ служат кофактором АТФазной активности миозина. Дальнейшие исследования опровер­гли это предположение. У покоящейся мышцы актин и миозин практически не обладают АТФазной активностью. Присоединение головки миозина к актину приводит к тому, что головка приобретает АТФазную активность.

Гидролиз АТФ в АТФазном центре головки миозина сопро­вождается изменением конформации последней и переводом ее в новое, высокоэнергетическое состояние. Повторное присоединение миозиновой головки к новому центру на актиновом филаменте вновь приводит к вращению головки, которое обеспечивается за­пасенной в ней энергией. В каждом цикле соединения и разъ­единения головки миозина с актином расщепляется одна молекула АТФ на каждый мостик. Быстрота вращения определяется скоро­стью расщепления АТФ. Очевидно, что быстрые фазические во­локна потребляют значительно больше АТФ в единицу времени и сохраняют меньше химической энергии во время тонической нагрузки, чем медленные волокна. Таким образом, в процессе хемомеханического преобразования АТФ обеспечивает разъедине­ние головки миозина и актинового филамента и энергетику для дальнейшего взаимодействия головки миозина с другим участком актинового филамента. Эти реакции возможны при концентрации кальция выше 106М.

Описанные механизмы укорочения мышечного волокна позволяют предположить, что для расслабления в первую очередь необходимо по­нижение концентрации ионов Са2+. Экспериментально было доказа­но, что саркоплазматическая сеть имеет специальный механизм - кальциевый насос, который активно возвращает кальций в цистерны. Активация кальциевого насоса осуществляется неорганическим фос­фатом, который образуется при гидролизе АТФ, а энергообеспечение работы кальциевого насоса также за счет энергии, образующейся при гидролизе АТФ. Таким образом, АТФ является вторым важнейшим фактором, абсолютно необходимым для процесса расслабления. Неко­торое время после смерти мышцы остаются мягкими вследствие пре­кращения тонического влияния мотонейронов (см. главу 4). Затем концентрация АТФ снижается ниже критического уровня и возмож­ность разъединения головки миозина с актиновым филаментом исче­зает. Возникает явление трупного окоченения с выраженной ригидно­стью скелетных мышц.

Механизм мышечного сокращения

Все мышцы организма делят на гладкие и поперечнополосатые. Поперечнополосатые мышцы подразделяются на два типа: скелетные мышцы и миокард.

Строение мышечного волокна

Мембрана мышечных клеток, называемая сарколеммой, электровозбудима и способна проводить потенциал действия. Эти процессы в мышечных клетках происходят по тому же принципу, что и в нервных. Потенциал покоя мышечного волокна составляет приблизительно -90 мВ, то есть ниже, чем у нервного волокна (-70 мВ); критическая деполяризация, по достижении которой возникает потенциал действия, такая же, как у нервного волокна. Отсюда: возбудимость мышечного волокна несколько ниже возбудимости нервного, так как мышечную клетку требуется деполяризировать на большую величину.

Ответом мышечного волокна на возбуждение является сокращение . которое совершает сократительный аппарат клетки – миофибриллы . Они представляют собой тяжи, состоящие из двух видов нитей: толстых – миозиновых . и тонких – актиновых . Толстые нити (диаметром 15 нм и длиной 1,5 мкм) имеют в своем составе только один белок – миозин. Тонкие нити (диаметром 7 нм и длиной 1 мкм) содержат три вида белков: актин, тропомиозин и тропонин.

Актин представляет собой длинную белковую нить, которая состоит из отдельных глобулярных белков, сцепленных между собой таким образом, что вся структура представляет собой вытянутую цепь. Молекулы глобулярного актина (G-актина) имеют боковые и концевые центры связывания с другими такими же молекулами. В результате они объединяются таким образом, что образуют структуру, которую часто сравнивают с двумя нитками бус, соединенных вместе. Образованная из молекул G-актина лента закручена в спираль. Такая структура называется фибриллярным актином (F-актином). Шаг спирали (длина витка) составляет 38 нм, на каждый виток спирали приходится 7 пар G-актина. Полимеризация G-актина, то есть образование F-актина, происходит за счет энергии АТФ, и, наоборот, при разрушении F-актина выделяется энергия.

Рис.1. Объединение отдельных глобул G-актина в F-актин

Вдоль спиральных желобков актиновых филаментов располагается белок тропомиозин, Каждая нить тропомиозина, имеющая длину 41 нм, состоит из двух идентичных α-цепей, вместе закрученных в спираль с длиной витка 7 нм. Вдоль одного витка F-актина расположены две молекулы тропомиозина. Каждая тропомиозиновая молекула соединяется, немного перекрываясь, со следующей, в результате тропомиозиновая нить простирается вдоль актина непрерывно.

Рис.2. Строение тонкой нити миофибриллы

В клетках поперечнополосатых мышц в состав тонких нитей кроме актина и тропомиозина входит ещё и белок тропонин. Этот глобулярный белок имеет сложное строение. Он состоит из трех субъединиц, каждая из которых выполняет свою функцию в процессе сокращения.

Толстая нить состоит из большого числа молекул миозина . собранных в пучок. Каждая молекула миозина длиной 155 нм и диаметром 2 нм состоит из шести полипептидных нитей: двух длинных и четырех коротких. Длинные цепи вместе закручены в спираль с шагом 7,5 нм и образуют фибриллярную часть миозиновой молекулы. На одном из концов молекулы эти цепи раскручиваются и образуют раздвоенный конец. Каждый из этих концов образует комплекс двумя короткими цепями, то есть на каждой молекуле имеются две головки. Это глобулярная часть миозиновой молекулы.

Рис.3. Строение молекулы миозина.

В миозине выделяют два фрагмента: легкий меромиозин (ЛММ) и тяжелый меромиозин (ТММ), между ними находится шарнир. ТММ состоит из двух субфрагментов: S 1 и S 2 . ЛММ и субфрагмент S 2 вложены в пучок нитей, а субфрагмент S 1 выступает над поверхностью. Этот выступающий конец (миозиновая головка) способен связываться с активным центром на актиновой нити и изменять угол наклона к пучку миозиновых нитей. Объединение отдельных молекул миозина в пучок происходит за счет электростатических взаимодействий между ЛММ. Центральная часть нити не имеет головок. Весь комплекс миозиновых молекул простирается на 1,5 мкм. Это одна из самых больших биологических молекулярных структур, известных в природе.

При рассматривании в поляризационный микроскоп продольного среза поперечнополосатой мышцы видны светлые и темные участки. Темные участки (диски) являются анизотропными: в поляризованном свете они выглядят прозрачными в продольном направлении и непрозрачными – в поперечном, обозначаются буквой А. Светлые участки являются изотропными и обозначаются буквой I. Диск I включает в себя только тонкие нити, а диск А – и толстые, и тонкие. В середине диска А видна светлая полоска, называемая Н-зоной. Она не имеет тонких нитей. Диск I разделен тонкой полосой Z, которая представляет собой мембрану, содержащую структурные элементы, скрепляющие между собой концы тонких нитей. Участок между двумя Z-линиями называется саркомером .

