Длинные инфракрасные лучи прибор. Об инфракрасном излучении. Инфракрасное излучение в спортивной медицине

Уильям Гершель впервые заметил, что за красным краем полученного с помощью призмы спектра Солнца есть невидимое излучение, вызывающее нагрев термометра. Это излучение стали позднее называть тепловым или инфракрасным.

Ближнее ИК-излучение очень похоже на видимый свет и регистрируется такими же инструментами. В среднем и дальнем ИК используются болометры, отмечающие изменения.

В среднем ИК-диапазоне светит вся планета Земля и все предметы на ней, даже лед. За счет этого Земля не перегревается солнечным теплом. Но не всё ИК-излучение проходит через атмосферу. Есть лишь несколько окон прозрачности, остальное излучение поглощается углекислым газом, водяным паром, метаном, озоном и другими парниковыми газами, которые препятствуют быстрому остыванию Земли.

Из-за поглощения в атмосфере и теплового излучения предметов телескопы для среднего и дальнего ИК выносят в космос и охлаждают до температуры жидкого азота или даже гелия.

ИК-диапазон - один из самых интересных для астрономов. В нем светит космическая пыль, важная для образования звезд и эволюции галактик. ИК-излучение лучше видимого проходит через облака космической пыли и позволяет видеть объекты, недоступные наблюдению в других участках спектра.

Источники

Фрагмент одного из так называемых Глубоких полей «Хаббла» . В 1995 году космический телескоп в течение 10 суток накапливал свет, приходящий с одного участка неба. Это позволило увидеть чрезвычайно слабые галактики, расстояние до которых составляет до 13 млрд световых лет (менее одного миллиарда лет от Большого взрыва). Видимый свет от таких далеких объектов испытывает значительное красное смещение и становится инфракрасным.

Наблюдения велись в области, далекой от плоскости галактики, где видно относительно мало звезд. Поэтому большая часть зарегистрированных объектов - это галактики на разных стадиях эволюции.

Гигантская спиральная галактика, обозначаемая также как M104, расположена в скоплении галактик в созвездии Девы и видна нам почти с ребра. Она обладает огромным центральным балджем (шарообразное утолщение в центре галактики) и содержит около 800 млрд звезд - в 2-3 раза больше, чем Млечный Путь.

В центре галактики находится сверхмассивная черная дыра с массой около миллиарда масс Солнца. Это определено по скоростям движения звезд вблизи центра галактики. В инфракрасном диапазоне в галактике отчетливо просматривается кольцо газа и пыли, в котором активно рождаются звезды.

Приемники

Главное зеркало диаметром 85 см изготовлено из бериллия и охлаждается до температуры 5,5 К для снижения собственного инфракрасного излучения зеркала.

Телескоп был запущен в августе 2003 года по программе четырех великих обсерваторий NASA , включающей:

  • гамма-обсерваторию «Комптон» (1991–2000, 20 кэВ -30 ГэВ ), см. Небо в гамма-лучах с энергией 100 МэВ ,
  • рентгеновскую обсерваторию «Чандра» (1999, 100 эВ -10 кэВ ),
  • космический телескоп «Хаббл» (1990, 100–2100 нм ),
  • инфракрасный телескоп «Спитцер» (2003, 3–180 мкм ).

Ожидается, что срок службы телескопа «Спитцер» составит около 5 лет. Свое название телескоп получил в честь астрофизика Лаймана Спитцера (1914–97), который в 1946 году, задолго до запуска первого спутника, опубликовал статью «Преимущества для астрономии внеземной обсерватории», а спустя 30 лет убедил NASA и американский Конгресс начать разработку космического телескопа «Хаббл».

Обзоры неба

Небо в ближнем инфракрасном диапазоне 1–4 мкм и в среднем инфракрасном диапазоне 25 мкм (COBE/DIRBE)

В ближнем инфракрасном диапазоне Галактика просматривается еще более отчетливо, чем в видимом.

А вот в среднем ИК-диапазоне Галактика едва видна. Наблюдениям сильно мешает пыль, находящаяся в Солнечной системе. Она расположена вдоль плоскости эклиптики, которая наклонена к плоскости Галактики под углом около 50 градусов.

Оба обзора получены инструментом DIRBE (Diffuse Infrared Background Experiment) на борту спутника COBE (Cosmic Background Explorer). В ходе этого эксперимента, начатого в 1989 году, были получены полные карты инфракрасной яркости неба в диапазоне от 1,25 до 240 мкм .

