Являются ли источниками ультрафиолетового излучения солнце. Негативное влияние УФ. Является ли темная окраска линз гарантией защиты от ультрафиолетового излучения

Солнце посылает нам свет, тепло и ультрафиолетовое (УФ) излучение. Все мы подвергаемся воздействию ультрафиолетового излучения, поступающего от солнца, а также от искусственных источников, используемых в промышленности, торговле и других отраслях экономики.

Область ультрафиолетового излучения включает волны диапазоном 100 – 400 нм и условно делится на три группы:

  • УФ-А (UVA) (315–400 нм)
  • УФ-В (UVB) (280–315 нм)
  • УФ-С (UVC) (100–280 нм)
Все UVC излучения и приблизительно 90% UVB излучений при прохождении сквозь атмосферу поглощаются озоном, парами воды, кислородом и углекислым газом. Менее всего подвергается воздействию атмосферы UVA излучение. Таким образом, ультрафиолетовое излучение, достигающее Земную поверхность, в основном состоит из UVA и небольшой части UVB излучений.

Влияние природных факторов на уровень ультрафиолетового излучения:

Высота Солнца

Чем выше в небе находится солнце, тем выше уровень ультрафиолетового излучения. Следовательно,уровень ультрафиолетового излучения меняется в зависимости от времени суток и времени года. Вне тропиков наивысшая степень излучения наблюдается в летние месяцы при нахождении солнца в зените в районе полудня.

Широта

При приближении к экваториальным регионам степень излучения повышается.

Облачность

Степень ультрафиолетового излучения выше при безоблачном небе, но даже при наличии облаков степень ультрафиолетового излучения может быть высока. В этом случае ультрафиолетовое излучение, рассеиваясь, отражается различными поверхностями, и поэтому общий уровень ультрафиолетового излучения может быть достаточно высок.

Высота

При увеличении высоты уменьшающийся слой атмосферы поглощает ультрафиолетовое излучение в меньшей степени. С увеличением высоты на каждые 1000 м уровень ультрафиолетового излучения возрастает на 10% - 12%.

Озон

Озоновый слой поглощает часть ультрафиолетового излучения, направленного на земную поверхность. Толщина озонового слоя меняется в течение года и даже суток.

Отражение от поверхности Земли

Ультрафиолетовое излучение отражается или рассеивается в разной степени различными поверхностями, например, чистый снег может отражать до 80% ультрафиолетового излучения, сухой прибрежный песок около 15%, морская пена около 25%.
  1. Более 90% УФ излучения может проникать сквозь небольшую облачность.
  2. Чистый снег отражает до 80% УФ излучения.
  3. УФ излучение усиливается на 4% при подъеме на каждые 300 м.
  4. Люди, работающие в помещении, за год подвергаются воздействию УФ излучения в 5-10 раз меньше, чем люди, работающие вне помещений.
  5. В воде на глубине 0,5 м уровень УФ излучения составляет 40% от уровня УФ излучения на поверхности.
  6. 60% от общего количества УФ излучения мы получаем в промежуток времени от 10-00 до 14-00 ч.
  7. Тень уменьшает уровень УФ-излучения на 50% и более.
  8. Белый песок отражает до 15% УФ излучения.

Влияние ультрафиолетового излучения на здоровье

Небольшое количество ультрафиолетового излучения полезно и необходимо для выработки витамина Д. Ультрафиолетовое излучение также используется для лечения некоторых болезней, в их числе рахит, псориаз и экзема. Лечение проводится под медицинским наблюдением, принимая в расчет пользу лечения и риск от воздействия ультрафиолетового излучения.
Однако длительное воздействие ультрафиолетового излучения на человека может привести к острым и хроническим поражениям кожи, глаз и имунной системы.
Популярным заблуждением является то, что только светлокожое население должно быть обеспокоено чрезмерным "пребыванием на солнце". Более темная кожа имеет большее содержание защитного пигмента меланина. У людей с такой кожей наблюдается меньший процент развития рака кожи. Однако рак кожи диагностируется и у этой группы населения, но часто на более поздней и более опасной стадии.
Риск повреждения глаз и имунной системы ультрафиолетовым излучением не зависит от типа кожи.
Наиболее известными острыми поражениями в результате чрезмерного воздействия ультрафиолетового излучения являются солнечные ожоги и загар, при длительном воздействии ультрафиолетовое излучение вызывает дегенеративные изменения в клетках и кровеносных сосудах, что приводит к преждевременному старению кожи. Ультрафиолетовое излучение может также вызывать острое поражение глаз.
Хронические поражения включают рак кожи и катаракту.
Ежегодно отмечается 2-3 миллиона случаев заболевания незлокачественным раком кожи и 132000 случая заболевания меланомой кожи. Незлокачественный рак кожи может быть удален хирургическим путем и редко приводит к летальному исходу, злокачественная меланома является одним из показателей причин смертности светлокожего населения.
Ежегодно приблизительно 12 – 15 миллионов человек слепнут по причине катаркты. Согласно проведенным исследованиям до 20% случаев слепоты могут быть вызваны или усилены воздействием солнца, особенно в Индии, Пакистане и других странах, близких к экватору.
Также существует предположение, что ультрафиолетовое излучение может увеличивать риск инфекционных болезней и ограничивать эффективность вакцинаций.
Однако, несмотря на все вышеуказанное, многие считают интенсивное загорание нормальным. Дети, подростки и их родители воспринимают загар как показатель привлекательности и хорошего здоровья.

Группа риска

  • Длительное пребывание на солнце в детстве увеличивает риск развития в дальнейшем рака кожи и может причинить серьезный вред глазам.
  • Все дети до 15 лет имеют чувствительную кожу и глаза – защищайте их и сами подавайте им хороший пример!
  • Дети до одного года не должны находиться под прямыми лучами солнца!
  • Родители, защищайте детей от солнца! Учите их применению солнцезащитных средств и режиму пребывания на солнце!

Влияние истощения озонового слоя на здоровье

Истощение озонового слоя, вероятно, усилит неблагоприятные последствия ультрафиолетового излучения, так как стратосферный озон является его эффективным поглотителем.
С уменьшением озонового слоя защитный фильтр, представляемый атмосферой, уменьшается. Соответственно, население и окружающая среда подвергаются более высокой степени ультрафиолетового излучения, в особенности излучению UVB, которое оказываает большое влияние на здоровье людей, животных, морские организмы и жизнь растений.
Вычислительные модели предсказывают, что уменьшение стратосферного озона на 10% может вызвать дополнительно 300 000 незлокачественных, 4500 злокачественных заболеваний раком кожи и 1,6 – 1,75 миллионов случаев заболевания катарактой ежегодно.