Рис.4. Структура миофибриллы (поперечный срез)

Рис.5. Строение поперечнополосатой мышцы (продольный срез)

Каждая толстая нить окружена шестью тонкими, а каждая тонкая нить – тремя толстыми. Таким образом, в поперечном срезе мышечное волокно имеет правильную гексагональную структуру.

При сокращении мышцы длина актиновых и миозиновых филаментов не изменяется. Происходит лишь их смещение относительно друг друга: тонкие нити задвигаются в промежуток между толстыми. При этом длина диска А остается неизменной, а диск I укорачивается, полоска Н почти исчезает. Такое скольжение оказывается возможным благодаря существованию поперечных мостиков (миозиновых головок) между толстыми и тонкими нитями. При сокращении возможно изменение длины саркомера приблизительно от 2,5 до 1,7 мкм.

Миозиновая нить имеет на себе множество головок, которыми она может связываться с актином. Актиновая же нить, в свою очередь, имеет участки (активные центры), к которым могут прикрепляться головки миозина. В покоящейся мышечной клетке эти центры связывания прикрыты молекулами тропомиозина, что препятствует образованию связи между тонкими и толстыми нитями.

Для того чтобы актин и миозин могли взаимодействовать, необходимо присутствие ионов кальция. В покое они находятся в саркоплазматическом ретикулуме. Эта органелла представляет собой мембранные полости, содержащие кальциевый насос, который за счет энергии АТФ транспортирует ионы кальция внутрь саркоплазматического ретикулума. Его внутренняя поверхность содержит белки, способные связывать Ca 2+. что несколько уменьшает разность концентраций этих ионов между цитоплазмой и полостью ретикулума. Распространяющийся по клеточной мембране потенциал действия активирует близко расположенную к поверхности клетки мембрану ретикулума и вызывает выход Ca 2+ в цитоплазму.

Молекула тропонина обладает высоким сродством к кальцию. Под его влиянием она изменяет положение тропомиозиновой нити на актиновой таким образом, что открывается активный центр, ранее прикрытый тропомиозином. К открывшемуся активному центру присоединяется поперечный мостик. Это приводит к взаимодействию актина с миозином. После образования связи миозиновая головка, ранее расположенная под прямым углом к нитям, наклоняется и протаскивает актиновую нить относительно миозиновой приблизительно на 10 нм. Образовавшийся атин-миозиновый комплекс препятствует дальнейшему скольжению нитей относительно друг друга, поэтому необходимо его разъединение. Это возможно только за счет энергии АТФ. Миозин обладает АТФ-азной активностью, то есть способен вызывать гидролиз АТФ. Выделяющаяся при этом энергия разрывает связь между актином и миозином, и миозиновая головка способна взаимодействовать с новым участком молекулы актина. Работа мостиков синхронизирована таким образом, что связывание, наклон и разрыв всех мостиков одной нити происходит одновременно. При расслаблении мышцы активизируется работа кальциевого насоса, что понижает концентрацию Ca 2+ в цитоплазме; следовательно, связи между тонкими и толстыми нитями уже не могут образовываться. В этих условиях при растяжении мышцы нити беспрепятственно скользят относительно друг друга. Однако такая растяжимость возможна только в присутствии АТФ. Если в клетке отсутствует АТФ, то актин-миозиновый комплекс не может разорваться. Нити остаются жестко сцепленными между собой. Это явление наблюдается при трупном окоченении.

Читайте также: Выплаты в декретном отпуске до 3 лет

Рис.6. Сокращение саркомера: 1 – миозиновая нить; 2 – активный центр; 3 – актиновая нить; 4 – миозиновая головка; 5 — Z-линия.

а) взаимодействие между тонкими и толстыми нитями отсутствует;

б) в присутствии Ca 2+ миозиновая головка связывается с активным центром на актиновой нити;

в) поперечные мостики наклоняются и протаскивают тонкую нить относительно толстой, вследствие чего длина саркомера уменьшается;

г) связи между нитями разрываются за счет энергии АТФ, миозиновые головки готовы взаимодействовать с новыми активными центрами.

Существует два режима сокращения мышцы: изотоническое (изменяется длина волокна, а напряжение остается неизменным) и изометрическое (концы мышцы неподвижно закреплены, вследствие чего изменяется не длина, а напряжение).

Мощность и скорость сокращения мышцы

Важными характеристиками мышцы являются сила и скорость сокращения. Уравнения, выражающие эти характеристики, были эмпирически получены А.Хиллом и впоследствии подтверждены кинетической теорией мышесного сокращения (модель Дещеревского).

Уравнение Хилла . связывающее между собой силу и скорость сокращения мышцы, имеет следующий вид: (P+a)(v+b) = (P +a)b = a(v max +b) . где v – скорость укорочения мышцы; P – мышечная сила или приложенная к ней нагрузка; v max — максимальная скорость укорочения мышцы; P — сила, развиваемая мышцей в изометрическом режиме сокращения; a,b — константы. Общая мощность . развиваемая мышцей, определяется по формуле: N общ = (P+a)v = b(P -P) . КПД мышцы сохраняет постоянное значение (около 40% ) в диапазоне значений силы от 0,2 P до 0,8 P . В процессе сокращения мышцы выделяется некоторое количество теплоты. Эта величина называетсятеплопродукцией . Теплопродукция зависит только от изменения длины мышцы и не зависит от нагрузки. Константы a и b имеют постоянные значения для данной мышцы. Константа а имеет размерность силы, а b – скорости. Константа b в значительной степени зависит от температуры. Константа а находится в диапазоне значений от 0,25 P до 0,4 P . По этим данным оцениваетсямаксимальная скорость сокращения для данной мышцы: v max = b (P / a) .

14. Тонкое строение миофибрилл. Белки толстых и тонких филаментов – строение и функции + (сокращение и состав мышцы 15 вопрос)

Механизм мышечных сокращений. Функции и свойства скелетных мышц

Сокращение мышц — это сложный процесс, состоящий из целого ряда этапов. Главными составляющими здесь являются миозин, актин, тропонин, тропомиозин и актомиозин, а также ионы кальция и соединения, которые обеспечивают мышцы энергией. Рассмотрим виды и механизмы мышечного сокращения. Изучим, из каких этапов они состоят и что необходимо для цикличного процесса.

Мышцы объединяются в группы, у которых одинаковый механизм мышечных сокращений. По этому же признаку они и разделяются на 3 вида:

  • поперечно-полосатые мышцы тела;
  • поперечно-полосатые мышцы предсердий и сердечных желудочков;
  • гладкие мышцы органов, сосудов и кожи.

