Банкротство мировое соглашение. Процедура мирового соглашения: особенности соглашения, когда заключается, его последствия. Стороны мирового соглашения

График функции потерь Тагути, показанный на рис. 34, - это парабола, имеющая вертикальную ось и минимальное значение, равное нулю, в точке номинального значения показателя качества. Уравнение такой параболы имеет вид:

где х - измеряемое значение показателя качества, Х0 - ее номинальное значение, L(x) - значение функции потерь Тагути в точке х; с - коэффициент масштаба (подбираемый в соответствии с используемой денежной единицей при измерении потерь).

Это наиболее естественная и простая математическая функция, пригодная для представления основных особенностей функции потерь Тагути, рассмотренных в главе 11 (Некоторые статистики смогут обнаружить очевидную аналогию такого выбора для функции потерь Тагути с методом наименьших квадратов.). Конечно, это не означает, что такой ее вид - "наилучший" выбор в каждом конкретном случае ее применения. Отметим, например, тот факт, что вышеприведенная формула предполагает одинаковый уровень потерь при отклонениях от номинала в обе стороны (в конце предшествующей главы мы как раз рассмотрели конкретный случай, когда данное предположение не выполняется). С другой стороны, хотя данная модель часто служит разумным приближением для показателя качества в пределах его допусков и на не слишком большом удалении от границ допуска, она, очевидно, не подходит для больших отклонений от номинального значения. Однако наши процессы не столь уж плохи, чтобы нам требовалось рассматривать такие большие отклонения.

Рис. 36. Представления с помощью функции потерь Тагути подхода к управлению качества на основе границ допусков

Но даже если наша параболическая модель и не вполне "корректна", она, без сомнения, значительно ближе к действительности, чем функция потерь, соответствующая подходу к качеству на основе установления границ допусков, представленная на рис. 36. Последняя модель предполагает, что потери отсутствуют при всех отклонениях от номинала в пределах допусков, но они возникают скачками на границах поля допуска. С учетом обсуждения, проведенного в предшествующей главе, нет необходимости детализировать здесь далее рассмотрение этого вопроса, за исключением следующего аспекта. Припомните наблюдение, сделанное нами в главе 11, об осознании важности допусков, и само собой приходит толкование. В любой системе, будь то механической или бюрократической, которая "спохватывается" только тогда, когда что-либо выходит за границы допусков, - сами такие скоропалительные действия впопыхах оказываются весьма дорогостоящими. Значит, в подобных случаях действительно имеет место резкое увеличение потерь после выхода показателя качества за границы допусков, но эти потери обусловлены самой системой управления, а не возникают в результате отклонений уровня качества самой продукции или услуги.

Ниже мы воспользуемся параболической моделью для более детального изучения понятий и примеров, рассмотренных в главе 11. Поскольку это всего лишь модель, сами конкретные числа, получаемые в ходе расчетов, не так уж важны. Незначительные отличия в числах не будут поэтому рассматриваться как что-то значимое; стратегия, которая дает несколько большие потери, чем какая-то другая стратегия в предположении применимости этой модели, для функции потерь вполне может оказаться более предпочтительной при замене этой модели на другую. Но когда мы обнаруживаем различия на целые порядки, когда, например, потери от одной стратегии в 10, 50 или даже 100 раз больше, чем от другой, то тогда мы можем с полной уверенностью сказать, что различия в стратегиях действительно весьма значительны, даже с учетом того, что параболическая модель всего лишь идеализация.

В качестве дальнейшей идеализации, которая нужна для проведения численных сравнений в данной главе, мы вынуждены предположить, что рассматриваемые здесь процессы будут абсолютно стабильными. Припомните, в главе 4 термин "абсолютно стабильный" предполагает, что статистическое распределение процесса неизменно, не "колеблется", в частности, это означает, что мы можем говорить тогда в терминах истинных значений для среднего и стандартного отклонения, которые мы обозначим (только в данной главе) символами и и о соответственно. (Это, конечно, противоречит важному замечанию Деминга касательно реальных процессов, сделанному им на 334 стр. в "Выходе из кризиса".)

Если процесс абсолютно стабилен и имеет плотность распределения вероятности, тогда средние потери Тагути можно вычислить из:

что соответствует площади под кривой, задаваемой произведением функции потерь L(x) на плотность вероятности f(x). Некоторые очевидные математические преобразования позволяют привести это выражение к виду:

где члены внутри фигурных скобок {...} представляют соответственно квадратичное (стандартное) отклонение (обычно связанное с дисперсией) и квадрат смещения. Следует заметить, что таким образом средние потери Тагути не зависят каким-то сложным образом от f(x); их можно весьма просто вычислить, если известны простые параметры, входящие в последнее выражение. (Важным следствием этого является то, что не надо делать какие-либо предположения относительно вида функции, например, о ее соответствии, близости нормальному (Гауссовому) распределению. Мы, однако, исследовали нормальное распределение для иллюстрации на рис. 37-40, а также в деталях процесса, вычисленных в последних двух примерах данной главы.)

Чтобы облегчить сравнения, давайте также введем обозначение для воспроизводимости процесса. Она определяется в разных компаниях различным образом, но мы будем ее полагать равной: разность между Верхней и Нижней Границами допуска / разность между Верхней и Нижней естественными Границами процесса, где для "Естественных Границ Процесса" мы используем "истинные" границы 3 о для индивидуальных наблюдений, так что знаменатель можно представить просто как 6 о.