ГЛОБАЛЬНЫЙ СОЛНЕЧНЫЙ УЛЬТРАФИОЛЕТОВЫЙ (УФ) ИНДЕКС

Введение

С 1970-х годов отмечается увеличение количества заболеваний раком кожи среди светлокожего населения. Это увеличение связывается с привычками населения пребывать "на солнце" под его ультрафиолетовым компонентом и общераспространенным мнением о привлекательности и пользе загара.
Таким образом, появляется острая необходимость повышения осведомленности населения о вредном воздействии ультрафиолетового излучения, имеющая целью изменение привычек населения для предотвращения тенденции к увеличению случаев заболевания раком кожи.
Глобальный ультрафиолетовый индекс является упрощенной мерой измерения уровня ультрафиолетовой радиации на поверхности Земли и индикатором потенциальной опасности для кожи. Он служит средством повышения осведомленности населения и предупреждения о необходимости применения защитных мер от воздействия ультрафиолетвого излучения.
УФИ был разработан Всемирной Организацией Здравоохранения при содействии Программы Объединенных Наций об окружающей среде, Всемирной Метеорологической Организации, Международной Комиссии по защите от неионизирующего излучения, Немецкого Федерального Офиса защиты от радиации.
Начиная с первого оглашения в 1995 г., было проведено несколько международных встреч экспертов (Les Diablerets; Baltimore, 1996; Les Diablerets, 1997; Munich, 2000) с целью упорядочения информирования населения об УФИ и активизации использования УФИ как средства защиты от солнца.

Что такое глобальный солнечный ультрафиолетовый индекс?

Глобальный солнечный УФ-индекс (УФИ, UV index, UVI) характеризует уровень солнечного ультрафиолетового излучения у поверхности Земли. УФ-индекс принимает значения от нуля и выше. При этом чем больше значение УФ-индекса, тем больше потенциальная опасность для кожи и глаз человека и тем меньше время, требуемое для причинения вреда здоровью.
Значения УФ-индекса соответствуют уровням воздействия ультрафиолетового излучения солнца по следующим категориям:

Зачем нужен ультрафиолетовый индекс?

УФ-индекс является важным средством повышения осведомленности населения о риске чрезмерного пребывания в зоне ультрафиолетового излучения и предупреждает о необходимости применения солнцезащитных средств. Уровень ультрафиолетового излучения и, следовательно, значения УФ- индекса различны в течение суток. Обычно показывается максимальное значение ультрафиолетового излучения, наблюдаемое в 4-часовой период в районе солнечного полудня. Солнечный полдень длится с 12 часов до 14 часов дня.
Люди, строя планы на день и решая "в чем выйти", обычно руководствуются прогнозом погоды (или видом из окна) и особенно прогнозом температуры воздуха.
Аналогично температурной шкале, УФ-индекс показывает уровень ультрафиолетового излучения и возможную опасность воздействия Солнца.
Зная прогноз УФ-индекса, каждый может сделать выбор, способствующий сохранению здоровья.

Необходимые меры защиты в зависимости от значения УФ-индекса
Защита не требуется Требуется защита Требуется повышенная защита
Пребывание вне
помещения
не представляет
опасности
В полуденные часы
оставайтесь в тени!
Носите одежду
с длинными рукавами и шляпу!
Пользуйтесь солнцезащитным кремом!
Полуденные часы пережидайте
внутри помещения!
Вне помещения оставайтесь в тени!
Обязательно носите одежду
с длинными рукавами, шляпу,
пользуйтесь солнцезащитным кремом!

Даже для людей с очень чувствительной светлой кожей риск причинения вреда здоровью минимален при значениях УФ-индекса ниже 3, и при нормальных обстоятельствах применение защитных средств не требуется.
Защита необходима при значениях УФ-индекса выше 3, усиление защитных мер требуется при значении УФ-индекса 8 и выше. В этом случае нужно использовать все защитные средства:

  • Ограничьте нахождение на солнце в полуденные часы.
  • Оставайтесь в тени.
  • Носите одежду с длинными рукавами.
  • Наденьте широкополую шляпу для защиты глаз, лица и шеи.
  • Защитите глаза очками с прилегающей оправой.
  • Используйте солнцезащитный крем с фактором солнечной защиты (SPF)15+. Не применяйте солнцезащитный крем для продления времени пребывания на солнце.
  • Защитите малышей: это особенно важно.

Мифы и реальность

МИФ РЕАЛЬНОСТЬ
Солнечный загар полезен. Загар- это защита организма от дальнейшего повреждения ультрафиолетовым излучением.
Загар предохраняет от солнца. Темный загар на светлой коже является ограниченной защитой, эквивалентной SPF (солнцезащитному фактору) приблизительно равному 4.
Вы не загорите в облачный день. До 80 % солнечного ультрафиолетового излучения проникает сквозь облачный покров. Туман может увеличивать уровень ультрафиолетового излучения.
Вы не загорите, находясь в воде. Вода представляет минимальную защиту от ультрафиолетового излучения, а отражение от воды может увеличивать уровень ультрафиолетового излучения.
Ультрафиолетовое излучение не опасно зимой. Уровень ультрафиолетового излучения обычно ниже в зимние месяцы, но отражение от снега может его удвоить, особенно на высотах. Будьте особенно осторожны ранней весной, когда температура воздуха невысока, но солнечное УФ-излучение сильно.
Солнцезащитный крем является средством защиты, я могу увеличить время загорания. Солнцезащитный крем должен использоваться не с целью продления времени пребывания "на солнце", а с целью усиления защиты от ультрафиолетового излучения.
Вы не "сгорите", если будете делать перерывы во время загорания. Воздействие ультрафиолетового излучения имеет тенденцию к накоплению в течение дня.
Вы не загорите, если солнечное тепло неощутимо. Солнечный загар вызывается ультрафиолетовым излучением, которое невозможно почувствовать. Ощущая тепло Солнца, мы ощущаем его инфракрасное, а не ультрафиолетовое излучение.

ПОМНИТЕ!

  • Загар не останавливает ультрафиолетовое излучение! Даже если ваша кожа загорела, ограничьте пребывание на солнце в полуденные часы и применяйте меры солнцезащиты.
  • Ограничивайте время загорания! Загар – это указание, что Ваша кожа получила передозировку ультрафиолетового излучения! Защитите свою кожу!
  • Носите солнцезащитные очки, широкополую шляпу и защищающую одежду, пользуйтесь солнцезащитным кремом SPF 15+.
  • Использование солнцезащитного крема - средство не для продления времени вашего пребывания "на солнце", а уменьшения риска пребывания "на солнце" для здоровья.
  • Прием некоторых медикаментов, а также использование духов и дезодорантов делают кожу более чувствительной, вызывая серьезные солнечные ожоги.
  • Пребывание "на солнце" увеличивает риск развития рака кожи, ускоряет старение кожи и вредит глазам. Защитите себя!
  • Тень - одно из лучших средств защиты от солнечной радиации. Постарайтесь оставаться в тени в полуденные часы, когда степень ультрафиолетового излучения наиболее высока.
  • Облачность на небе не предохраняет от загара. Ультрафиолетовое излучение проникает сквозь облака.
  • Помните, что вред коже и глазам наносит ультрафиолетовое излучение, которое нельзя увидеть или почувствовать- НЕ ОБМАНЫВАЙТЕСЬ УМЕРЕННЫМИ ТЕМПЕРАТУРАМИ!
  • Если вы предполагаете находиться на открытом воздухе в течение дня, не забудьте солнцезащитное средство, шляпу и одежду с длинными рукавами.
  • Во время пребывания на горнолыжных склонах не забывайте, что высота и чистый снег могут удвоить ультрафиолетовое излучение, не забывайте о солнцезащитных очках и солнцезащитном креме! В горах уровень ультрафиолетового излучения увеличивается приблизительно на 10% каждые 1000 м.
  • Источники информации:
    1.Материалы сайта Всемирной Организации Здравоохранения (ВОЗ).
    http://www.who.int/uv/intersunprogramme/activities/uv_index/en/index.html
    2."Global Solar UV Index. A Practical Guide". "Глобальный солнечный УФ-индекс. Практическое руководство.", ВОЗ 2002
    http://www.who.int/uv/publications/globalindex/en/index.html
    Руководство рекомендовано Всемирной Организацией Здравоохранения, Всемирной Метеорологической Организацией, Программой ООН по окружающей среде, Международной Комиссией по защите от неионизирующего излучения.