Земное применение

В основе прибора лежит электронно-оптический преобразователь (ЭОП), позволяющий значительно (от 100 до 50 тысяч раз) усиливать слабый видимый или инфракрасный свет.

Объектив создает изображение на фотокатоде, из которого, как и в случае ФЭУ , выбиваются электроны. Далее они разгоняются высоким напряжением (10–20 кВ ), фокусируются электронной оптикой (электромагнитным полем специально подобранной конфигурации) и падают на флуоресцентный экран, подобный телевизионному. На нем изображение рассматривают в окуляры.

Разгон фотоэлектронов дает возможность в условиях низкой освещенности использовать для получения изображения буквально каждый квант света, однако в полной темноте требуется подсветка. Чтобы не выдать присутствие наблюдателя, для этого пользуются прожектором ближнего ИК-диапазона (760–3000 нм ).

Существуют также приборы, которые улавливают собственное тепловое излучение предметов в среднем ИК-диапазоне (8–14 мкм ). Такие приборы называются тепловизорами, они позволяют заметить человека, животное или нагретый двигатель за счет их теплового контраста с окружающим фоном.

Вся энергия, потребляемая электрическим обогревателем, в конечном счете, переходит в тепло. Значительная часть тепла уносится воздухом, который соприкасается с горячей поверхностью, расширяется и поднимается вверх, так что обогревается в основном потолок.

Во избежание этого обогреватели снабжают вентиляторами, которые направляют теплый воздух, например, на ноги человека и способствуют перемешиванию воздуха в помещении. Но есть и другой способ передачи тепла окружающим предметам: инфракрасное излучение обогревателя. Оно тем сильнее, чем горячее поверхность и больше ее площадь.

Для увеличения площади радиаторы делают плоскими. Однако при этом температура поверхности не может быть высокой. В других моделях обогревателей используется спираль, разогреваемая до нескольких сотен градусов (красное каление), и вогнутый металлический рефлектор, который создает направленный поток инфракрасного излучения.

Существуют природные явления, которые незаметны человеческому глазу, хотя мы чувствуем силу их действия. Они способны оказывать не меньшее влияние, чем видимые процессы. Мы не видим инфракрасные лучи, но можем чувствовать их тепло. Действие инфракрасного излучения благотворно для живых организмов на Земле и играет важную роль в развитии жизни. Все живое находится под влиянием инфракрасного света.

Особенность инфракрасного излучения в том, что без него в человеческом организме появляются разные болезни, ускоряется старение. Но в данном случае граница между пользой и вредом инфракрасного излучения для человека тонкая. Поэтому важно знать, как ее не перешагнуть и что предпринять, если инфракрасные лучи привели к негативным последствиям.

Что такое инфракрасное излучение?

Изучая в 1800 году Солнце, английский ученый У. Гершель измерял температуру различных участков видимого спектра. Им было обнаружено, что за насыщенным красным цветом находится высшая точка тепла. Тогда в науке и появилось понятие инфракрасного излучения (ИК-излучение).

Инфракрасные лучи недоступны невооруженному взору, но ощущаемы кожей как тепло. Они относятся к электромагнитному излучению, которое располагается между красным концом видимого света и микроволновым радиоизлучением. ИК-излучение еще принято называть тепловым.

Оно излучается атомами, которые обладают избыточной энергией, и ионами. Каждое тело с температурой выше нуля – это источник инфракрасного излучения. Солнце – известный природный источник ИК-лучей.

Длина волн в ИК-излучении зависит от температуры нагревания. Самая высокая температура у коротких волн с большой интенсивностью излучения. Диапазон инфракрасных лучей широк. Он делится на разновидности:

  • короткие волны – температура выше 800 градусов Цельсия,
  • средние волны – до 600 градусов Цельсия,
  • длинные волны – до 300 градусов Цельсия.

Влияние инфракрасного излучения на организм человека определяется длиной этих волн, а также временным отрезком воздействия.

Польза инфракрасных лучей для человека

Длинноволновые инфракрасные лучи благоприятны для здоровья человека. Это часто используется в медицине, в частности в физиотерапевтических процедурах, с помощью которых можно улучшить кровообращение, метаболизм и нейрорегуляцию.