Поперечно-полосатые мышцы входят в опорно-двигательный аппарат, являясь его частью, так как помимо них сюда входят сухожилия, связки, кости. Когда реализуется механизм мышечных сокращений, выполняются следующие задачи и функции:

  • тело передвигается;
  • части тела перемещаются друг относительно друга;
  • тело поддерживается в пространстве;
  • вырабатывается тепло;
  • кора активируется посредством афферентации с рецептивных мышечных полей.

Из гладких мышц состоит:

  • двигательный аппарат внутренних органов, в который входят бронхиальное дерево, легкие и пищеварительная трубка;
  • лимфатическая и кровеносная системы;
  • система мочеполовых органов.

Физиологические свойства

Как и у всех позвоночных животных, в человеческом организме выделяют три самых важных свойства волокон скелетных мышц:

  • сократимость — сокращение и изменение напряжения при возбуждении;
  • проводимость — движение потенциала по всему волокну;
  • возбудимость — реагирование на раздражитель посредством изменения мембранного потенциала и ионной проницаемости.

Мышцы возбуждаются и начинают сокращаться от нервных импульсов, идущих от центров. Но в искусственных условиях используют электростимуляцию. Мышца тогда может раздражаться напрямую (прямое раздражение) или через нерв, иннервирующий мышцу (непрямое раздражение).

Виды сокращений

Механизм мышечных сокращений подразумевает преобразование химической энергии в механическую работу. Этот процесс можно измерить при эксперименте с лягушкой: ее икроножную мышцу нагружают небольшим весом, а затем раздражают легкими электроимпульсами. Сокращение, при котором мышца становится короче, называется изотоническим. При изометрическом сокращении укорачивания не происходит. Сухожилия не позволяют при развитии мышцей силы укорачиваться. Еще один ауксотонический механизм мышечных сокращений предполагает условия интенсивных нагрузок, когда мышца укорачивается минимальным образом, а сила развивается максимальная.

Структура и иннервация скелетных мышц

В поперечно-полосатые скелетные мышцы входит множество волокон, находящихся в соединительной ткани и крепящихся к сухожилиям. В одних мышцах волокна расположены параллельно длинной оси, а в других они имеют косой вид, прикрепляясь к центральному тяжу сухожильному и к перистому типу.

Главная особенность волокна заключается в саркоплазме массы тонких нитей — миофибрилл. В них входят светлые и темные участки, чередующиеся друг с другом, а у соседних поперечно-полосатые волокна находятся на одном уровне — на поперечном сечении. Благодаря этому получается поперечная полосатость по всему волокну мышц.

Саркомером является комплекс из темного и двух светлых дисков, и он отграничивается Z-образными линиями. Саркомеры — это сократительный аппарат мышцы. Получается, что сократительное мышечное волокно состоит из:

  • сократительного аппарата (системы миофибрилл);
  • трофического аппарата с митохондриями, комплексом Гольджи и слабой эндоплазматической сетью;
  • мембранного аппарата;
  • опорного аппарата;
  • нервного аппарата.

Мышечное волокно разделяется на 5 частей со своими структурами и функциями и является целостной частью ткани мышц.

Иннервация

Этот процесс у поперечно-полосатых мышечных волокон реализуется посредством нервных волокон, а именно аксонов мотонейронов спинного мозга и головного ствола. Один мотонейрон иннервирует несколько волокон мышц. Комплекс с мотонейроном и иннервируемыми мышечными волокнами называют нейромоторной (НМЕ), или двигательной единицей (ДЕ). Среднее число волокон, которые иннервирует один мотонейрон, характеризует величину ДЕ мышцы, а обратную величину называют плотностью иннервации. Последняя является большой в тех мышцах, где движения небольшие и «тонкие» (глаза, пальцы, язык). Малое ее значение будет, напротив, в мышцах с «грубыми» движениями (например, туловище).

Иннервация может быть одиночной и множественной. В первом случае она реализуется компактными моторными окончаниями. Обычно это характерно для крупных мотонейронов. Мышечные волокна (называющиеся в этом случае физическими, или быстрыми) генерируют ПД (потенциалы действий), которые распространяются на них.

Множественная иннервация встречается, к примеру, во внешних глазных мышцах. Здесь не генерируется потенциал действия, так как в мембране нет электровозбудимых натриевых каналов. В них распространяется деполяризация по всему волокну из синаптических окончаний. Это необходимо для того, чтобы привести в действие механизм мышечного сокращения. Процесс здесь происходит не так быстро, как в первом случае. Поэтому его называют медленным.

Структура миофибрилл

Исследования мышечного волокна сегодня проводятся на основе рентгеноструктурного анализа, электронной микроскопии, а также гистохимическими методами.

Рассчитано, что в каждую миофибриллу, диаметр которой составляет 1 мкм, входит примерно 2500 протофибрилл, то есть удлиненных полимеризованных молекул белков (актина и миозина). Актиновые протофибриллы в два раза тоньше миозиновых. В покое эти мышцы находятся так, что актиновые нити кончиками проникают в промежутки между миозиновыми протофибриллами.

Узкая светлая полоса в диске А свободна от актиновых нитей. А мембрана Z скрепляет их.

На миозиновых нитях есть поперечные выступы длиной до 20 нм, в головках которых находится порядка 150 молекул миозина. Они отходят биополярно, и каждая головка соединяет миозиновую с актиновой нитью. Когда происходит усилие актиновых центров на нитях миозина, актиновая нить приближается к центру саркомера. В конце миозиновые нити доходят до линии Z. Тогда они занимают собой весь саркомер, а актиновые находятся между ними. При этом длина диска I сокращается, а в конце он исчезает полностью, вместе с чем линия Z становится толще.

Так, по теории скользящих нитей, объясняется сокращение длины волокна мышцы. Теория, получившая название «зубчатого колеса», была разработана Хаксли и Хансоном в середине двадцатого века.

Механизм мышечного сокращения волокна

Главным в теории является то, что не нити (миозиновые и актиновые) укорачиваются. Длина их остается неизменной и при растяжении мышц. Но пучки тонких нитей, проскальзывая, выходят между толстыми нитями, уменьшается степень их перекрытия, таким образом происходит сокращение.

Молекулярный механизм мышечного сокращения посредством скольжения актиновых нитей заключается в следующем. Миозиновые головки соединяют протофибриллу с актиновой. При их наклонах происходит скольжение, двигающее актиновую нить к центру саркомера. За счет биполярной организации миозиновых молекул на обеих сторонах нитей создаются условия для скольжения актиновых нитей в разные стороны.

При расслаблении мышц миозиновая головка отходит от актиновых нитей. Благодаря легкому скольжению расслабленные мышцы растяжению сопротивляются гораздо меньше. Поэтому они пассивно удлиняются.