    Прогноз УФ-индекса и толщины озонового слоя предоставлен.

Свойства ультрафиолетового излучения определяются множеством параметров. Ультрафиолетовым излучением называются невидимое электромагнитное излучение, которое занимает определённую спектральную область между рентгеновским и видимым излучением в пределах соответствующих длин волн. Длина волны ультрафиолетового излучения составляет 400 – 100 нм и оказывает слабые биологические действия.

Чем выше биологическая активность волн данного излучения, тем слабее действие, соответственно, чем ниже длина волны, тем сильнее биологическая активность. Самой сильной активностью обладают волны с длиной 280 – 200 нм, которые оказывают бактерицидные действия и активно воздействуют на ткани организма.

Частота ультрафиолетового излучения тесно связана с длинами волн поэтому чем выше длина волны, тем меньше частоты излучения. Диапазон ультрафиолетового излучения, доходящий до поверхности Земли, составляет 400 – 280 нм, а более короткие волны, исходящие от Солнца поглощаются ещё в стратосфере при помощи озонового слоя .

Область УФ-излучения условно делится на:

  • Ближнюю – от 400 до 200 нм
  • Далёкую – от 380 до 200 нм
  • Вакуумную – от 200 до 10 нм

Спектр же ультрафиолетового излучения зависит от природы происхождения данного излучения и бывает:

  • Линейчатый (излучение атомов, лёгких молекул и ионов)
  • Непрерывный (торможение и рекомбинация электронов)
  • Состоящий из полос (излучение тяжёлых молекул)

Свойства УФ излучения

Свойствами ультрафиолетового излучения является химическая активность, проникающая способность, невидимость, уничтожение микроорганизмов, благотворное влияние на организм человека (в небольших дозах) и отрицательное воздействие на человека (в больших дозах). Свойства ультрафиолетового излучения в оптической области имеют значительные отличия от оптических свойств ультрафиолета видимой области. Наиболее характерной чертой является увеличение особого коэффициента поглощения, который приводит к уменьшению прозрачности многих тел, обладающих прозрачностью в видимой области .

Коэффициент отражения различных тел и материалов уменьшается с учётом уменьшения длины волны самого излучения. Физика ультрафиолетового излучения соответствует современным представлениям и перестаёт быть самостоятельной динамикой при высоких энергиях, а также объединяется в одну теорию со всеми калибровочными полями.

А вы знаете, что различно при разной интенсивности такого излучения? Прочитайте подробную информацию о полезных и вредных дозах УФ излучения в одной из наших статей.

У нас также доступна информация об использовании на приусадебном участке. Многие дачники уже используют солнечные батареи в своих домах. Попробуйте и вы, прочитав наш материал.

История открытия ультрафиолетового излучения

Ультрафиолетовое излучение, история открытия которого приходится на 1801 год, было озвучено лишь только в 1842 году. Данное явление было открыто немецким физиком Иоганном Вильгельмом Риттером и получило название «актинического излучения ». Это излучение входило в состав отдельных компонентов света, и играло роль восстановительного элемента.

Само понятие ультрафиолетовых лучей впервые встретилось в истории в 13-ом веке, в труде учёного Шри Мадхачарая, который описал атмосферу местности Бхутакаши, содержащей фиолетовые лучи, невидимые для глаз человека.

В ходе опытов в 1801 году группа учёных выяснила, что свет имеет несколько составляющих отдельных компонентов: окислительный, тепловой (инфракрасный), осветительный (видимый свет) и восстановительный (ультрафиолет).

УФ – излучение является непрерывно действующим фактором окружающей внешней среды и оказывает сильнейшее воздействие на различные физиологические процессы, которые протекают в организмах.

По мнению учёных именно оно сыграло основную роль в протекании эволюционных процессов на Земле. Благодаря данному фактору произошёл абиогенный синтез органических земных соединений, что повлияло на увеличения разнообразия видов жизненных форм.

Выяснилось, что все живые существа, в ходе эволюции приспособились использовать энергию всех частей спектра солнечной энергии. Видимую часть солнечного диапазона — для фотосинтеза, инфракрасную для тепла. Ультрафиолетовые компоненты используются в качестве фотохимического синтеза витамина D , который играет важнейшую роль обменов фосфора и кальция в организме живых существ и человека.

Ультрафиолетовый диапазон располагается от видимого света с коротковолновой стороны, и лучи ближней области воспринимаются человеком в качестве появления на коже загара. Короткие волны вызывают разрушительное воздействие на биологические молекулы.

Ультрафиолетовое излучение солнца имеет биологическую эффективность трёх спектральных участков, которые существенно отличаются один от другого и имеют соответствующие диапазоны, по-разному влияющие на живые организмы.

Данное излучение принимается для лечебных и профилактических целей в определённых дозировках. Для таких лечебных процедур используют специальные искусственные источники облучения, спектр излучения которых состоит из более коротких лучей, что оказывает более интенсивное воздействие на биологические ткани.

Вред от ультрафиолетового излучения приносит сильное воздействие данного источника радиации на организм и может вызвать поражения слизистых оболочек и различные дерматиты кожи . В основном вред от ультрафиолета наблюдается у работников различных сфер деятельности, которые контактируют с искусственными источниками данных волн.

Измерение ультрафиолетового излучения проводится многоканальными радиометрами и спектрорадиометрами непрерывного излучения, которые основаны на использовании вакуумных фотодиодов и фотоидов имеющих ограниченный диапазон длин волн.

Свойства ультрафиолетового излучения фото

Ниже приводим фотографии по теме статьи «Свойства ультрафиолетового излучения». Для открытия галереи фотографий достаточно нажать на миниатюру изображения.

Ультрафиолетовое излучение Солнца и искусственных источников в зависимости от длины волны делят на три диапазона:

  • - область А – длина волны 400-320 нм (длинноволновое ультрафиолетовое излучение УФ-А);
  • - область Б – длина волны 320-275 нм (средневолновое ультрафиолетовое излучение УФ-В);
  • - область С – длина волны 275-180 нм (коротковолновое ультрафиолетовое излучение УФ-С).

В действии длинно, средне и коротковолнового излучения на клетки, ткани и организм имеются существенные различия.

Область А (УФ-А) длинноволновое излучение оказывает разнообразное биологическое действие, вызывает пигментацию кожи и флуоресценцию органических веществ. УФ-А – лучи обладают наибольшей проникающей способностью, что позволяет некоторым атомам и молекулам тела избирательно поглощать энергию УФ-излучения и переходить в неустойчивое возбужденное состояние. Последующий переход в исходное состояние сопровождается выделением квантов света (фотонов), способных инициировать различные фотохимические процессы, прежде всего затрагивающие ДНК, РНК, белковые молекулы.