Положительное влияние ИК-излучения на человеческий организм сказывается следующим образом:

  • улучшается память и функции мозга,
  • приводится в норму артериальное давление,
  • нормализируется гормональный баланс,
  • выводятся соли, токсины и тяжелые металлы,
  • останавливается размножение грибков и вредных микроорганизмов,
  • восстанавливается водно-солевой баланс,
  • происходит обезболивание,
  • происходит противовоспалительный процесс,
  • подавляются раковые клетки,
  • нейтрализуются результаты радиоактивного излучения,
  • повышается инсулин у больных диабетом,
  • излечивается дистрофия,
  • проходит псориаз,
  • укрепляется иммунитет.

Отопление, в котором используются ИК-лучи, убивает вредоносные бактерии и помогает укрепить иммунитет. Ионизирование воздуха защищает от аллергических проявлений. Длинные волны инфракрасного тепла действуют успокаивающе при усталости, раздражительности, стрессе, способствуют заживлению ран, приводят к выздоровлению при гриппе.

Вред от инфракрасного излучения

Несмотря на полезные свойства ИК-лучей у них существуют и противопоказания. Особую опасность представляют короткие волны. Их вред может выражаться в покраснении кожи и ожоге, тепловом ударе и дерматите, появлении судорог и нарушении водно-солевого баланса. Коротковолновое для слизистой оболочки глаз. Оно не просто пересушивает ее, но и способно вызвать серьезные глазные недуги.

Коротковолновое действие на организм человека выражается в определенных признаках:

  • головокружение,
  • тошнота,
  • потемнение в глазах,
  • учащенное сердцебиение,
  • нарушение координации движений,
  • потеря сознания.

Такие симптомы возникают, если температура головного мозга повышается хотя бы на один градус Цельсия. При повышении на два градуса Цельсия – появляется менингит и энцефалит.

Противопоказаниями к применению инфракрасных лучей служат:

  • заболевания крови,
  • кровотечения,
  • островоспалительные процессы,
  • острые гнойные проявления,
  • злокачественные опухоли.

Где встречается инфракрасное излучение?

Инфракрасное излучение применяется в разных областях человеческой деятельности. Сюда относятся: термография, астрономия, медицина, пищевая промышленность и другие.

ИК-излучателями могут являться разные приборы:

  • головка самонаведения в прицельном устройстве,
  • приборы ночного видения,
  • оборудование для физиотерапии,
  • системы отопления,
  • обогреватели,
  • устройства с дистанционным управлением.

Любые нагретые тела – это источники инфракрасного излучения.

Что касается обогревателей, при их покупке стоит обратить внимание на характер излучения прибора, который обычно указывается в техническом паспорте. Если спираль, выделяющая тепло, имеет теплоизолирующую защиту, это значит, что действие ее длинных волн будет положительно сказываться на организме. Если же нагревательный элемент не изолирован, то устройство выделяет короткие волны, вызывающие проблемы со здоровьем.

Важно! Если прибор выделяет коротковолновое излучение, не находитесь возле него долго и держите его на расстоянии от себя.

Помощь пострадавшему от теплового удара

Влияние на человека инфракрасного тепла может привести к тепловому удару. При этом необходимо оказать пострадавшему следующие меры помощи:

  • поместить его в прохладное место,
  • высвободить от тесной одежды,
  • приложить холод на шею, голову, область сердца, позвоночник и паховые промежности,
  • обернуть человека в намоченную холодной водой простыню,
  • включить вентилятор и направить на пострадавшего воздух,
  • часто поить холодным,
  • провести искусственное дыхание, если возникла потребность,
  • вызвать скорую помощь.

Заключение

Понимая природу ИК-лучей, мы осознаем их незаменимость для жизни и нормального функционирования человеческого организма. Несмотря на пользу инфракрасного излучения для человека, оно может наносить и непоправимый вред, если действуют в коротковолновом диапазоне. Поэтому будьте осторожны, попадая под влияние инфракрасного света. Учитывайте противопоказания, которые к нему имеются. А если тепловой удар случился с кем-то из окружающих, окажите ему необходимую помощь.

Существуют разные источники инфракрасного излучения. В настоящее время они находятся в бытовой технике, системах автоматики, охраны, а также используются при сушке промышленных изделий. Источники инфракрасного света при правильной эксплуатации не влияют на человеческий организм, поэтому изделия пользуются огромной популярностью.

История открытия

На протяжении многих веков изучением природы и действия света занимались выдающиеся умы.

Инфракрасный свет был обнаружен в начале 19 века с помощью исследований астронома В. Гершеля. Суть его заключалась в изучении нагревательных способностей различных солнечных участков. К ним ученый подносил термометр и следил за возрастанием температуры. Данный процесс наблюдался, когда прибор коснулся красной границы. В. Гершель сделал вывод, что существует некое излучение, которое нельзя увидеть зрительно, но возможно определить с помощью термометра.