Эффективность, равная 1 (единичная воспроизводимость), соответствует процессу, который в большинстве случаев едва-едва укладывается в границы допусков (Например, если процесс точно центрирован, а распределение нормальное, то в среднем одно измерение из почти 400 будет выходить за границы допуска и при этом на весьма незначительную величину.). Процесс иногда называют воспроизводимым и невоспроизводимым в зависимости от того, превосходит ли показатель воспроизводимости единицу или нет. Обычный образ мыслей на Западе - признание значения 1 1/3 как соответствующего исключительно эффективному процессу, а значение 1 1/3 уже, возможно, слишком экстравагантным, т. к. вероятность получения в этом случае измерения за пределами допусков оказывается пренебрежимо малой. Однако заметим, что данные о процессах из японской практики, упоминаемые в главе 11, позволяют оценить их уровень воспроизводимости равными от 3 до 5. И для того, чтобы мера воспроизводимости отражала то, что процесс может давать на самом деле (а не то, на что он потенциально способен), необходимо предположить, что процесс точно настроен (центрирован), т. е. среднее процесса совпадает с номинальным значением х. Мы рассмотрим ниже, что случается, если это предположение не выполняется.

Мы должны выбрать значение масштабного коэффициента с в уравнении для параболы таким образом, чтобы процесс, имеющий воспроизводимость 1 и точно центрированный, имел бы средние потери Тагути равные 100 единицам. Вначале давайте рассмотрим значения средних потерь Тагути для абсолютно стабильного процесса, точно настроенного на номинальное значение ху, но в предположении различной воспроизводимости процесса.

Таблица 1. Абсолютно Стабильный Процесс, Точно Настроенный

Воспроизводимость

Средние потери Тагути

Мы видим, что повышение воспроизводимости от 1/3 до 1 1/3 в самом деле уменьшает средние потери Тагути от половины до трети их значения по сравнению с потерями, соответствующими единичной воспроизводимости. Однако повышение воспроизводимости до 3-5 дает огромные снижения, описываемые в терминах "порядков величин", как мы говорили об этом ранее. Графики средних потерь Тагути, в зависимости от воспроизводимости процессов, для всех примеров, рассматриваемых в данной главе, показаны на рис. 41.

Важность точной настройки (центрирования) процесса можно быстро оценить, сравнивая данные табл. 1 и табл. 2, приводимой ниже. Данные в табл. 2 рассчитаны в предположении, что процесс неточно настроен и центрирован в середине диапазона между номиналом и одним из пределов допуска.

Таблица 2. Абсолютно Стабильный Процесс, центрироваанный посередине между номиналом и одной из границ допуска

Воспроизводимость

Средние потери Тагути

Плохая настройка процесса полностью разрушает все потенциальные преимущества улучшения воспроизводимости. Однако даже при такой плохой настройке процесс, имеющий воспроизводимость 2 и выше, практически не будет давать изделий, выходящих за границы допусков. Поэтому, хотя такой процесс рассматривался бы как безусловно выдающийся с точки зрения удовлетворения заданных допусков, то рассмотренный с позиций функции потерь Тагути он, безусловно, намного хуже по сравнению с точно настроенным процессом, например, для эффективности равной 2, потери в табл. 2 в десять раз превышают потери, приводимые в табл. 1.

Сейчас мы приступаем к рассмотрению двух примеров, описанных в конце предшествующей главы. Сначала обратимся к проблеме износа инструмента. Давайте припомним детали. Процесс первоначально настроен так, чтобы результаты измерений были близки к Верхней Границе допуска (ВГД). Затем износ инструмента будет приводить к постепенному уменьшению значений; когда результаты начинают приближаться к Нижней Границе допуска (НГД), процесс останавливается и инструмент меняется. Отметим здесь, что воспроизводимость рассматриваемого процесса (без учета его дрейфа) должна быть больше 1, чтобы такую схему вообще можно было бы реализовать, иначе возможность для маневрирования вообще бы отсутствовала. Для полноты картины ниже мы рассмотрели также случай, соответствующий единичной воспроизводимости.

Рис. 37. Процесс с дрейфом. Воспроизводимость = 3

На рис. 37 показан случай, когда воспроизводимость процесса равна 3. Для примера мы принимаем значения НГД и ВГД равными 10 и 16 соответственно, а стандартное отклонение о равным 1/3 (если бы о была равна 1, то воспроизводимость процесса тоже была бы равна единице). Первоначально мы настраиваем центр распределения на 15, так что распределение попадает как раз ниже ВГД. Предположим, что среднее процесса с постоянной скоростью смещается вниз, к значению 1, и в этот самый момент мы останавливаем процесс, меняем инструмент и настраиваем его вновь на 15. (Если бы эффективность процесса была 2 вместо 3, т. е. о = 0,5, тогда мы были бы должны первоначально установить центр процесса на 14,5 и позволить ему затем смещаться вниз до 11,5, когда пора заменять инструмент. Этот случай представлен на рис. 38.) Средние потери Тагути для процессов с различной воспроизводимостью, которыми "управляют" таким образом, представлены в табл. 3А. (При этом стоимость замены инструмента в явном виде при расчетах не учитывалась.)