Этапы сокращения

Механизм мышечного сокращения кратко можно подразделить на следующие этапы:

  1. Мышечное волокно стимулируется, когда потенциал действия поступает от мотонейронов из синапсов.
  2. Потенциал действия создается на мембране мышечного волокна, а затем распространяется к миофибриллам.
  3. Совершается электромеханическое сопряжение, представляющее собой преобразование электрического ПД в механическое скольжение. В этом обязательно участвуют ионы кальция.

Все мышцы делятся на 2 типа:

  1. Гладкая мускулатура, которая имеется во внутренних органах и стенках сосудов.
  2. Поперечнополосатая – а) сердечная, б) скелетная

Скелетная (поперечнополосатая) мускулатура выполняет следующие функции:

  1. перемещение тела в пространстве
  2. перемещение частей тела относительно друг друга
  3. поддержание позы

Структурно-функциональной единицей поперечно-полосатой мышцы является нейромоторная единица (НМЕ). Она представлена аксоном мотонейрона, его разветвлениями и мышечными волокнами, которые иннервируются ими.

Структура мышечного волокна

Каждая мышца состоит из мышечных волокон, расположенных продольно, которые представляют собой многоядерные клетки. Снаружи они покрыты базальной мембраной и плазмолеммой, между которыми располагаются камбиальные клетки (миосателлиоциты). На плазмолемме во многих местах имеются пальцеобразные вдавления – Т-тубулы. Они связывают сарколемму с саркоплазматическим ретикулюмом (СПР). Внутри имеется обычный набор органелл: многочисленные ядра, занимающие периферическое положение, митохондрии и т.д. СПР – это система связанных между собой канальцев с высоким содержанием Ca+

Центральную часть цитоплазмы занимают специфические органеллы – миофибриллы – сократительные элементы, расположенные продольно.

Рис.10. Строение саркомера

Структурной единицей миофибрилл является саркомер. Это постоянно повторяющаяся часть миофибриллы, заключенная между двумя Z-мембранами (телофрагмами). Посредине саркомера имеется линия М – мезофрагма. К мезофрагме крепятся нити миозина – сократительного белка, а к телофрагме – актин (тоже сократительный белок).

Чередование этих сократительных белков составляет поперечную исчерченность (Рис.10). В саркомере выделяют анизотропный диск (А) – диск с двойным лучепреломлением (миозин + концы актина), Н-зону – только нити миозина (входит в состав диска А) и I-диск – только нити актина.

При сокращении саркомера происходит укорочение диска I и уменьшение светлой зоны Н.

Сокращение всей мышцы определяется укорочением саркомера, а его длина сокращается за счет образования акто-миозиновых комплексов.

Миозин – толстая белковая молекула, которая располагается по ценру саркомера и состоит из двух цепей – легкого и тяжелого меромиозина. На поперечном сечении миозин имеет вид ромашки – центральная часть и отвисающие головки. Головка легкого меромиозина обладает АТФ-азной активностью, которая проявляется лишь в момент контакта с активным участком актина.

Актин – глобулярный белок, состоит из двух цепей, переплетенных между собой в виде бус. На каждой глобуле имеются активные участки, которые закрыты тропомиозином, и его положение регулируется тропонином. В состоянии покоя активные участки актина не взаимодействуют с головкой миозина, так как они прикрыты в виде крышки тропомиозином (Рис.11).

Механизм мышечного сокращения.

При возбуждении мотонейрона импульсы подходят к мионевральной пластинке (место контакта аксона и плазмолеммы). Из пресинаптической мембраны выделяется ацетилхолин (АХ), который проходит синаптическую щель и действует на плазмолемму (в этом месте ее можно назвать постсинаптической), находит рецепторы к АХ и взаимодействие с ними отражается на проницаемости мембраны для ионов натрия. Проницаемость мембраны для натрия повышается, возникает деполяризация, что приводит к возникновению ПД. Он распространяется вдоль мембраны и передается на Т-тубулы, которые тесно связаны с СПР. ПД в области Т-тубул вызывает повышение проницаемости мембраны СПР для кальция, и он выбрасывается в цитоплазму квантами (порциями) в зависимости от частоты импульса.

Кальций запускает механизм укорочения саркомера. От концентрации кальция зависит насколько сократится саркомер (и мышца в целом).

Выброшенный в цитоплазму кальций находит белок тропонин, взаимодействует с ним и вызывает его конформационные изменения (то есть меняет пространственное расположение белка).

Конформационные изменения тропонина сдвигают тропомиозин со своего места, при этом открывается активный (реактивный) участок актина.

В этот открытый участок встраивается головка миозина. При этом контакте активируются ферментативные системы, расположенные последовательно. И этот контакт двух белков по типу зубчатой передачи механически передвигает нить актина к центру саркомера. Возникает актиновый шаг.

Чем больше возникает актиновых шагов, тем сильнее укорачивается саркомер.

В момент контакта головки миозина и реактивного участка актина головка приобретает АТФ-азную активность.

На что расходуется энергия АТФ:

— на гребкообразное движение и разрыв связей между актином и миозином;

— на работу кальциевого насоса;

— на работу натрий-калиевого насоса.

Таким образом, чем больше выделяется кальция, тем больше образуется акто-миозиновых комплексов, тем больше гребков делает миозин, тем сильнее укорачивается саркомер.

Как только мотонейрон перестает посылать импульсы к мембране мышечного волокна, и в СПР перестает поступать ПД от Т-тубул, выброс кальция из СПР прекращается, и усиливается работа кальциевого насоса, разрываются акто-миозиновые мостики, Z-мембрана возвращается на место и происходит расслабление саркомера (и мышцы в целом).

Фазы мышечного сокращения.

Мышечное сокращение можно зарегистрировать на кимографе. Для этого мышца крепится к штативу, а к другому концу – писчик, который записывает мышечное сокращение (Рис.12).

В мышечном сокращении выделяют следующие фазы:

— латентная (0,01 сек) – от начала действия раздражителя до видимой ответной реакции;

— фаза сокращения (0,04 сек);

— фаза расслабления (0,05 сек).

Таким образом, одиночное мышечное сокращение занимает 0,1 сек. В период мышечного сокращения меняется возбудимость ткани, то есть ее способность к повторной ответной реакции при действии высокочастотных раздражителей.

При относительно низких частотах ответная реакция будет выглядеть как серия одиночных мышечных сокращений (до 10 импульсов в секунду).

Тетанусы. Оптимум и пессимум частоты.

Если увеличить частоту наносимых раздражителей, то можно подобрать такую частоту, при которой каждый последующий раздражитель подействует в фазу расслабления. При этом мышца сократится из неполностью расслабленного состояния, и ответной реакцией будет зубчатый тетанус. Для икроножной мышцы лягушки зубчатый тетанус возникает при частоте больше 10, но меньше 20 импульсов (каждый последующий импульс приходит через 0,09 – 0,06 сек)

При дальнейшем увеличении частоты более 20 импульсов в секунду (до 50) регистрируется гладкий тетанус, так как каждый импульс попадает в период сокращения, и мышца сокращается из сокращенного состояния (каждый последующий импульс приходит через 0,02 – 0,05 сек).