Инфракрасные лучи: применение

Они широко распространены в жизни человека и нашли свое применение в разных сферах:

  • Военное дело. Современные ракеты и боеголовки, способные самостоятельно наводиться на цель, снабжены которые являются результатом применения инфракрасного излучения.
  • Термография. Инфракрасное излучение применяют для изучения перегретых или переохлажденных местностей. Инфракрасные снимки также применяются в астрономии для обнаружения небесных тел.
  • Быт. Большую популярность получили , функционирование которых направлено на нагрев предметов интерьера и стен. Затем они отдают тепло пространству.
  • Дистанционное управление. Все существующие пульты для телевизора, печей, кондиционеров и т.д. снабжены инфракрасными лучами.
  • В медицине инфракрасными лучами проводят лечение и профилактику различных заболеваний.

Рассмотрим, где применяются данные элементы.

Инфракрасные газовые горелки

Инфракрасная горелка служит для обогрева различных помещений.

Сначала она использовалась для теплиц, гаражей (то есть нежилых помещений). Однако современные технологии позволили применять ее даже в квартирах. В народе такую горелку называют прибором солнца, так как во включенном состоянии рабочая поверхность оборудования напоминает солнечный свет. Со временем такие устройства заменили масляные обогреватели и конвекторы.

Главные особенности

Инфракрасная горелка отличается от других приборов способом нагрева. Передача теплоты осуществляется за счет которые не заметны для человека. Такая особенность позволяет теплу проникать не только в воздух, но и на предметы интерьера, которые в дальнейшем также повышают температуру в помещении. Инфракрасный излучатель не сушит воздух, потому что лучи в первую очередь направлены на предметы интерьера и стены. В дальнейшем передача теплоты будет осуществляться от стен или предметов непосредственно пространству комнаты, причем процесс происходит за несколько минут.

Положительные стороны

Главным преимуществом таких приборов является быстрый и легких обогрев помещения. Например, чтобы нагреть холодную комнату до температуры +24ºС, потребуется 20 минут. В процессе не возникает движение воздуха, который способствует образованию пыли и больших загрязнений. Поэтому инфракрасный излучатель устанавливают в помещениях те люди, которые имеют аллергию.

Кроме того, инфракрасные лучи, попадая на поверхность с пылью, не вызывают ее горение, и, как следствие, нет запах горелой пыли. Качество обогрева и долговечность прибора зависит от нагревательного элемента. В таких устройствах используется керамический тип.

Стоимость

Цена таких устройств довольна низка и доступна всем слоям населения. Например, газовая горелка стоит от 800 рублей. Целую печку можно приобрести за 4000 рублей.

Сауна

Что собой представляет инфракрасная кабина? Это специальное помещение, которое строится из натуральных сортов дерева (например, кедра). В него устанавливаются инфракрасные излучатели, действующие на дерево.

Во время нагрева выделяются фитонциды — полезные компоненты, которые предотвращают развитие или появление грибков и бактерий.

Такая инфракрасная кабина в народе называется сауной. Внутри помещения температура воздуха достигает 45ºС, поэтому находиться в нем довольно комфортно. Такая температура позволяет прогреть человеческое тело равномерно и глубоко. Поэтому тепло не воздействует на сердечно-сосудистую систему. Во время процедуры удаляются накопленные токсины и шлаки, ускоряется обмен веществ в организме (за счет быстрого движения крови), также ткани обогащаются кислородом. Однако выделение пота — это не главное свойство инфракрасной сауны. Она направлена на улучшение самочувствия.

Влияние на человека

Такие помещения благотворно сказываются на организме человека. Во время процедуры прогреваются все мышцы, ткани и кости. Ускорение кровообращения влияет на обмен веществ, который помогает насытить мышцы и ткани кислородом. Кроме того, инфракрасную кабину посещают с целью профилактики различных заболеваний. Большинство людей оставляет только положительные отзывы.

Негативное воздействие инфракрасного излучения

Источники инфракрасного излучения могут вызывать не только положительное воздействие на организм, но и наносить ему вред.

При длительном воздействии лучей происходит расширение капилляров, что приводит к появлению покраснения или ожогов. Особый вред источники инфракрасного излучения наносят органам зрения — это образование катаракты. В некоторых случаях у человека появляются судороги.