Рис. 38. Процесс с дрейфом. Воспроизводимость = 2

Таблица 3A. Процесс с постоянной скоростью дрейфа. Начинается и останавливается таким образом, чтобы только избежать выхода за границы допуска.

Воспроизводимость

Средние потери Тагути

Однако что за сюрприз! Для малых значений воспроизводимости потери Тагути вначале уменьшаются, но вскоре начинают увеличиваться, так что потери для процесса с воспроизводимостью 5 оказываются более чем в 2 раза большими, чем для процесса с воспроизводимостью, равной 1! По здравому размышлению причина для такого увеличения становится ясной. Когда воспроизводимость процесса велика, его первоначальная настройка дает значения, очень близкие к ВГД, и таким образом он принужден давать изделия с параметрами, сильно отличающимися от номинальных, что соответственно приводит к высоким потерям Тагути. То же самое справедливо, когда процесс уже сместился к НГД в моменты, непосредственно предшествующие смене инструмента. Вследствие квадратичного характера функции потерь ущерб, вызванный этими экстремальными ситуациями, превышает выгоды от получения хороших изделий в моменты, когда процесс находился вблизи номинального значения, на полпути от ВГД к НГД.

Отметим, что полученный вывод находится в прямом противоречии с миром, основанным на использовании модели удовлетворения требованиям допусков. Сама схема организована таким образом, чтобы вне зависимости от того, какова воспроизводимость процесса (коль скоро она превышает 1), не производилось бы продукции, выходящей за границы технических требований. Увеличение показателя эффективности процесса с этой точки зрения имеет то положительное следствие, что процесс может длиться дольше до момента, когда возникает необходимость замены инструмента; однако, как мы теперь видим, эта выгода является ложной с точки зрения потерь Тагути. Средние потери Тагути существенно снизятся, если мы сможем, например, менять инструмент в два раза чаше. Так, для процесса с воспроизводимостью 3 это позволит настроить его первоначально на 14 (а не на 15) и заменить его, когда среднее значение снизится до 12 (а не до 11). Средние потери Тагути будут в этом случае равны 44, вместо 144 - хотя это все еще и близко не подходит к результату, который дает процесс с воспроизводимостью 3 без смещения (в этом случае в соответствии с табл. 1 средние потери Тагути равны 11). В то же время это существенное улучшение по сравнению с тем, что получается, если мы ждем до предела возможного, прежде чем сменить инструмент. Таблица 3В показывает результат в два раза более частой смены инструмента для тех же значений воспроизводимости, что в табл. 3А.

Таблица 3B. Процесс с постоянной скоростью дрейфа. Замена инструмента происходит в два раза чаще, чем в табл. 3A, при этом процесс настраивается как можно ближе к номиналу.

Воспроизводимость

Средние потери Тагути

Стоит ли существенное уменьшение средних потерь Тагути по сравнению с потерями, соответствующими табл. 3A, тех дополнительных затрат, которые возникают из-за в два раза более частой замены инструмента? На этот вопрос должен дать ответ тот, кто руководит системой.

И, наконец, мы подошли к рассмотрению операции обрубки. Вспомним, что среднее процесса было настроено на значение, превышающее номинал в силу той очевидной логики, что легче сделать длинный пруток короче, чем удлинить короткий! Давайте промоделируем этот случай, предположив, что среднее значение процесса обрубки установлено на ВГД, и, если длина прутка оказывается больше, чем верхний допуск, тогда от него отрубается дополнительный отрезочек, равный интервалу допуска (т. е. разности между ВГД и НГД). Конечно же, это опять весьма упрощенная модель, но результат очень интересный и очень хорошо согласуется с той реальной ситуацией, которая послужила поводом для настоящего рассмотрения.

Рис. 39. Операция обрубки. Распределение длин в начальный момент

Рис. 40. Операция обрубки. Распределение после переделки

Проблема, связанная с данной схемой, легко обнаруживается при рассмотрении двух рисунков. Распределение, соответствующее первой обрубке, представлено на рис. 39. После того как сделана повторная обрубка для половины прутков, оказавшихся чересчур длинными, длины оставшихся прутков имеют распределение, показанное на рис. 40.

Таблица 4. Операция обрубки, центрирована на ВГД. Пруток с длиной, большей чем ВГД, дополнительно обрубается на величину, равную ВГД-НГД.

Воспроизводимость

Средние потери Тагути

Отсюда немедленно становится очевидным, почему средние потери Тагути оказываются такими высокими (см. табл. 4). Для большинства прутков их длины оказываются близкими к границам допусков, и лишь для очень малого их числа вообще имеют место случаи, когда их длина оказывается близкой к номиналу. Другими словами, большинство прутков имеют длины, дающие максимальные значения функции потерь из всех возможных значений внутри диапазона допусков. В то же время практически отсутствуют прутки с длинами, дающими малый вклад в среднюю функцию потерь. Так же как и в предшествующем случае, для читателя должно быть очевидно, что это еще один случай, когда увеличение воспроизводимости процесса на самом деле лишь ухудшает положение дел.

Как мы видим, система, которая вполне имеет смысл с точки зрения удовлетворения требованиям допусков, дает абсолютно плачевный результат в терминах функции потерь Тагути.