Фототехнические процессы вызывают реакции и изменения со стороны различных органов и систем, которые составляют основу физиологического и лечебного действия УФ – лучей. Происходящие в облученном УФ – лучами организме сдвиги и эффекты (фотоэритема, пигментация, десенсибилизация, бактерицидный эффект и др.) имеют четкую спектральную зависимость (рис. 1), что и служит основой дифференцированного применения различных участков УФ – спектра.

Рисунок 1 - Спектральная зависимость важнейших биологических эффектов ультрафиолетового излучения

Облучение средневолновыми УФ-лучами вызывает фотолиз белка с образованием биологически активных веществ, а воздействие коротковолновыми лучами чаще приводит к коагуляции и денатурации белковых молекул. Под воздействием УФ-лучей диапазонов В и С, особенно в больших дозировках, происходят изменения в нуклеиновых кислотах, в результате чего возможно возникновение клеточных мутаций.

В то же время длинноволновые лучи приводят к образованию специфического фермента фотореактивации, способствующего восстановлению нуклеиновых кислот.

  1. Наиболее широко УФ-излучение используется с лечебными целями.
  2. Используются УФ-лучи также для стерилизации и дезинфекции воды, воздуха, помещений, предметов и т. д.
  3. Весьма распространено их применение с профилактическими и косметическими целями.
  4. Применяют УФ-излучение и с диагностическими целями, для определения реактивности организма, в люминисцентных методах.

УФ-излучение – жизненно необходимый фактор, а его длительный недостаток ведет к развитию своеобразного симптомокомплекса, имеющего «световым голоданием» или «УФ-недостаточностью». Наиболее часто он проявляется развитием авитаминоза D, ослаблением защитных иммунобиологических реакций организма, обострением хронических заболеваний, функциональными расстройствами нервной системы и т. д.К контингентам, испытывающим «УФ-недостаточность», относятся рабочие шахт, рудников, метро, люди работающие в бесфонарныхи безоконных цехах, машинных отделениях и на Крайнем Севере.

Ультрафиолетовое облучение

Ультрафиолетовое облучение производится различными искусственными изделиями с отличными друг от друга длинами волн λ. Поглощение УФ-лучей сопровождается рядом первичных фотохимических и фотофизических процессов, которые зависят от их спектрального состава и определяют физиологическое и лечебное действие фактора на организм.

Длинноволновые ультрафиолетовые (ДУФ) лучи стимулируют пролиферацию клеток мальпигиевого слоя эпидермоса и декарбоксилирование тирозина с последующим образованием в клетках шиповидногослоя. Далее идет стимулирование синтеза АКТГ и других гармонов и т. д. Получаются различные иммунологические сдвиги.

ДУФ-лучи оказывают более слабое, чем другие УФ-лучи биологическое, в том числе и эритемообразующее действие. Для усиления чувствительности кожи к ним используют фотосенсибилизаторы, чаще всего соединения фурокумаринового ряда (пувален, бероксан, псорален, амминофурин и др.)

Это свойство длинноволнового излучения позволяет его применять при лечении кожных заболеваний. Метод ПУВА-терапии (используется и салициловый спирт).

Таким образом можно выделить основные характеристики лечебных эффектов ДУФ-лучей:

  1. Лечебными эффектами являются
  • - фотосенсибилизирующий,
  • - пигментообразующий,
  • - иммуностимулирующий.
  1. ДУФ-лучи, как и другие области УФ-излучения вызывают изменение функционального состояния ЦНС и ее высшего отдела коры головного мозга. За счет рефлекторной реакции улучшается кровообращение, усиливается секторная активность органов пищеварения и функциональное состояние почек.
  2. ДУФ-лучи влияют на обмен веществ, прежде всего минеральный и азотный.
  3. Широко применяют местные аппликации фотосенсибилизаторов при ограниченных формах псориаза. В последнее время с успехом в качестве сенсибилизатора используют УФ-В как обладающее большей биологической активностью. Комбинированное облучение УФ-А и УФ-В называют селективным облучением.
  4. ДУФ-лучи используют как для местных, так и для общих облучений. Основными показаниями для их применения являются:
  • - кожные заболевания (псориаз, экзема, витилиго, себорея и др.)
  • - хронические воспалительные заболевания внутренних органов (особенно органов дыхания)
  • - заболевания органов опоры и движения различной этнологии
  • - ожоги, отморожения
  • - вялозаживающие раны и язвы, косметические цели.

Протвопоказания

  • - острые противовоспалительные процессы,
  • - заболевания печени и почек с выраженным нарушением их функций,
  • - гипертиреоз,
  • - повышенная чувствительность к ДУФ-излучениям.

Средневолновое ультрафиолетовое (СУФ) излучение обладает выраженным и разносторонним биологическим действием.

При поглощении квантов СУФ-излучения в коже образуются низкомолекулярные продукты фотолиза белка и продукты перекисного окисления липидов. Они вызывают изменения ультраструктурной организации биологических мембран, белково-липидных комплексов, мембранных ферментов и их важнейших физико-химических и функциональных свойств.

Продукты фотораспада активируют систему мононуклеарных фагоцитов и вызывают дегрануляцию лаброцитов и базофилов. В результате в облученной области и прилежащих тканях происходит выделение биологически активных веществ (кининн, простогландинн, гепарин, лейкотриены, тромбоксаны и др.) и вазоактивных медиаторов (ацетилхолин, гистамин), которые существенно увеличивают проницаемость и тонус сосудов, а также способствуют расслаблению гладкой мускулатуры. Вследствие гумаральных механизмов увеличивается количество функционирующих капилляров кожи, нарастает скорость местного кровотока, что ведет к формированию эритомы.

Повторные СУФ-облучения могут привести к появлению быстро исчезающей пигментации, способствующей повышению барьерной функции кожи, повышают ее холодовую чувствительность и резистентность к действию токсических веществ и неблагоприятных факторов.

Как эритемная реакция, так и другие сдвиги, вызываемые СУФ-лучами зависят не только от длины волны, но и от дозировки. В фототерапии его применяют в эритемных и субэритемных дозах.

Облучение СУФ-лучами в субэритемных дозировках способствует образованию в коже витамина D, который после его биотрансформации в печени и почках участвует в регуляции фосфорно-кальциевого обмена в организме. СУФ-облучение способствует образованию не только витамина D1, но и его изомера – эргокальцифемина (витамина D2). Последний обладает антирахитическим действием, стимулирует аэробный и анаэробный пути клеточного дыхания. СУФ-лучи в небольших дозировках также модулируют обмен других витаминов (А и С) вызывают активизацию метаболических процессов в облученных тканях. Под их влиянием активируется адаптационно-трофическая функция симпатической нервной системы, нормализуются нарушенные процессы различных видов обмена веществ, сердечнососудистая деятельность.

Таким образом СУФ-излучение обладает выраженным биологическим действием. В зависимости от фазы облучения можно получить эритему на коже и слизистых оболочках или проводить лечение в дозе, не вызывающей ее. Механизм лечебного действия эритемных и безэритемных доз СУФ различный, следовательно будут различными и показания к применению ультрафиолетового излучения.