На организм человека влияют короткие лучи, вызывая При повышении температуры головного мозга на несколько градусов наблюдается ухудшение состояния: потемнение в глазах, головокружение, тошнота. Дальнейший рост температуры может привести к образованию менингита.

Ухудшение или улучшение состояния происходит за счет интенсивности электромагнитного поля. Она характеризуется температурой и расстоянием до источника излучения тепловой энергии.

Длинные волны инфракрасного излучения играют особую роль в разных процессах жизнедеятельности. Короткие же больше влияют на человеческий организм.

Как предотвратить вредное влияние ИК-лучей?

Как говорилось ранее, отрицательное воздействие на человеческий организм оказывает короткое тепловое излучение. Рассмотрим примеры, в которых ИК-излучение опасно.

На сегодняшний день вредить здоровью могут инфракрасные нагреватели, излучающие температуру выше 100ºС. Среди них выделяют следующие:

  • Промышленное оборудование, излучающее лучистую энергию. Чтобы предотвратить негативное воздействие, следует использовать спецодежду и теплозащитные элементы, а также проводить профилактические мероприятия среди работающего персонала.
  • Инфракрасный прибор. Самым известным обогревателем является печь. Однако она уже давно вышла из обихода. Все чаще в квартирах, загородных домах и дачах стали использовать электрические инфракрасные нагреватели. В его конструкции предусмотрен нагревательный элемент (в виде спирали), который защищен специальным теплоизолирующим материалом. Такое воздействие лучей не вредит человеческому организму. Воздух в обогреваемой зоне не сушится. Нагреть помещение можно за 30 минут. Сначала инфракрасное излучение нагревает предметы, а уже они и всю квартиру.

Инфракрасное излучение широко применяется в различных сферах, начиная с промышленной и заканчивая медициной.

Однако обращаться с ними следует аккуратно, так как лучи могут оказать негативное воздействие на человека. Все зависит от длины волны и расстояния до нагревательного прибора.

Итак, мы выяснили, какие существуют источники инфракрасного излучения.

Гамма-излучение Ионизирующее Реликтовое Магнито-дрейфовое Двухфотонное Спонтанное Вынужденное

Инфракра́сное излуче́ние - электромагнитное излучение , занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм) и микроволновым излучением (λ ~ 1-2 мм).

Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50 % излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми и фотоэлектрическими приемниками, а также специальными фотоматериалами .

Сейчас весь диапазон инфракрасного излучения делят на три составляющих:

  • коротковолновая область: λ = 0,74-2,5 мкм;
  • средневолновая область: λ = 2,5-50 мкм;
  • длинноволновая область: λ = 50-2000 мкм;

Последнее время длинноволновую окраину этого диапазона выделяют в отдельный, независимый диапазон электромагнитных волн - терагерцовое излучение (субмиллиметровое излучение).

Инфракрасное излучение также называют «тепловым » излучением, так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы.

История открытия и общая характеристика

Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем . Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.

Ранее лабораторными источниками инфракрасного излучения служили исключительно раскаленные тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней инфракрасной-области (до ~1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы . Излучение в дальней ИК-области регистрируется болометрами - детекторами, чувствительными к нагреву инфракрасным излучением .

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решетки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте .

Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов .

Применение

Медицина

Инфракрасные лучи применяются в физиотерапии .

Дистанционное управление

Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления , системах автоматики, охранных системах, некоторых мобильных телефонах (инфракрасный порт) и т. п. Инфракрасные лучи не отвлекают внимание человека в силу своей невидимости.

Интересно, что инфракрасное излучение бытового пульта дистанционного управления легко фиксируется с помощью цифрового фотоаппарата .

При покраске

Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей. Инфракрасный метод сушки имеет существенные преимущества перед традиционным, конвекционным методом. В первую очередь это, безусловно, экономический эффект. Скорость и затрачиваемая энергия при инфракрасной сушке меньше тех же показателей при традиционных методах.

Стерилизация пищевых продуктов

С помощью инфракрасного излучения стерилизируют пищевые продукты с целью дезинфекции.

Антикоррозийное средство

Инфракрасные лучи применяются с целью предотвращения коррозии поверхностей, покрываемых лаком.

Пищевая промышленность

Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа, мука и т. п. на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал , белок , липиды). Конвейерные сушильные транспортёры с успехом могут использоваться при закладке зерна в зернохранилища и в мукомольной промышленности.