Как отмечалось ранее, рисунок 41 показывает нам графики зависимостей средних потерь Тагути для всех примеров, которые мы исследовали в данной главе. Бросаются в глаза огромные различия - различия, которые, однако, скрыты от нас, если мы удовлетворяемся только требованиями допусков (спецификаций).

Рис. 41. Графики зависимостей для средних потерь Тагути

График функции потерь Тагути, показанный на рисунке 34, - это парабола, вытянутая вдоль вертикальной оси и имеющая минимальное значение, равное нулю, в точке номинального значения показателя качества.

Уравнение такой параболы имеет вид:

L(х) = с(х - х0)2,

где: х - измеряемое значение показателя качества; x0 - его номинальное значение; L(х) - значение функции потерь Тагути в точке х; с - коэффициент масштаба (подбираемый в соответствии с используемой денежной единицей при измерении потерь). Это наиболее естественная и простая математическая функция, пригодная для представления основных особенностей функции потерь Тагути, рассмотренных в главе 11*. Конечно, это не означает, что такой ее вид - наилучший выбор в каждом конкретном случае ее применения. Отметим, например, тот факт, что вышеприведенная формула предполагает одинаковый уровень потерь при отклонениях от номинала в обе стороны (в конце предшествующей главы мы рассматривали конкретный случай, когда это предположение не выполняется). С другой стороны, хотя данная модель часто служит разумным приближением для показателя качества в пределах его допусков и на не слишком большом удалении от границ допуска, она, очевидно, не подходит для больших отклонений от номинального значения. Однако наши процессы не столь уж плохи, чтобы нам требовалось рассматривать такие значительные отклонения.

* Некоторые статистики смогут обнаружить очевидную аналогию такого выбора для функции потерь Тагути с методом наименьших квадратов. - Прим. авт.

Рис. 36. Представления подхода к управлению качества на основе границ допусков с помощью функции потерь Тагути

Но даже если наша параболическая модель и не вполне корректна, она, без сомнения, значительно ближе к действительности, чем функция потерь, соответствующая подходу к качеству на основе установления границ допусков, представленная на рисунке 36. Последняя модель предполагает, что потери отсутствуют при всех отклонениях от номинала в пределах допусков, но они скачкообразно возникают на границах поля допуска. С учетом проведенного в предшествующей главе обсуждения здесь не нет нужды в детальном рассмотрении данного вопроса, за исключением одного аспекта. Припомните сделанное нами в главе 11 наблюдение об осознании важности допусков. В любой системе, механической или бюрократической, которая спохватывается, только когда что-либо выходит за границы допусков, скоропалительные действия оказываются весьма дорогостоящими. Значит, в подобных случаях действительно имеется резкое увеличение потерь после выхода показателя качества за границы допусков, но эти потери обусловлены самой системой управления, а не возникают в результате отклонений уровня качества самой продукции или услуги.

Ниже мы воспользуемся параболической моделью для более детального изучения понятий и примеров, рассмотренных в главе 11. Поскольку это всего лишь модель, конкретные числа, получаемые в ходе расчетов, не так уж важны. Поэтому незначительные отличия в числах не будут рассматриваться как что-то значимое. Стратегия, дающая несколько большие потери, чем другая стратегия в предположении применимости этой модели, при замене этой модели на другую может оказаться более предпочтительной для функции потерь. Но когда мы обнаруживаем различия на целые порядки (например, когда потери от одной стратегии в 10, 50 или даже 100 раз превышают потери от другой), мы можем с полной уверенностью сказать, что различия в стратегиях весьма значительны, даже с учетом того, что параболическая модель - всего лишь идеализация.

В качестве дальнейшей идеализации, которая нужна для проведения численных сравнений в данной главе, мы вынуждены предположить, что рассматриваемые здесь процессы будут абсолютно стабильными. Приведенный в главе 4 термин «абсолютно стабильный» предполагает, что ста

Организация как система

тистическое распределение процесса неизменно, не колеблется. В частности, это означает, что мы можем говорить в терминах истинных значений для среднего и стандартного отклонения, которые мы обозначим (но только в

данной главе) символами

Если процесс абсолютно стабилен и имеет плотность распределения вероятности, тогда средние потери Тагути можно вычислить из:

что соответствует площади под кривой, задаваемой произведением функции потерь L(х) на плотность вероятности f(x). Некоторые очевидные математические преобразования позволяют привести это выражение к виду:

где члены внутри фигурных скобок ({...}) представляют соответственно квадратичное (стандартное) отклонение (обычно связанное с дисперсией) и квадрат смещения. Следует заметить, что средние потери Тагути не зависят каким-то сложным образом от f(x); их можно весьма просто вычислить, если известны простые параметры, входящие в последнее выражение*.

Чтобы облегчить сравнения, давайте также введем обозначение для воспроизводимости процесса. В разных компаниях она определяется раз- личным образом, но мы будем полагать ее равной разности между верхней и нижней границами допуска деленной на разность между верхней и ниж- ней естественными пределами процесса, где для естественных пределов

процесса мы используем «истинные» границы

* Важное следствие этого - отсутствие каких-либо предположений относительно вида функции, например ее соответствия, близости нормальному (Гауссовому) распределению. Мы, однако, использовали нормальное распределение для иллюстрации на рисунках 37-40, а также в некоторых тонких деталях, вычислений в двух последних примерах данной главы. - Прим. авт.