Ультрафиолетовая эритема появляется на месте облучения УФ-В через 2-8 ч и связана с гибелью клеток эпидермиса. Продуты фотолиза белков поступают в ток крови и вызывают расширение сосудов, отек кожи, миграцию лейкоцитов, раздражение многочисленных рецепторов, ведущие к возникновению ряда рефлекторных реакций организма.

Кроме того, продукты фотолиза, попадающие в ток крови, оказывают гуморальное действие на отдельные органы, нервную и эндокринную системы организма. Явления асептического воспаления постепенно стихают к седьмому дню, оставляя после себя пигментацию кожи на месте облучения.

Основные лечебные эффекты СУФ-илучения:

  1. СУФ –излучения являются витаминно образующий, трофостимулирующий, иммуномодулирующий – это субэритемные дозы.
  2. Протиивовоспалиительный, анальгетический, десенсибилизирующий – это эритемная доза.
  3. Бронхиальные болезни, астма, закаливание – это безэритемная доза.

Показания к местному применению УФ-В (субэритемные и эритемные дозы):

  • - острый неврит
  • - острый меозит
  • - гнойничковые заболевания кожи (фурукул, карбункул, сикоз и др)
  • - рожа
  • - трофические язвы
  • - вялозаживающие раны
  • - пролежни
  • - воспалительные и посттравматические заболевания суставов
  • - ревматоидный артрит
  • - бронхиальная астма
  • - острый и хронический бронхит
  • - острые респературные заболевания
  • - воспаления придатков матки
  • - хронический тонзиллит.

Безэритемные зоны ультрафиолетового излучения спектра В при общих облучениях организма ликвидируют явления Д-гиповитаминоза, связанного с недостатком солнечного света. Нормализует фосфорно-кальциевый обмен, стимулируют функцию симпатико-адреналовой и гипофизарно-надпочечниковой систем, повышают механическую прочность костной ткани и стимулируют образование костной мозоли, повышают сопротивляемость кожи организма и организма в целом к вредным факторам внешней среды. Уменьшаются аллергические и экссудативные реакции, повышается умственная и физическая работоспособность. Ослабляются другие нарушения в организме, вызванные солнечным голоданием.

Показания к общему применению УФ-В (безэритемные дозы):

  • - D-гиповитаминоз
  • - нарушение обмена веществ
  • - предрасположенность к гнойничковым заболеваниям
  • - нейродермит
  • - псориаз
  • - переломы костей и нарушение образования костной мозоли
  • - бронхиальная астма
  • - хронические заболевания бронхиального аппарата
  • - закаливание организма.

Противопоказания:

  • - злокачественные новообразования
  • - наклонность к кровотечениям
  • - системные заболевания крови
  • - тиреотоксикоз
  • - активный туберкулез
  • - язвенная болезнь желудка и двенадцатиперстной кишки в стадии обострения
  • - гипертоническая болезнь II и III стадии
  • - далекозашедший атеросклероз артерий головного мозга и коронных артерий.

Коротковолновый ультрафиолетовый спектр излучения (КУФ) излучения.

УФ-излучение коротковолнового диапазона является активным физическим фактором, т. к. его кванты обладают наибольшим запасом энергии. Оно способно вызывать денатурацию и фотолиз нуклеиновых кислот и белков за счет избыточного поглащения энергии его квантов различными молекулами, в первую очередь ДНК и РНК.

При действии на микроорганизмы, на клетки это приводит к инактивации их генома и денатурации белка, что ведет к их гибели.

При излучении КУФ-лучей возникает бактерицидный эффект, т. к. прямое попадание их на белок гибельно для клеток вирусов, микроорганизмов и грибов.

КУФ-лучи вызывают после кратковременного спазма расширение кровеносных сосудов, прежде всего субкапелярных вен.

Показания к применению КУФ-излучений:

  • - облучение раневых поверхностей
  • - пролежни и миндалевидных ниш после тонзиллэктомин с бактерицидной цепью
  • - санация носоглотки при острых распиратурных заболеваниях
  • - лечение наружного отита
  • - обеззараживание воздуха в операционных, процедурных, ингаляториях, реанимационных отделениях, палатах больных, детских учреждениях и в школах.

Кожа и ее функция

Кожа человека составляет 18% от массы тела человека и имеет общую площадь 2м2. Состоит кожа из трех анатомически и физиологически тесно взаимосвязанных слоев:

  • - эпидермиса или надкожницы
  • - дермы (собственно кожа)
  • - гиподерма (подкожно жировая подкладка).

Эпидермис построен из различных по форме и строению, послойно расположенных эпителиальных клеток (эпитермоцитов). При этом каждая вышележащая клетка происходит из нижележащей, отражая определенную фазу ее жизни.

Слои эпидермиса распологаются в следующей последовательности (с низу в верх):

  • - базальный (Д) или зародышевый;
  • - слой шиповатых клеток;
  • - слой кератогиалиновых или зернистых клеток;
  • - эпейдиновый или блестящий;
  • - роговой.

Кроме эпидермоцитов в эпидермисе (в базальном слое) располагаются клетки, способные вырабатывать меланин (меланоциты), клетки Лагерганса, Гринстейна и др.

Дерма располагается непосредственно под эпидермисом и отделяется от него основной мембраной. В дерме различают сосочковый и сетчатый слои. Она состоит из коллагеновых, эластических и ретикулиновых (аргирофильных) волокон, между которыми располагается основное вещество.

В дерме, собственно, в коже находится сосочковый слой, богато снабженный кровеносными и лимфатическими сосудами. Здесь же имеются сплетения нервных волокон, дающие начало многочисленным нервным окончаниям в эпидермисе и дерме. В дерме заложены на различных уровнях потовый и сальные железы, волосяные фолликулы.

Подкожная жировая клетчатка является самым глубоким слоем кожи.

Функции кожи сложны и многообразны. Кожа выполняет барьерно - защитную, терморегуляторную, выделительную, обменную, рецепторную и т. д.

Барьерно – защитная функция, считающаяся главнейшей функцией кожи человека и животных, осуществляется за счет различных механизмов. Так, прочный и эластичный роговой слой кожи противостоит механическим влияниям и уменьшает вредное действие химических веществ. Роговой слой, являясь плохим проводником, предохраняет глубжележащие слои от высыхания, охлаждения и действия электрического тока.

Рисунок 2 – Строение кожи

Кожное сало, продукт секреции потовых желез и чешуйки отшелушивающегося эпителия образуют на поверхности кожи эмульсионную пленку (защитную мантию), играющую важную роль в предохранении кожи от воздействия химических, биологических и физических агентов.

Кислая реакция водно-липидной мантии и поверхностных слоев кожи, а также бактерицидные свойства кожного секрета являются важным барьерным механизмом для микроорганизмов.

В защите от световых лучей определенную роль играет пигмент меланин.

Электрофизиологический барьер является основным препятствием проникновения веществ в глубь кожи, в том числе и при электрофорезе. Он располагается на уровне базального слоя эпидермиса и представляет собой электрический слой с разнородными слоями. Наружный слой вследствие кислой реакции имеет «+» заряд, а обращенный внутрь «-». следует иметь в виду, что, с одной стороны, барьерно-защитная функция кожи ослабляет действие физических факторов на организм, а с другой стороны – физические факторы могут стимулировать защитные свойства кожи и тем самым реализовывать лечебные действие.