Зубчатый тетанус выше, чем одиночное мышечное сокращение, а гладкий еще выше. В основе тетануса лежит суммация (суперпозиция) сокращений и высокая концентрация кальция, выброшенного из СПР. При увеличении частоты раздражителя увеличивается выброс кальция из СПР, который выделяется квантами и не успевает вернуться обратно.

Но не всякие высокочастотные раздражители вызывают оптимальное сокращение. Чаще всего оптимальное сокращение вызывает гладкий тетанус.

Оптимум частоты – максимальная ответная реакция на действие высокочастотных раздражителей.

Раздражители очень высокой частоты могут уменьшать ответную реакцию, и тогда возникает пессимум частоты. При частоте 100 импульсов в секунду раздражитель попадает в конец латентной фазы (каждый последующий импульс приходит через 0,01 сек), и в ответ возникает одиночное мышечное сокращение. При частоте 200 имп/сек (каждый последующий импульс приходит через 0,005 сек) возникает либо одиночное мышечное сокращение, либо реакция отсутствует.

Уменьшение ответной реакции в период пессимума связано с действие раздражителя в период либо абсолютной, либо относительной рефрактерности. Абсолютная рефрактерность занимает 0,005 сек. Затем, в период относительной рефрактерности, возбудимость ниже 100%. Возбудимость восстанавливается через 0,01 сек. (Рис.13).

В основе сокращения мышц лежит взаимное перемещение двух систем нитей, образованных актином и миозином. АТФ гидролизуется в активном центре, расположенном в головках миозина. Гидролиз сопровождается изменением ориентации головок миозина и перемещением нитей актина. Регуляция сокращения обеспечивается специальными Са-связывающими белками, расположенными на нитях актина или миозина.

Введение. Различные формы подвижности характерны практически для всех живых организмов. В ходе эволюции у животных возникли специальные клетки и ткани, главной функцией которых является генерация движения. Мышцы являются высоко специализированными органами, способными за счет гидролиза АТФ генерировать механические усилия и обеспечивать перемещение животных в пространстве. При этом в основе сокращения мышц практически всех типов лежит перемещение двух систем белковых нитей (филаментов), построенных в основном из актина и миозина.

Ультраструктура мышц. Для высокоэффективного преобразования энергии АТФ в механическую работу мышцы должны обладать строго упорядоченной структурой. Действительно, упаковка сократительных белков в мышце сравнима с упаковкой атомов и молекул в составе кристалла. Рассмотрим строение скелетной мышцы (рис. 1).

Веретенообразная мышца состоит из пучков мышечных волокон. Зрелое мышечное волокно практически полностью заполнено миофибриллами - цилиндрическими образованиями, сформированными из системы перекрывающихся толстых и тонких нитей, образованных сократительными белками. В миофибриллах скелетных мышц наблюдается правильное чередование более светлых и более темных участков. Поэтому часто скелетные мышцы называют поперечнополосатыми. Миофибрилла состоит из одинаковых повторяющихся элементов, так называемых саркомеров (см. рис. 1). Саркомер ограничен с двух сторон Z-дисками. К этим дискам с обеих сторон прикрепляются тонкие актиновые нити. Нити актина обладают низкой плотностью и поэтому под микроскопом кажутся более прозрачными или более светлыми. Эти прозрачные, светлые области, располагающиеся с обеих сторон от Z-диска, получили название изотропных зон (или I-зон) (см. рис.1). В середине саркомера располагается система толстых нитей, построенных преимущественно из другого сократительного белка, миозина. Эта часть саркомера обладает большей плотностью и образует более темную анизотропную зону (или А-зону).

В ходе сокращения миозин становится способным взаимодействовать с актином и начинает тянуть нити актина к центру саркомера (см. рис. 1). Вследствие такого движения уменьшается длина каждого саркомера и всей мышцы в целом. Важно отметить, что при такой системе генерации движения, получившей название системы скользящих нитей, не изменяется длина нитей (ни нитей актина, ни нитей миозина). Укорочение является следствием лишь перемещения нитей друг относительно друга.

Сигналом для начала мышечного сокращения является повышение концентрации Са 2+ внутри клетки. Концентрация кальция в клетке регулируется с помощью специальных кальциевых насосов, встроенных в наружную мембрану и мембраны саркоплазматического ретикулума, который оплетает миофибриллы (см. рис. 1). Приведенная схема дает общее представление о механизме сокращения мышц. Для понимания молекулярных основ этого процесса обратимся к анализу свойств основных сократительных белков.

Строение и свойства актина. Актин был открыт в 1948 году венгерским биохимиком Бруно Штраубом. Название этот белок получил из-за своей способности активировать (отсюда актин) гидролиз АТФ, катализируемый миозином. Актин является одним из вездесущих белков, он обнаружен практически во всех клетках животных и растений. Этот белок очень консервативен.

Мономеры актина (их часто называют G-актином, то есть глобулярным актином) могут взаимодействовать друг с другом, образуя так называемый фибриллярный (или F-актин). Процесс полимеризации можно инициировать повысив концентрацию одно- или двухвалентных катионов или добавив специальные белки. Процесс полимеризации становится возможным потому, что мономеры актина могут узнавать друг друга и образовывать межмолекулярные контакты.

Полимеризованный актин внешне похож на две скрученные друг относительно друга нитки бус, где каждая бусина представляет собой мономер актина (рис. 2, а). Молекула актина далеко не симметрична, поэтому для того, чтобы стала видна эта асимметрия, часть шарика актина на рис. 2, б затемнена. Процесс полимеризации актина строго упорядочен, и мономеры актина упаковываются в полимер только в определенной ориентации. Поэтому мономеры, расположенные на одном конце полимера, повернуты к растворителю одним, например, темным концом, а мономеры, расположенные на другом конце полимера, обращены к растворителю другим (светлым) концом (рис. 2, б). Вероятность присоединения мономера на темном и светлом концах полимера различна. Тот конец полимера, где скорость полимеризации больше, называют плюс-концом, а противоположный конец полимера обозначают как минус-конец.

Актин является уникальным строительным материалом, широко используемым клеткой для построения различных элементов цитоскелета и сократительного аппарата. Использование актина для строительных нужд клетки обусловлено тем, что процессы полимеризации и деполимеризации актина можно легко регулировать с помощью специальных, связывающихся с актином белков. Есть белки, связывающиеся с мономерным актином (например, профилин, рис. 2, б). Эти белки, находясь в комплексе с глобулярным актином, препятствуют его полимеризации. Есть специальные белки, которые, как ножницы, разрезают уже сформировавшиеся нити актина на более короткие фрагменты. Некоторые белки преимущественно связываются и формируют шапочку ("кепируют" от английского слова "cap", шапка) на плюс-конце полимерного актина. Другие белки кепируют минус-конец актина. Существуют белки, которые могут сшивать уже сформировавшиеся нити актина. При этом образуются либо крупноячеистые гибкие сети, либо упорядоченные жесткие пучки нитей актина (рис. 2, б).