** Это не определение Демингом воспроизводимости. Не удивительно, что он определяет воспроизводимость (стабильного) процесса просто как определение естественных пределов процесса, без ссылки на допуски. - Прим. авт.

соответственно. (Хотя это противоречит

важному замечанию Деминга касательно реальных процессов; см.: «Выход из кризиса», стр. 293.)

Далее мы будем использовать понятие средних потерь Тагути. Средние потери Тагути, применительно к выборке или партии из п изделий, для которых значения X1, х2,..., хn рассматриваемого показателя качества х равны:

для индивидуальных

наблюдений, так что знаменатель можно представить просто как

Глава 12. Функция потерь Тагути: более подробное рассмотрение

Воспроизводимость, равная 1 (единичная воспроизводимость), соответствует процессу, который в большинстве случаев едва укладывается в границы допусков*. Процесс иногда называют воспроизводимым или невоспроизводимым в зависимости от того, превосходит ли показатель воспроизводимости единицу или нет. Обычный образ мыслей на Западе - признание значения 1 1/3 как соответствующего исключительно эффективному процессу, а значения 12/3 - уже, возможно, слишком экстравагантным, поскольку вероятность получения в этом случае измерения за пределами допусков оказывается пренебрежимо малой**. Однако заметим, что данные о процессах из японской практики, упоминаемые в главе 11, позволяют оценить их уровень воспроизводимости от 3 до 5. И чтобы мера воспроизводимости отражала то, что процесс может давать на самом деле (а не то, на что он потенциально способен), надо предположить, что процесс точно настроен (центрирован), т.е. среднее процесса совпадает с номинальным значением х0. Ниже мы рассмотрим, что происходит, если это предположение не выполняется.

Мы должны выбрать значение масштабного коэффициента с в уравнении для параболы таким образом, чтобы процесс, имеющий воспроизводимость 1 и точно центрированный, имел бы средние потери Тагути, равные 100 единицам. Вначале рассмотрим значения средних потерь Тагути для абсолютно стабильного процесса, точно настроенного на номинальное значение Ху, но в предположении различной воспроизводимости процесса.

Таблица 1. Абсолютно стабильный процесс, точно настроенный

Мы видим, что повышение воспроизводимости от 1 1/3 до 12/3 уменьшает средние потери Тагути от половины до трети их значения по сравнению с потерями, соответствующими единичной воспроизводимости. Однако повышение воспроизводимости до 3-5 дает огромный эффект, описываемый в терминах порядков величин, как мы говорили об этом ранее. Графики средних потерь Тагути, в зависимости от воспроизводимости процессов, для всех примеров, рассматриваемых в данной главе, показаны на рисунке 41.

* Например, если процесс точно центрирован, а распределение нормальное, то в среднем одно измерение из почти 400 будет выходить за границы допуска, и при этом - на весьма незначительную величину. - Прим. авт.

** Модные ныне «шесть сигм» соответствуют воспроизводимости, равной 2. - Прим. авт. Воспроизводимость 1/2 3/4 1 1 1/3 12/з 2 3 5 Средние потери Тагути 400 178 100 56 36 25 11 4 174

Организация как система

Важность точной настройки (центрирования) процесса можно быстро оценить, сравнивая данные таблиц 1 и 2.

Данные таблицы 2 рассчитаны в предположении, что процесс неточно настроен и центрирован в середине диапазона между номиналом и одним из пределов допуска.

Таблица 2. Абсолютно стабильный процесс, центрированный посередине между номиналом и одной из границ допуска

Плохая настройка процесса полностью разрушает все потенциальные преимущества улучшения воспроизводимости. Однако даже при такой плохой настройке процесс, имеющий воспроизводимость 2 и выше, прак- тически не будет давать изделий, выходящих за границы допусков. Поэто- му, хотя такой процесс рассматривался бы как безусловно выдающийся с точки зрения удовлетворения заданных допусков, - рассмотренный с по- зиций функции потерь Тагути он, безусловно, намного хуже, чем точно настроенный процесс; например, для эффективности, равной 2, потери в таблице 2 в десять раз превышают потери, приводимые в таблице 1.

Теперь мы рассмотрим два примера, описанные в конце предшествую- щей главы. Сначала обратимся к проблеме износа инструмента. Припомним детали: первоначально процесс настроен так, чтобы результаты измерений были близки к верхней границе допуска (ВГД). Затем износ инструмента будет приводить к постепенному уменьшению значений; когда результаты начинают приближаться к нижней границе допуска (НГД), процесс останав- ливается и инструмент заменяется. Отметим, что воспроизводимость рассмат- риваемого процесса (без учета его дрейфа) должна быть больше 1, чтобы такую схему вообще можно было реализовать, иначе возможность для ма- неврирования просто отсутствовала бы. Для полноты картины ниже мы рас- смотрели также случай, соответствующий единичной воспроизводимости.