Физическая терморегуляция организма также является одной из важнейших физиологических функций кожи и имеет непосредственное отношение к механизму действия водолечебных факторов. Она осуществляется кожей путем теплоизлучения в виде инфракрасных лучей (44%) теплопроведения (31%) и испарения воды с поверхности кожи (21%). Важно отметить, что кожа с ее терморегуляторными механизмами играет большую роль в акклиматизации организма.

Секретно-экскреторная функция кожи связана с деятельностью потовых и сальных желез. Она играет важную роль в поддержании гомеостаза организма, в выполнении кожей барьерных свойств.

Дыхательная и резорбционная функция тесно взаимосвязаны. Дыхательная функция кожи, состоящая в поглощении кислорода и выделении углекислоты, в общем балансе дыхания для организма большого значения не имеет. Однако дыхание через кожу может значительно возрастать в условиях высокой температуры воздуха.

Резорбционная функция кожи, ее проницаемость имеют большое значение не только в дерматологии и токсикологии. Значение ее для физиотерапии определяется тем, что химический компонент действия многих лечебных факторов(лекарственных, газовых и минеральных ванн, грязелечения и др.) зависит от проникновения их составных ингредиентов через кожу.

Обменная функция кожи имеет специфические особенности. С одной стороны, в коже происходят только ей присущие обменные процессы (образование кератина, меланина, витамина D и др.), с другой – она принимает активное участие в общем обмене веществ в организме. Особенно велика ее роль в жировом, минеральном, углеводном и витаминном обменах.

Кожа является также местом синтеза биологически активных веществ (гепарина, гистамина, серотонина и др.).

Рецепторная функция кожи обеспечивает ее связь с внешней средой. Эту функцию кожа осуществляет в виде многочисленных условных и безусловных рефлексов благодаря наличию в ней упомянутых выше различных рецепторов.

Считают, что на 1 см2 кожи 100-200 болевых точек 12-15 холодовых, 1-2 тепловые, 25 точек давления.

Взаимосвязь с внутренними органами связана теснейшим образом – изменения кожи отражаются на деятельности внутренних органов, а нарушения со стороны внутренних органов сопровождаются сдвигами в коже. Эта взаимосвязь особенно четко проявляется при внутренних болезнях в виде так называемых рефлексогенных, или болевых, зон Захарина-Геда.

Захарьина-Геда зоны определенные области кожи, в которых при заболеваниях внутренних органов часто появляются отраженные боли, а также болевая и температурная гиперестезия.

Рисунок 3 – Расположение Захарьина-Геда зоны

Такие зоны при заболеваниях внутренних органов выявлены также в области головы. Например, боли в лобно-носовой области соответствует поражению верхушек легких, желудка, печени, устья аорты.

Боли в среднеглазичной области поражению легких, сердца, восходящей аорты.

Боли в лобно-височной области поражению легких, сердца.

Боли в теменной области поражению привратника и верхней части кишечника и т. д.

Зона комфорта область температурных условий внешней среды, вызывающих у человека субъективно хорошее теплоощущение без признаков охлаждения или перегрева.

Для обнаженного человека 17,3 0С – 21,7 0С

Для одетого человека 16,7 0С – 20,6 0С

Импульсная ультрафиолетовая терапия

НИИ энергетики машиностроения МГТУ им. Н. Э. Баумана (Шашковский С. Г. 2000 г) разработал портативный аппарат «Мелитта 01» для локального облучения пораженных поверхностей кожных покрытий, слизистых оболочек высокоэффективным импульсным ультрафиолетовым излучением сплошного спектра в диапазоне 230-380 нм.

Режим работы данного аппарата импульсный-периодический с частотой 1 Гц. В аппарате предусмотрена автоматическая генерация 1, 4, 8, 16, 32 импульсов. Выходная импульсная плотность мощности на расстоянии 5 см от горелки 25 Вт/см2

Показания:

  • - гнойно-воспалительные заболевания кожи и подкожной клетчатки (фурункул, карбункул, гидраденит) в начальный период гидратации и после хирургического вскрытия гнойной полости;
  • - обширные гнойные раны, раны после некрэктомии, раны перед и после проведения аутодермопластики;
  • - гранулирующие раны после ожогов термических, химических, радиационных;
  • - трофические язвы и вялозаживающие раны;
  • - рожистое воспаление;
  • - герпетическое воспаление кожи и слизистых оболочек;
  • - облучение ран перед первичной хирургической обработке и после нее с целью профилактики развития гнойных осложнений;
  • - обеззараживание воздуха помещений, салона автомобиля, автобуса и автомобиля скорой помощи.

Импульсная магнитная терапия с вращающимся полем и изменяющейся частотой повторения импульсов автоматически.

В основе лечебного действия лежат известные физические законы. На электрический заряд, движущиеся по кровеносному сосуду в магнитном поле, действует сила Лоренца, перпендикулярная вектору скорости заряда, постоянная в постоянном и знакопеременная, в переменном, вращающемся магнитном поле. Это явление реализуется на всех уровнях организма (атомарный, молекулярный, субклеточный, клеточный, тканевой).

Действие импульсной магнитной терапии низкой интенсивности оказывает активное влияние на глубоко расположенную мышечную, нервную, костную ткань, внутренние органы, улучшая микроциркуляцию, стимулируя обменные процессы и регенерацию. Электрические токи большой плотности, индуцированные импульсным магнитным полем, активизирую миелинизированные толстые волокна нервов, вследствие чего блокируется афферентная импульсация из болевого очага по спинальному механизму «воротного блока». Болевой синдром ослабляется или устраняется полностью уже во время процедуры или после первых процедур. По степени выраженности обезболивающего эффекта импульсная магнитная терапия сильно превосходит другие виды магнитной терапии.

Благодаря импульсным вращающимся магнитным полям появляется возможность индицирования в глубине тканей без их повреждений электрических полей и токов, значительной интенсивности. Это позволяет получить выраженный терапевтический противоотечный, обезболивающий, противовоспалительный, стимулирующий процессы регенерации, биостимулирующий эффекты действия, которые по степени выраженности превосходят в несколько раз лечебные эффекты, получаемые от всех известных аппаратов низкочастотной магнитотерапии.

Аппараты импульсной магнитной терапии являются современным эффективным средством лечения травматических повреждений, воспалительных, дегеративно-дистрофических заболеваний нервной и опорно-двигательной системы.

Лечебные эффекты импульсной магнитной терапии: анальгетический, противоотечный, противовоспалительный, вазоактивный, стимулирующий процессы регенерации в поврежденных тканях, нейростимулирующий, миостимулирующий.