Все нити актина в саркомере имеют постоянную длину и правильную ориентацию, при этом плюс-концы филаментов располагаются в Z-диске, а минус-концы - в центральной части саркомера. Вследствие такой упаковки нити актина, расположенные в левой и правой частях саркомера, имеют противоположную направленность (это показано на рис. 1 в виде противоположно направленных галочек на нитях актина в нижней части рис. 1).

Строение и свойства миозина. В настоящее время описано несколько (более десяти) различных видов молекул миозина. Рассмотрим строение наиболее подробно изученного миозина скелетных мышц (рис. 3, а). В состав молекулы миозина скелетных мышц входят шесть полипептидных цепей - две так называемые тяжелые цепи миозина и четыре легкие цепи миозина (ЛЦМ). Эти цепи прочно ассоциированы друг с другом (нековалентными связями) и образуют единый ансамбль, который собственно и является молекулой миозина.

Тяжелые цепи миозина имеют большую молекулярную массу (200000-250000) и сильно асимметричную структуру (рис. 3, а). У каждой тяжелой цепи есть длинный спирализованный хвост и маленькая компактная грушевидная головка. Спирализованные хвосты тяжелых цепей миозина скручены между собой наподобие каната (рис. 3, а). Этот канат обладает довольно высокой жесткостью, и поэтому хвост молекулы миозина образуют палочкообразные структуры. В нескольких местах жесткая структура хвоста нарушена. В этих местах располагаются так называемые шарнирные участки, обеспечивающие подвижность отдельных частей молекулы миозина. Шарнирные участки легко подвергаются расщеплению под действием протеолитических (гидролитических) ферментов, что приводит к образованию фрагментов, сохраняющих определенные свойства неповрежденной молекулы миозина (рис. 3, а).

В области шейки, то есть при переходе грушевидной головки тяжелой цепи миозина в спиральный хвост, располагаются короткие легкие цепи миозина, имеющие молекулярную массу 18000-28000 (эти цепи изображены в виде дуг на рис. 3, а). С каждой головкой тяжелой цепи миозина связаны одна регуляторная (красная дуга) и одна существенная (синяя дуга) легкая цепь миозина. Обе легкие цепи миозина тем или иным способом влияют на способность миозина взаимодействовать с актином и участвуют в регуляции мышечного сокращения.

Палочкообразные хвосты могут слипаться друг с другом за счет электростатических взаимодействий (рис. 3, б). При этом молекулы миозина могут располагаться либо параллельно, либо антипараллельно друг относительно друга (рис. 3, б). Параллельные молекулы миозина смещены друг относительно друга на определенное расстояние. При этом головки вместе со связанными с ними легкими цепями миозина располагаются на цилиндрической поверхности (образованной хвостами молекул миозина) в виде своеобразных выступов-ярусов.

Хвосты миозина скелетных мышц могут упаковываться как в параллельном, так и в антипараллельном направлении. Комбинация параллельной и антипараллельной упаковок приводит к формированию так называемых биполярных (то есть двухполюсных) филаментов миозина (рис. 3, б). Такой филамент состоит примерно из 300 молекул миозина. Половина молекул миозина повернута своими головами в одну сторону, а вторая половина - в другую сторону. Биполярный миозиновый филамент располагается в центральной части саркомера (см. рис. 1). Разная направленность головок миозина в левой и правой частях толстого филамента обозначена разнонаправленными галочками на нитях миозина в нижней части рис. 1.

Главной "моторной" частью миозина скелетных мышц является головка тяжелой цепи миозина вместе со связанной с ней легкими цепями миозина. Головки миозина могут дотягиваться до нитей актина и контактировать с ними. При замыкании таких контактов образуются так называемые поперечные мостики, которые собственно генерируют тянущее усилие и обеспечивают скольжение нитей актина относительно миозина. Попытаемся представить, как работает такой одиночный поперечный мостик.

Современные представления о механизме функционирования головок миозина. В 1993 году удалось закристаллизовать изолированные и специальным образом модифицированные головки миозина. Это позволило установить структуру головок миозина и сформулировать гипотезы о том, каким образом головки миозина могут перемещать нити актина.

А – головка миозина ориентирована таким образом, что актинсвязывающий центр (окрашен красным) расположен в правой части. Ясно видна щель ("рас- крытая пасть"), разделяющая две половинки (две "челюсти") актинсвязывающего центра
б – схема одиночного шага головки миозина по нити актина. Актин изображен в виде гирлянды шариков. В нижней части головки изображена щель, разделя- ющая две части актинсвязывающего центра. Адено- зин обозначен А, а фосфатные группы – в виде ма- леньких кружков. Между состояниями 5 и 1 схемати- чески показана переориентация шейки миозина, происходящая при генерации тянущего усилия (по с изменениями и упрощениями)

Оказалось, что в головке миозина можно выявить три основные части (рис. 4). N-концевая часть головки миозина с молекулярной массой около 25000 (обозначена зеленым цветом на рис. 4, а) формирует АТФ-связывающий центр. Центральная часть головки миозина с молекулярной массой 50000 (обозначена красным цветом на рис. 4, а) содержит в своем составе центр связывания актина. Наконец, С-концевая часть с молекулярной массой 20000 (обозначена фиолетовым цветом на рис. 4, а) образует как бы каркас всей головки. Эта часть соединена гибким шарнирным сочленением со спирализованным хвостом тяжелых цепей миозина (см. рис. 4, а). В С-концевой части головки миозина располагаются центры связывания существенной (желтая на рис. 4, а) и регуляторной (светло-фиолетовая на рис. 4, а) легких цепей миозина. Общий контур головки миозина напоминает змею с приоткрытой "пастью". Челюсти этой "пасти" (окрашены красным на рис. 4, а) формируют актинсвязывающий центр. Предполагается, что в ходе гидролиза АТФ происходит периодическое открывание и закрывание этой "пасти". В зависимости от положения "челюстей" головка миозина более или менее прочно взаимодействует с актином.