На рисунке 37 показан случай, когда воспроизводимость процесса рав- на 3. Для примера мы принимаем значения НГД и ВГД равными 10 и 16

соответственно, а стандартное отклонение Воспроизводимость 1/2 1/3 1 1 1/3 12/з 2 3 Средние потери Тагути 625 403 325 281 261 250 236 - равным 1/3 (если бы

ла равна 1, то воспроизводимость процесса также была бы равна единице). Первоначально мы настраиваем центр распределения на 15, так что рас- пределение попадает как раз ниже ВГД. Предположим, что среднее процес- са с постоянной скоростью смещается вниз, к значению 11, и в этот самый момент мы останавливаем процесс, меняем инструмент и вновь настраи- ваем его на 15. (Если бы эффективность процесса была 2 вместо 3, т.е.

0,5, тогда мы были бы должны первоначально установить центр про-

цесса на 14,5 и позволить ему затем смещаться вниз, до 11,5, когда пора

Глава 12. Функция потерь Тагути: более подробное рассмотрение

Рис. 37. Процесс с дрейфом. Воспроизводимость равна 3

Рис. 38. Процесс с дрейфом. Воспроизводимость равна 2

заменять инструмент. Этот случай представлен на рисунке 38.) Средние потери Тагути для процессов с различной воспроизводимостью, которыми «управляют» таким образом, представлены в таблице За. (При этом стоимость замены инструмента в явном виде при расчетах не учитывалась.)

Таблица За. Процесс с постоянной скоростью дрейфа.

Начинается и останавливается таким образом, чтобы только избежать выхода за границы допуска

Но что за сюрприз! Для малых значений воспроизводимости потери Тагути вначале уменьшаются, но вскоре начинают увеличиваться, так что потери для процесса с воспроизводимостью 5 оказываются более чем в два раза большими, чем для процесса с воспроизводимостью, равной 1! По Воспроизводимость 1 11/3 12/з 2 3 5 Средние потери Тагути 100 75 84 100 144 196 176

Организация как система

здравом размышлении причина такого увеличения становится ясной. Когда воспроизводимость процесса велика, его первоначальная настройка дает значения, очень близкие к ВГД, таким образом, он принужден давать изделия с параметрами, сильно отличающимися от номинальных, что соответственно приводит к высоким потерям Тагути. То же справедливо, когда процесс уже сместился к НГД в моменты, непосредственно предшествующие смене инструмента. Вследствие квадратичного характера функции потерь ущерб, вызванный этими экстремальными ситуациями, превышает выгоды от получения хороших изделий в моменты, когда процесс находился вблизи номинального значения, на полпути от ВГД к НГД.

Отметим, что полученный вывод находится в прямом противоречии с миром, основанным на использовании модели соответствия требованиям допусков. Сама схема организована таким образом, чтобы вне зависимости от того, какова воспроизводимость процесса (коль скоро она превышает 1), не производилось бы продукции, выходящей за границы допусков. Увеличение показателя воспроизводимости процесса с этой точки зрения имеет то положительное следствие, что процесс может длиться дольше до момента, когда возникает потребность в замене инструмента. Однако, как мы теперь видим, эта выгода ложна с точки зрения потерь Тагути. Средние потери Тагути существенно снизятся, если мы сможем, например, менять инструмент в два раза чаще. Так, для процесса с воспроизводимостью 3 это позволит настроить его первоначально на 14 (а не на 15) и заменить его, когда среднее значение снизится до 12 (а не до 11). Средние потери Тагути будут в этом случае равны 44 вместо 144, хотя это все еще и близко не подходит к результату, который дает процесс с воспроизводимостью 3 без смещения (в этом случае, в соответствии с таблицей 1, средние потери Тагути равны 11). В то же время это существенное улучшение по сравнению с тем, что получается, если мы ждем до возможного предела, прежде чем сменить инструмент. Таблица ЗБ показывает результат в два раза более частой смены инструмента для тех же значений воспроизводимости, что в таблице За.

Таблица ЗБ. Процесс с постоянной скоростью дрейфа.

Замена инструмента происходит в два раза чаще, чем в таблице За, при этом процесс настраивается как можно ближе к номиналу

Стоит ли существенное уменьшение средних потерь Тагути по сравнению с потерями, соответствующими в таблице За, тех дополнительных затрат, которые возникают из-за в два раза более частой замены инструмента? На этот вопрос должен дать ответ тот, кто руководит системой. Воспроизводимость 1 1 1/3 12/з 2 3 5 Средние потери Тагути 100 61 48 44 44 52 Глава 12. Функция потерь Тагути: более подробное рассмотрение

И наконец, мы подошли к рассмотрению операции обрубки. Вспомним, что среднее процесса было настроено на значение, превышающее номинал, в силу той очевидной логики, что легче укоротить длинный пруток, чем удлинить короткий. Давайте смоделируем этот случай, предположив, что среднее значение процесса обрубки установлено на ВГД, и, если длина прутка оказывается больше, чем верхний допуск, тогда от него отрубается дополнительный отрезок, равный интервалу допуска (т.е. разности между ВГД и НГД). Конечно, это тоже весьма упрощенная модель, но результат очень интересный и достаточно хорошо согласуется с той реальной ситуацией, которая послужила поводом для настоящего рассмотрения.

Рис. 39. Операция обрубки. Распределение длин в начальный момент

Проблема, связанная с данной схемой, легко обнаруживается при рассмотрении двух рисунков. Распределение, соответствующее первой обрубке, представлено на рисунке 39. После того как сделана повторная обрубка для половины прутков, оказавшихся чересчур длинными, длины оставшихся прутков имеют распределение, показанное на рисунке 40.