Показания:

  • – заболевания и травматические повреждения ЦНС (ишемический инсульт головного мозга, преходящее нарушение мозгового кровообращения, последствия черепно-мозговой травмы с двигательными расстройствами, закрытые травмы спинного мозга с двигательными на рушениями, детский церебральный паралич, функционально истерические параличи),
  • - травматические повреждения опорно-двигательной системы (ушибы мягких тканей, суставов, костей, растяжение связок, закрытые переломы костей и суставов при иммобилизации, в стадии репаративной регенерации, открытые переломы костей, суставов, ранения мягких тканей при иммобилизации,в стадии репаративной регенерации, гипотрофия, атрофия мышц в результате гиподинамии, вызванной травматическими повреждениями опорно-двигательной системы),
  • - воспалительные дегенеративно-дистрофические повреждения опорно-двигательной системы (деформирующий остеоартроз суставов с явлениями синовита и без явлений синовита, распространенный остеохондроз, деформирующий спондилез позвоночника с явлениями вторичного корешкового синдрома, шейный радикулит с явлениями плечелопаточного переатрита, грудной радикулит, пояснично-крестцовый радикулит, анкилозирующий спондилоатрит, сколиотическая болезнь у детей),
  • - хирургические воспалительные заболевания (послеоперационный период после оперативных вмешательств на опорно-двигательном аппарате, коже и подкожной клетчатке, вялозаживающие раны, трофические язвы, фурункулы, карбункулы, флегмоны после хирургического вмешательства, маститы),
  • - заболевания бронхолегочной системы (бронхиальная астма легкой и средней степени тяжести, хронический бронхит),
  • - заболевания органов пищеварения (гипомоторно-эвакуаторные нарушения функции желудка после желудка и ваготомии, гипомоторная дисфункция толстой кишки, желудка и желчного пузыря, хронический гепатит с умеренным нарушением функции печени, хронический панкреатит с секреторной недостаточностью),
  • - заболевания сердечно-сосудистой системы (оккклюзионные поражения переферических артерий атеросклеротического генеза),
  • - урологические заболевания (камень в мочеточнике, состояние после литотрипсии, атония мочевого пузыря, слабость сфинкера и детрузора, простатит),
  • - гинекологические заболевания (воспалительные заболевания матки и придатков, заболевания, обусловленные гипофункцией яичников),
  • - хронический простатит и сексуальные расстройства у мужчин,
  • - стоматологические заболевания (пародонтоз, пломбировочные боли).

Противопоказания:

  • - выраженная гипотония,
  • - системные заболевания крови,
  • - наклонности к кровотечениям,
  • - тромбофлебит,
  • - тромбоэмболическая болезнь, переломы костей до иммобилизации,
  • - беременность,
  • - тиреотоксикоз и узловой зоб,
  • - абсцесс, флегмоны (до вскрытия и дренирования полостей),
  • - злокачественные новообразования,
  • - лихорадочное состояние,
  • - желчекаменная болезнь,
  • - эпилепсия.

Предупреждение:

Импульсную магнитную терапию нельзя применять при наличии имплантированного кардиостимулятора, так как индуцированные электропотенциалы могут нарушать его работу; при различных металлических свободно лежащих в тканях организма предметах (например, осколки при ранениях), если они находятся на расстоянии менее 5 см от индукторов, поскольку при прохождении импульсов магнитного поля предметы из электропроводных материалов (сталь, медь и др.) могут совершать движения и вызывать повреждения окружающих тканей. Воздействовать на область головного мозга, сердца и глаза не допускается.

Большой интерес представляет создание импульсных магнитных аппаратов низкой интенсивности (20-150 мТл) с частотой следования импульсов, приблизительно совпадающей с частотой собственных биопотенциалов органов (2-4-6-8-10-12 Гц). Это позволило бы оказывать биорезонансное воздействие на внутренние органы (печень, поджелудочная железа, желудок, легкие) импульсным магнитным полем и положительно влиять на их функцию. Уже известно, что положительно ИМП влияет на частоте 8-10 Гц на функцию печени у больных с токсическим (алкогольным) гепатитом.

Ультрафиолетовое излучение в медицине используется в оптическом диапазоне 180-380 нм (интегральный спектр), который подразделяется на коротковолновую область (С или КУФ) - 180-280 нм, средневолновую (В) - 280-315 нм и длинноволновую (А) - 315-380 нм (ДУФ).

Физическое и физиологическое действие ультрафиолетового излучения

Проникает в биологические ткани на глубину 0,1-1 мм, поглощается молекулами нуклеиновых кислот, белков и липидов, обладает энергией фотонов достаточной для разрыва ковалентных связей, электронного возбуждения, диссоциации и ионизации молекул (фотоэлектрический эффект), что приводит к образованию свободных радикалов, ионов, перекисей (фотохимический эффект), т.е. происходит последовательное превращение энергии электромагнитных волн в энергию химическую.

Механизм действия УФ-излучения - биофизический, гуморальный и нервно-рефлекторный :

Изменение в электронной структуре атомов и молекул, ионной конъюктуры, электрических свойств клеток;
- инактивация, денатурация и коагуляция белка;
- фотолизис - распад сложных белковых структур - выделение гистамина, ацетилхолина, биогенных аминов;
- фотооксидация - усиление окислительных реакций в тканях;
- фотосинтез - репаративный синтез в нуклеиновых кислотах, устранение повреждений в ДНК;
- фотоизомеризация - внутренняя перегруппировка атомов в молекуле, вещества приобретают новые химические и биологические свойства (провитамин - Д2 , Д3),
- фоточувствительность;
- эритема, при КУФ развивается 1,5-2 час, при ДУФ - 4-24 час;
- пигментация;
- терморегуляция.

Ультрафиолетовое излучение оказывает действие на функциональное состояние различных органов и систем человека :

Кожа;
- центральная и периферическая нервная система;
- вегетативная нервная система;
- сердечно-сосудистая система;
- система крови;
- гипоталямус-гипофиз-надпочечники;
- эндокринная система;
- все виды обмена веществ, минеральный обмен;
- органы дыхания, дыхательный центр.

Лечебное действие ультрафиолетового излучения

Реакция со стороны органов и систем находится в зависимости от длины волны, дозы и методики воздействия У Ф-излучения.

Местное облучение :

Противовоспалительное (А, В, С);
- бактерицидное (С);
- болеутоляющее (А, В, С);
- эпителизирущее, регенерирующее (А, В)

Общее облучение :

Стимулирующее реакции иммунитета (А, В, С);
- десенсибилизирующее (А, В, С);
- регулирование витаминного баланса «Д», «С» и обменных процессов (А, В).

Показания к УФО-терапии :

Острый, подострый и хронический воспалительный процесс;
- травма мягких тканей и костей;
- рана;
- кожные заболевания;
- ожог и отморожение;
- трофическая язва;
- рахит;
- заболевания опорно-двигательного аппарата, суставов, ревматизм;
- инфекционные заболевания - грипп, коклюш, рожистое воспаление;
- болевой синдром, невралгия, неврит;
- бронхиальная астма;
- ЛОР-болезни - тонзиллит, отит, аллергический ринит, фарингит, ларингит;
- компенсация солнечной недостаточности, повышение стойкости и выносливости организма.

Показания к ультрафиолетовому облучению в стоматологии

Заболевания слизистой оболочки полости рта;
- заболевания пародонта;
- заболевания зубов - некариозные заболевания, кариес, пульпит, периодонтит;
- воспалительные заболевания челюстно-лицевой области;
- заболевания ВНЧС;
- лицевые боли.

Противопоказания к УФО-терапии :

Злокачественные новообразования,
- предрасположенность к кровотечению,
- активный туберкулез,
- функциональная недостаточность почек,
- гипеpтоническая болезнь III стадии,
- тяжелые формы атеросклероза.
- тиреотоксикоз.