Рассмотрим цикл гидролиза АТФ и перемещение головки по актину. В исходном состоянии головка миозина не насыщена АТФ, "пасть" закрыта, актинсвязывающие центры ("челюсти") сближены и головка прочно взаимодействует с актином. При этом спирализованная "шейка" ориентирована под углом 45? относительно нити актина (состояние 1 на рис. 4, б). При связывании АТФ в активном центре "пасть" раскрывается, актинсвязывающие участки, расположенные на двух "челюстях" пасти, удаляются друг от друга, прочность связи миозина с актином ослабевает и головка диссоциирует от нити актина (состояние 2 на рис. 4, б). Гидролиз АТФ в активном центре диссоциировавшей от актина головки миозина приводит к закрыванию щели активного центра, изменению ориентации "челюстей" и переориентации спирализованной шейки. После гидролиза АТФ до АДФ и неорганического фосфата шейка оказывается повернутой на 45? и занимает положение, перпендикулярное длинной оси нити актина (состояние 3 на рис. 4, б). После всех этих событий головка миозина вновь оказывается способной взаимодействовать с актином. Однако если в состоянии 1 головка контактировала со вторым сверху мономером актина, то сейчас из-за поворота шейки головка зацепляется и взаимодействует уже с третьим сверху мономером актина (состояние 4 на рис. 4, б). Образование комплекса с актином вызывает структурные изменения в головке миозина. Эти изменения позволяют выбросить из активного центра миозина неорганический фосфат, который образовался в ходе гидролиза АТФ. Одновременно происходит переориентация шейки. Она занимает положение под углом 45° по отношению к нити актина и в ходе переориентации развивается тянущее усилие (состояние 5 на рис. 4, б). Головка миозина проталкивает нить актина на шаг вперед. После этого из активного центра выбрасывается другой продукт реакции, АДФ. Цикл замыкается, и головка переходит в исходное состояние (состояние 1 на рис. 4, б).

Каждая из головок генерирует маленькое тянущее усилие (несколько пиконьютонов). Однако все эти маленькие усилия суммируются, и вследствие этого мышца может развивать достаточно большие напряжения. Очевидно, что, чем больше область перекрытия тонких и толстых филаментов (то есть чем больше головок миозина может зацепиться за нити актина), тем большее усилие может генерироваться мышцей.

Механизмы регуляции мышечного сокращения. Мышца не могла бы выполнять свою функцию, если она постоянно находилась бы в сокращенном состоянии. Для эффективной работы необходимо, чтобы в мышце были специальные "выключатели", которые позволяли бы головке миозина шагать по нити актина только в строго определенных условиях (например, при химической или электрической стимуляции мышцы). Стимуляция приводит к кратковременному увеличению концентрации Са 2+ внутри мышцы с 10 -7 до 10 -5 М. Ионы Са 2+ являются сигналом для начала мышечного сокращения.

Таким образом, для регуляции сокращения необходимы специальные регуляторные системы, которые могли бы отслеживать изменения концентрации Са 2+ внутри клетки. Регуляторные белки могут располагаться на тонком и толстом филаментах или находиться в цитоплазме. В зависимости от того, где располагаются Са-связывающие белки, принято различать так называемый миозиновый и актиновый типы регуляции сократительной активности.

Миозиновый тип регуляции сократительной активности. Простейший способ миозиновой регуляции описан для некоторых мышц моллюсков. Миозин моллюсков по своему составу не отличается от миозина скелетных мышц позвоночных. В обоих случаях в состав миозина входят две тяжелые цепи (с молекулярной массой 200000-250000) и четыре легкие цепи (с молекулярной массой 18000-28000) (см. рис. 3). Считается, что при отсутствии Са 2+ легкие цепи обернуты вокруг шарнирного участка тяжелой цепи миозина. При этом подвижность шарнира сильно ограничена. Головка миозина не может совершать колебательных движений, она как бы заморожена в одном положении относительно ствола толстого филамента (рис. 5, а). Очевидно, что в таком состоянии головка не может осуществлять колебательные ("загребательные") движения и вследствие этого не может перемещать нить актина. При связывании Са 2+ происходят изменения структуры легких и тяжелых цепей миозина. Резко повышается подвижность в области шарнира. Теперь после гидролиза АТФ головка миозина может осуществлять колебательные движения и проталкивать нити актина относительно миозина.

Для гладких мышц позвоночных (таких, как мышцы сосудов, матка), а также для некоторых форм немышечной подвижности (изменение формы тромбоцитов) также характерен так называемый миозиновый тип регуляции. Как и в случае мышц моллюсков, миозиновый тип регуляции гладких мышц связан с изменением структуры легких цепей миозина. Однако в случае гладких мышц этот механизм заметно усложнен.

Оказалось, что с миозиновыми филаментами гладких мышц связан специальный фермент. Этот фермент получил название "киназа легких цепей миозина" (КЛЦМ). Киназа легких цепей миозина относится к группе протеинкиназ, ферментов, способных переносить концевой остаток фосфата АТФ на оксигруппы остатков серина или треонина белка. В состоянии покоя при низкой концентрации Са 2+ в цитоплазме киназа легких цепей миозина неактивна. Это связано с тем, что в структуре фермента есть специальный ингибиторный (блокирующий активность) участок. Ингибиторный участок попадает в активный центр фермента и, не давая возможности взаимодействовать с истинным субстратом, полностью блокирует активность фермента . Таким образом, фермент как бы усыпляет сам себя.

А – гипотетическая схема механизма регуляции сокращения мышц моллюсков. Изображе- ны одна головка миозина с легкими цепями и нить актина в виде пяти кружков. В состоянии расслабления (а) легкие цепи миозина уменьшают подвижность шарнира, соединяющего головку со стволом миозинового филамента. После связывания Са 2+ (б) подвижность шарнира повышается, головка миозина осуществляет колебательные движения и проталкивает актин относительно миозина.
Б – схема регуляции сократительной активности гладких мышц позвоночных. СаМ – каль- модулин; КЛЦМ – киназа легких цепей миозина; ФЛЦМ – фосфатаза легких цепей миозина; Р-миозин – фосфорилированный миозин (по с упрощениями и изменениями)

В цитоплазме гладких мышц есть специальный белок кальмодулин, содержащий в своей структуре четыре Са-связывающих центра . Связывание Са 2+ вызывает изменения в структуре кальмодулина. Насыщенный Са 2+ кальмодулин оказывается способным взаимодействовать с КЛЦМ (рис. 5, Б). Посадка кальмодулина приводит к удалению ингибиторного участка из активного центра, и киназа легких цепей миозина как бы просыпается. Фермент начинает узнавать свой субстрат и переносит остаток фосфата от АТФ на один (или два) остатка серина, расположенных около N-конца регуляторной легкой цепи миозина. Фосфорилирование регуляторной легкой цепи миозина приводит к значительным изменениям структуры как самой легкой цепи, так, по-видимому, и тяжелой цепи миозина в области ее контакта с легкой цепью. Только после фосфорилирования легкой цепи миозин оказывается способным взаимодействовать с актином и начинается мышечное сокращение (рис. 5, Б).

Понижение концентрации кальция в клетке вызывает диссоциацию ионов Са 2+ из катионсвязывающих центров кальмодулина. Кальмодулин диссоциирует от киназы легких цепей миозина, которая тут же теряет свою активность под действием своего же ингибиторного пептида и опять как бы впадает в спячку. Но пока легкие цепи миозина находятся в фосфорилированном состоянии, миозин продолжает осуществлять циклическое протягивание нитей актина. Для того чтобы остановить циклические движения головок, надо удалить остаток фосфата с регуляторной легкой цепи миозина. Этот процесс осуществляется под действием другого фермента - так называемой фосфатазы легких цепей миозина (ФЛЦМ на рис. 5, Б). Фосфатаза катализирует быстрое удаление остатков фосфата с регуляторной легкой цепи миозина. Дефосфорилированный миозин не способен осуществлять циклические движения своей головкой и подтягивать нити актина. Наступает расслабление (рис. 5, Б).