Отсюда становится понятно, почему средние потери Тагути оказываются такими высокими (см. табл. 4). Для большинства прутков их длины

Рис. 40. Операция обрубки. Распределение после переделки

Организация как система

оказываются близкими к границам допусков, и лишь для очень малого их числа вообще имеют место случаи, когда их длина оказывается близкой к номиналу. Другими словами, большинство прутков имеет длины, дающие максимальные значения функции потерь из всех возможных значений внутри диапазона допусков. В то же время практически отсутствуют прутки с длинами, дающими малый вклад в среднюю функцию потерь. Так же как и в предшествующем случае, для читателя должно быть очевидно, что это еще один случай, когда увеличение воспроизводимости процесса на самом деле лишь ухудшает положение дел.

Таблица 4. Операция обрубки центрирована на ВГД.

Пруток с длиной, большей чем ВГД, дополнительно обрубается на величину, равную ВГД-НГД

Как мы видим, система, которая вполне приемлема с точки зрения удовлетворения требованиям допусков, дает плачевный результат в терминах функции потерь Тагути.

Как отмечалось ранее, на рисунке 41 показаны графики зависимостей средних потерь Тагути для всех примеров, которые мы исследовали в данной главе. Бросаются в глаза огромные различия, которые, однако, скрыты от нас, если мы удовлетворяемся лишь требованиями допусков (спецификаций).

Рис. 41. Графики зависимостей для средних потерь Тагути Воспроизводимость 1/2 3/4 1 1 1/3 1 2/3 2 3 5 Средние потери Тагути 343 439 521 597 649 686 752 808

Потребитель всегда обращает внимание на качество товара. Очень часто это становится решающим фактором, определяющим выбор. Само собой, что при выборе между сходными продуктами из одной ценовой категории, выбор ляжет на более качественный. Именно поэтому, в наше время, всем производителям для удержания рынка и повышения прибыли необходимо бороться за улучшение качества.

Хирург, проводящий сложнейшую операцию должен действовать быстро, точно и без лишних движений. Любое отклонение от требуемой последовательности действий, лишнее или дополнительное движение забирает время и может стать фатальным. Производственный процесс, также должен соответствовать определенной технологии. Любое отклонение от технологической последовательности, приводит к получению продукта с отличными качествами. Все дополнительные мероприятия, направленные на приведение параметров продукта к требуемым или повышению его качества являются отклонением от технологии производства продукта и ведут к дополнительным затратам.

После Второй Мировой Войны производство в Японии пришло в упадок. Продукты, произведенные на японских предприятиях не могли конкурировать с импортируемыми ни по цене, ни по качеству. Для поднятия экономики страны на конкурентоспособный уровень было предложено ряд действий. В частности, создать исследовательскую организацию, по типу Bell Laboratories в США, для повышения качества телефонных систем и снижения количества их отказа. Так в Японии появилась Electrical Communication Laboratories, с доктором Гэнити Тагучи во главе одного из подразделений.

Доктор Тагучи сформулировал множество принципов, ставших впоследствии основой для организации системы качества многих японских компаний и мощнейшими статистическими инструментами оптимизации производственных процессов и улучшения качества продукции. Принципы и методы Тагучи были также оценены и внедрены рядом мировых компаний.

Существует две, абсолютно разные точки зрения о разработках Тагучи. Одни считают работы Тагучи величайшим открытием в области контроля качества за последние полвека. Другие – что его идеи были как не новы, так и не придуманы им самим. При написании данной статьи я не ставил перед собой цели развеять существующие мифы или предложить читателю парочку новых. Целью данной статьи является краткий обзор философии подхода к обеспечению качества, перевернувшей мировоззрения многих компаний.

Наиболее интересными все же являются не статистические приемы, использованные Тагучи, а формулировка понятий ставших своего рода «философией» улучшения качества. Его философия весьма многогранна, но попытаемся сформулировать основные положения:

1. Качественный продукт должен быть произведен, а не найден во время инспекции.

2. Наивысшее качество достигается при приближении к целевому значению. Дизайн продукта/процесса должен быть осуществлен таким образом, чтоб исключить влияние неконтролируемых факторов.

3. Цена качества, как функция отклонения от целевого значения должна исследоваться на протяжении всего жизненного цикла продукта.

Как известно, 85% всех потерь качества происходит по причине несовершенства процесса и лишь 15% - по вине работника. Разработка дизайна процесса/продукта, таким образом, чтоб исключить возможные дефекты – это лучший способ производства качественной продукции. Чаще всего дефекты возникают из-за колебаний факторов, влияющих на производственный процесс. Следовательно, приоритетом улучшения качества является создание продукта/процесса стойкого к влиянию изменчивых факторов – робастная инженерия.

На стадии разработки дизайна продукта/процесса следует также проводить контроль качества и апробацию продукта – стратегия повышения качества «вне производственной линии». Неоспоримым достоинством данной стратегии является возможность внесения корректировок на ранних стадиях планирования производства. Основным направлением повышения качества «вне производственной линии» является изучение и исключение влияния шумовых факторов.