Кроме того, инфракрасное излучение повсеместно применяют для обогрева помещений и уличных пространств. Инфракрасные обогреватели используются для организации дополнительного или основного отопления в помещениях (домах, квартирах, офисах и т. п.), а также для локального обогрева уличного пространства (уличные кафе, беседки, веранды).

Недостатком же является существенно большая неравномерность нагрева, что в ряде технологических процессов совершенно неприемлемо.

Проверка денег на подлинность

Инфракрасный излучатель применяется в приборах для проверки денег. Нанесенные на купюру как один из защитных элементов, специальные метамерные краски возможно увидеть исключительно в инфракрасном диапазоне. Инфракрасные детекторы валют являются самыми безошибочными приборами для проверки денег на подлинность. Нанесение на купюру инфракрасных меток, в отличие от ультрафиолетовых, фальшивомонетчикам обходится дорого и соответственно экономически невыгодно. Потому детекторы банкнот со встроенным ИК излучателем, на сегодняшний день, являются самой надежной защитой от подделок.

Опасность для здоровья

Сильное инфракрасное излучение в местах высокого нагрева может вызывать опасность для глаз. Наиболее опасно, когда излучение не сопровождается видимым светом. В таких местах необходимо надевать специальные защитные очки для глаз.

См. также

Другие способы теплопередачи

Способы регистрации (записи) ИК-спектров.

Примечания

Ссылки

Инфракрасное излучение – один из типов электромагнитного излучения, что граничит с красной частью спектра видимого света с одной стороны и микроволнами – с другой. Длина волны – от 0.74 до 1000-2000 микрометров. Инфракрасные волны называют еще «тепловыми». Исходя из длины волны, их классифицируют на три группы:

коротковолновые (0.74-2.5 микрометров);

средневолновые (длиннее 2.5, короче 50 микрометров);

длинноволновые (больше 50 микрометров).

Источники инфракрасного излучения

На нашей планете инфракрасное излучение отнюдь не редкость. Практически любое тепло – эффект воздействия инфракрасных лучей. Неважно что это: солнечный свет, тепло наших тел или нагрев, исходящий от отопительных приборов.

Инфракрасная часть электромагнитного излучения греет не пространство, а непосредственно сам объект. Именно на этом принципе построена работа инфракрасных ламп. Да и Солнце обогревает Землю аналогичным образом.

Влияние на живые организмы

На данный момент, науке неизвестны подтвержденные факты негативного влияния инфракрасных лучей на организм человека. Разве что из-за чересчур интенсивного излучения может повредиться слизистая оболочка глаз.

А вот о пользе можно говорить очень долго. Еще в 1996 году, ученые из США, Японии и Голландии подтвердили ряд позитивных медицинских фактов. Тепловое излучение:

уничтожает некоторые из видов вируса гепатита;

подавляет и замедляет рост раковых клеток;

обладает способностью нейтрализации вредных электромагнитных полей и излучения. В том числе и радиоактивного;

помогает вырабатывать инсулин диабетиками;

может помочь при дистрофии;

улучшение состояния организма при псориазе.

Под улучшается самочувствие, внутренние органы начинают работать эффективнее. Увеличивается питание мускулов, изрядно повышается сила иммунной системы. Известный факт, что при отсутствии инфракрасного излучения, организм ощутимо быстрее стареет.

Инфракрасные лучи еще называют «лучами жизни». Именно под их воздействием зародилась жизнь.

Использование инфракрасных лучей в быту человека

Инфракрасный свет используют не менее широко, чем он распространен. Пожалуй, будет очень сложно найти хоть одну область народного хозяйства, где не нашла себе применения инфракрасная часть электромагнитных волн. Перечислим самые известные сферы применения:

военное дело. Самонаведение боеголовок ракет или приборы ночного видения – это все результат использования инфракрасного излучения;

термография широко используется в науке для определения перегретых или переохлажденных частей исследуемого объекта. Инфракрасные снимки также широко используются в астрономии, наряду с другими типами электромагнитных волн;

бытовые обогреватели. В отличие от конвекторов, такие устройства с помощью лучистой энергии нагревают все объекты помещения. А уже дальше, предметы интерьера отдают тепло окружающему воздуху;

передача данных и дистанционное управление. Да, все пульты от телевизоров, магнитофонов и кондиционеров используют инфракрасные лучи;

дезинфекция в пищевой промышленности

медицина. Лечение и профилактика многих разнотипных заболеваний.

Инфракрасные лучи – относительно небольшая часть электромагнитного излучения. Являясь естественным способом передачи тепла, без него не обходится ни один жизненный процесс на нашей планете.