Таким образом, как в мышцах моллюсков, так и в гладких мышцах позвоночных основой регуляции является изменение структуры легких цепей миозина.

Рис. 6. Структурные основы актинового типа регуляции сокращения мышц
а – актиновый филамент с расположенным в канавках спирали непрерывным тяжем молекул тропомиозина;
б – взаимное расположение тонких и толстых филаментов в саркомере поперечнополосатых и сердечных мышц. Укрупненное изображение части актинового филамента в состоянии расслабления (в) и сокращения (г). TnC, TnI и TnT соответственно тропонин С, тропонин I и тропонин Т. Буквами N, I и C обозначены соответственно N-концевая, ингибиторная и С-концевая части тропонина I (по с изменениями и упрощениями)

Актиновый механизм регуляции мышечного сокращения. Связанный с актином механизм регуляции сократительной активности характерен для поперечнополосатых скелетных мышц позвоночных и сердечной мышцы. Нити фибриллярного актина в скелетных и сердечных мышцах имеют вид двойной нитки бус (рис. 2 и 6, а). Нитки бус актина перекручены друг относительно друга, поэтому с двух сторон филамента образуются канавки. В глубине этих канавок размещается сильно спирализованный белок тропомиозин. Каждая молекула тропомиозина состоит из двух одинаковых (или очень похожих друг на друга) полипептидных цепей, которые перекручены друг относительно друга наподобие девичьей косы. Располагаясь внутри канавки актина, палочкообразная молекула тропомиозина контактирует с семью мономерами актина. Каждая молекула тропомиозина взаимодействует не только с мономерами актина, но и с предыдущей и последующей молекулами тропомиозина, вследствие чего внутри всей канавки актина формируется непрерывный тяж молекул тропомиозина. Таким образом, внутри всего актинового филамента проложен своеобразный кабель, образованный молекулами тропомиозина.

На актиновом филаменте помимо тропомиозина располагается еще и тропониновый комплекс. Этот комплекс состоит из трех компонентов, каждый из которых выполняет характерные функции . Первый компонент тропонина, тропонин С, способен связывать Са 2+ (аббревиатура С указывает именно на способность этого белка связывать Са 2+). По структуре и свойствам тропонин С очень похож на кальмодулин (подробнее см. ). Второй компонент тропонина, тропонин I, был обозначен так потому, что он может ингибировать (подавлять) гидролиз АТФ актомиозином. Наконец, третий компонент тропонина называется тропонином Т потому, что этот белок прикрепляет тропонин к тропомиозину. Полный тропониновый комплекс имеет форму запятой, размеры которой сопоставимы с размерами 2-3 мономеров актина (см. рис. 6, в, г). Один тропониновый комплекс приходится на семь мономеров актина.

В состоянии расслабления концентрация Са 2+ в цитоплазме очень мала. Регуляторные центры тропонина С не насыщены Са 2+ . Именно поэтому тропонин С только своим С-концом слабо взаимодействует с тропонином I (рис. 6, в). Ингибиторный и С-концевой участки тропонина I взаимодействуют с актином и с помощью тропонина Т выталкивают тропомиозин из канавки на поверхность актина. До тех пор пока тропомиозин располагается на периферии канавки, доступность актина для головок миозина ограниченна. Контакт актина с миозином возможен, но площадь этого контакта мала, вследствие чего головка миозина не может переместиться по поверхности актина и не может генерировать тянущее усилие.

При повышении концентрации Са 2+ в цитоплазме происходит насыщение регуляторных центров тропонина С (рис. 6, г). Тропонин С образует прочный комплекс с тропонином I. При этом ингибиторная и С-концевая части тропонина I диссоциируют от актина. Теперь ничто не удерживает тропомиозин на поверхности актина, и он закатывается на дно канавки. Такое перемещение тропомиозина увеличивает доступность актина для головок миозина, увеличивается площадь контакта актина с миозином, и головки миозина приобретают возможность не только контактировать с актином, но и прокатываться по его поверхности, генерируя при этом тянущее усилие.

Таким образом, Са 2+ вызывает изменение структуры тропонинового комплекса. Эти изменения структуры тропонина приводят к перемещению тропомиозина. Из-за того, что молекулы тропомиозина взаимодействуют друг с другом, изменения положения одного тропомиозина повлечет за собой перемещение предыдущей и последующей молекул тропомиозина. Именно поэтому локальные изменения структуры тропонина и тропомиозина быстро распространяются вдоль всего актинового филамента.

Заключение. Мышцы являются наиболее совершенным и специализированным приспособлением для перемещения в пространстве. Сокращение мышц осуществляется за счет скольжения двух систем нитей, образованных основными сократительными белками (актином и миозином) друг относительно друга. Скольжение нитей становится возможным за счет циклического замыкания и размыкания контактов между нитями актина и миозина. Эти контакты формируются головками миозина, которые могут гидролизовать АТФ и за счет освободившейся энергии генерировать тянущее усилие.

Регуляция сокращения мышц обеспечивается специальными Са-связывающими белками, которые могут располагаться либо на миозиновом, либо на актиновом филаменте. В одних типах мышц (например, в гладких мышцах позвоночных) главная роль принадлежит регуляторным белкам, расположенным на миозиновом филаменте, а в других типах мышц (скелетные и сердечные мышцы позвоночных) главная роль принадлежит регуляторным белкам, расположенным на актиновом филаменте.

Литература

  1. Rayment I., Rypniewski W.R., Schmidt-Base K. et al.// Science. 1993. Vol. 261. P. 50-58.
  2. Гусев Н.Б. Внутриклеточные Са-связывающие белки // Соросовский Образовательный Журнал. 1998. № 5. С. 2-16.
  3. Walsh M. // Mol. Cell. Biochem. 1994. Vol. 135. P. 21-41.
  4. Farah C.S., Reinach F.C. // FASEB J. 1995. Vol. 9. P. 755-767.
  5. Davidson V.L., Sittman D.B. Biochemistry. Philadelphia, Harwal Publ., 1994. 584 p.
  6. Wray M., Weeds A. // Nature. 1990. Vol. 344. P. 292-294.
  7. Pollack G.A. Muscles and Molecules. Seattle: Ebner and Sons Publ., 1990. 300 p.

Рецензент статьи Н. К. Наградова

Николай Борисович Гусев , доктор биологических наук, профессор кафедры биохимии биологического факультета МГУ. Область научных интересов - структура белков, биохимия мышц. Автор более 90 научных работ.