Следуя принципам Тагучи, качество продукта не ограничивается строго пределами поля допуска. Максимальное качество достигается в центре поля допуска и постепенно понижается по мере удаления от целевого значения. Продукт, произведенный с отклонением от целевого значения, может прослужить меньше положенного времени. Производя продукт с заданным параметром можно значительно повысить его качество и продлить срок службы.

Тагучи рассматривал обеспечение качества как непрерывный процесс. Данные о качестве продукта должны собираться на протяжении всего времени производства и гарантийного обслуживания продукта. Рассматривая данные о продукте за длительный период можно обнаружить аномальное поведение процесса или отклонение заданного параметра от целевого значения. Сопоставляя результаты с информацией о затратах на контроль, брак, ремонт, возврат, замену, гарантийное облуживание и т.д. можно внести необходимые корректирующие действия при разработке новых продуктов/процессов и методов их контроля.

Разработку нового продукта следует проводить в следующем порядке:

· Разработка и/или дизайн производственного процесса/продукта – определение подходящих условий работы процесса и параметров продукта. Разработка и/или дизайн процесса/продукта предполагают изучение передовых технологий и научных открытий, а также, «уроков» и опыта сходных производств.

· Поиск оптимальных параметров процесса – подбор параметров, при которых качество продукта и выход процесса будут максимальными. Оптимальные параметры подбираются с учетом стойкости системы к влиянию шумовых факторов.

· Расчет поля допуска – определение наиболее критических параметров продукта, способных влиять на качество конечного изделия в целом и расчет диапазона, в котором качество продукта будет сохраняться.

Тагучи также разработал понятие о функции затрат, заставившее пересмотреть традиционные представления о контроле качества. Принцип прост, но весьма эффективен: стоимость качества – это все затраты, связанные с продуктом до момента его отгрузки заказчику/потребителю, включая само производство. Основные потери общества, связанные с продуктом происходят из-за загрязнения окружающей среды и чрезмерной вариации процесса. Таким образом, продукт со слабо разработанным дизайном начнет приноситьубытки обществу уже на ранних стадиях производства в виде ремонта или любых других мероприятий по повышению его качества.

Традиционно считается, что продукт имеет приемлемое качество, находясь в пределах поля допуска; за пределами поля допуска продукт становится полностью непригодным к использованию. Все вариации продукта внутри поля допуска не влияют на качество конечного изделия. Традиционно выход процесса рассчитывался как отношение количества изделий отгруженных заказчику к общему числу произведенных изделий; брак, при этом, рассчитывался как количество деталей, отбракованное в ходе ремонта к общему количеству произведенных деталей. Расчет показателей по такому принципу не указывает реальные данные о процессе, и скрывает все затраты на ремонт или другие мероприятия по повышению качества продукта. Рассматривая данные о процессе в разрезе традиционного подхода, мы не видим общей картины, часть информации, которую не указывают данные показатели, образно называют «скрытой фабрикой».

Подход Тагучи говорит, что нет четко ограниченных пределов, которые дают возможность судить о качестве продукта. Максимальное качество достигается в середине поля допуска. Соответственно, затраты, связанные с обеспечением качества в этой точке минимальные. Отклоняясь от целевого значения, качество продукта постепенно падает, а затраты по обеспечению качества, соответственно, растут. Следует также отметить, что функция потерь качества способна достигать значений более 100% - в тех случаях, когда потеря качества детали приведет к потере качества всего изделия. В отличие от традиционного подхода, функция затрат указывает на необходимость настройки процесса на целевое значение и приведение вариации к минимуму.

Итак, первым шагом на пути к повышению качества является установка процесса на целевое значение. Вторым – подбор параметров для снижения вариации процесса. Методика планирования экспериментов Тагучи нацелена на оптимизацию процесса с учетом показателя сигнал/шум. Таким образом, оценивается возможность повышения качества с учетом влияния шумовых факторов. Факторами шума принято считать факторы, влияющие на качество процесса, но при этом контролировать их невозможно или экономически не выгодно. Такие факторы как окружающая среда, износ оборудования и т.д. являются одними из основных причин вариации процесса. Оптимизация процесса с учетом их влияния разрешает создать робастный процесс.

Планирование экспериментов по методу Тагучи имеет широкую область применения, но чаще применяется для планирования качества «вне производственной линии», т.е. при разработке дизайна, параметров и поля допуска продукта/процесса. Оценка показателя сигнал/шум сделали эту методику весьма популярной среди практикующих инженеров.

Принципы Тагучи во многом идут вразрез с традиционными принципами качества. Подход Тагучи основан на том, что лучше повысить качество продукта/процесса, нежели системы контроля. Ни одна система контроля, какой бы точной она не была, не способна улучшить качество продукта. Тагучи также принял во внимание то, что очень много времени и ресурсов уходит на проведение производственных экспериментов. При этом, анализ результатов экспериментов почти не проводится из-за своей комплексности. В разработках планирования и управления процессом Тагучи использовал ряд статистических инструментов, упрощающих планирование и анализ результатов экспериментов.

Его величайшим внесением было не математическое формулирование планирования экспериментов, а формирование идеологии/философии. Его подход - это больше, чем метод планирования и проведения экспериментов. Это концепция построения нетрадиционной и мощной дисциплины по улучшению качества.

Тагучи придумал новый подход к обеспечению качества в производстве. Его подход абсолютно отличался от существующего. Фактически он дал начало новому подходу к обеспечению качества.