Приборы ультрафиолетового излучения :

Интегральные источники с использованием ламп ДРТ (дуговые ртутные трубчатые) различной мощности:

ОРК-21М (ДРТ-375) - местное и общее облучение
- ОКН-11М (ДРТ-230)- местное облучение
- Маячные ОКБ-ЗО (ДРТ-1000) и ОКМ-9 (ДРТ-375) - групповое и общее облучение
- ОН-7 и УГН-1 (ДРТ-230). ОУН-250 и ОУН-500 (ДРТ-400) - местное облучение
- ОУП-2 (ДРТ-120) - отоларингология, офтальмология, стоматология.

Селективные коротковолновые (180-280 нм) используют дуговые бактерицидные лампы (ДБ) в режиме тлеющего электрического разряда в смеси паров ртути с аргоном. Лампы трех типов: ДБ-15, ДБ-30-1, ДБ-60.

Выпускаются облучатели:

Настенные (ОБН)
- потолочные (ОБП)
- на штативе (ОБШ) и передвижные (ОБП)
- местные (БОД) с лампой ДРБ-8, БОП-4, ОКУФ-5М
- для облучения крови (АУФОК) - МД-73М "Изольда" (с лампой низкого давления ЛБ-8).

Селективные длинноволновые (310-320 нм) используют люминисцентные эритемные лампы (ЛЭ), мощностью 15-30 Вт из увеоливого стекла с внутренним покрытием люминофором:

Облучатели настенные типа (ОЭ)
- подвесные отраженного распределения (ОЭО)
- передвижные (ОЭП).

Облучатели маячного типа (ЭОКС-2000) с дуговой ксеноновой лампой (ДКС ТБ-2000).

Облучатель ультрафиолетовый на штативе (ОУШ1) с люминисцентной лампой (ЛЭ153), большой маячный ультрафиолетовый облучатель (ОМУ), облучатель ультрафиолетовый настольный (ОУН-2).

Газоразрядная лампа низкого давления ЛУФ-153 в установках УУД-1, УДД-2Л для Puva и терапии, в облучателе УФ для конечностей ОУК-1, для головы ОУГ-1 и в облучателях ЭОД-10, ЭГД-5. За рубежом выпускаются установки для общих и локальных облучений: Puva, Psolylux, Psorymox, Valdman.

Техника и методика УФО терапии

Общее облучение

Проводят по одной из схем:

Основная (с 1/4 до 3 биодоз, прибавляя по 1/4)
- замедленная (с 1/8 до 2 биодоз, прибавляя по 1/8)
- ускоренная (с 1/2 до 4 биодоз. прибавляя по 1/2).

Местное облучение

Облучение места поражения, полями, рефлексогенных зон, этапное или по зонам, внеочаговое. фракционное.

Особенности облучения эритемными дозами:

Один участок кожи можно облучать не более 5 раз, а слизистую - не более 6-8 раз. Повторное облучение одного и того же участка кожи возможно только после угасания эритемы. Последующую дозу облучения увеличивают на 1/2-1 биодозу. При лечении УФ-лучами используют светозащитные очки для больного и медперсонала.

Дозирование

Дозирование УФ-облучения проводят путем определения биодозы, биодоза - минимальное количество УФ-излучения, достаточное для получения на коже самой слабой пороговой эритемы за наименьшее время, с фиксированным расстоянием от облучателя (20 - 100 см). Определение биодозы проводится биодозиметром БД-2.

Различают дозы ультрафиолетового облучения:

Субэритемные (меньше 1 биодозы)
- эритемные малые (1-2 биодозы)
- средние (3-4 биодозы)
- большие (5-6 биодоз)
- гиперэритемные (7-8 биодоз)
- массивные (свыше 8 биодоз).

В целях дезинфекции воздуха:

Непрямое излучение в течение 20-60 мин, в присутствии людей,
- прямое излучение в течение 30-40 мин, в отсутствие людей.

Сегодня очень часто возникает вопрос о потенциальной опасности ультрафиолетового излучения и наиболее действенных способах защиты органа зрения.


Сегодня очень часто возникает вопрос о потенциальной опасности ультрафиолетового излучения и наиболее действенных способах защиты органа зрения. Мы подготовили перечень наиболее часто встречающихся вопросов об ультрафиолете и ответы на них.

Что такое ультрафиолетовое излучение?

Спектр электромагнитного излучения достаточно широк, но глаз человека чувствителен только к определенной области, называемой видимым спектром, которая охватывает диапазон длин волн от 400 до 700 нм. Излучения, которые находятся за пределами видимого диапазона, являются потенциально опасными и включают в себя инфракрасную (с волн длиной более 700 нм) и ультрафиолетовую область (менее 400 нм). Излучения, имеющие более короткую длину волны, чем ультрафиолетовое, называются рентгеновским и γ-излучениями. Если длина волны больше, чем аналогичный показатель у инфракрасного излучения, то это радиоволны. Таким образом, ультрафиолетовое (УФ) излучение - это невидимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн 100-380 нм.

Какие диапазоны имеет ультрафиолетовое излучение?

Как видимый свет можно разделить на составляющие разных цветов, которые мы наблюдаем при возникновении радуги, так и УФ-диапазон, в свою очередь, имеет три составляющие: УФ-A, УФ-B и УФ-C, причем последняя является наиболее коротковолновым и высокоэнергетичным ультрафиолетовым излучением с диапазоном длин волн 200-280 нм, однако оно в основном поглощается верхними слоями атмосферы. УФ-B-излучение имеет длину волн от 280 до 315 нм и считается излучением средней энергии, представляющим опасность для органа зрения человека. УФ-A-излучение - это наиболее длинноволновая составляющая ультрафиолета с диапазоном длин волн 315-380 нм, которая имеет максимальную интенсивность к моменту достижении поверхности Земли. УФ-A-излучение глубже всего проникает в биологические ткани, хотя его повреждающее действие меньше, чем у УФ-B-лучей.

Что означает само название «ультрафиолет»?

Это слово означает «сверх (выше) фиолета» и происходит от латинского слова ultra («сверх») и названия самого короткого излучения видимого диапазона - фиолетового. Хотя УФ-излучение никак не ощущается человеческим глазом, некоторые животные - птицы, рептилии, а также насекомые, например пчелы, - могут видеть в таком свете. Многие птицы имеют раскраску оперенья, которая невидима в условиях видимого освещения, но хорошо различима в ультрафиолетовом. Некоторых животных также легче заметить в лучах ультрафиолетового диапазона. Многие фрукты, цветы и семена воспринимаются глазом более отчетливо при таком освещении.

Откуда возникает ультрафиолетовое излучение?

На открытом воздухе главным источником УФ-излучения является солнце. Как уже было сказано, частично оно поглощается верхними слоями атмосферы. Поскольку человек редко смотрит прямо на солнце, то основной вред для органа зрения возникает в результате воздействия рассеянного и отраженного ультрафиолета. В помещении УФ-излучение возникает при использовании стерилизаторов для медицинских и косметических инструментов, в соляриях для формирования загара, в процессе применения различных медицинских диагностических и терапевтических приборов, а также при отверждении композиций пломб в стоматологии.


В соляриях УФ-излучение возникает для формирования загара

В промышленности УФ-излучение образуется при сварочных работах, причем его уровень настолько высок, что может привести к серьезному повреждению глаз и кожи, поэтому применение защитных средств предписано как обязательное для сварщиков. Флюоресцентные лампы, широко используемые для освещения на работе и дома, также являются источниками УФ-излучения, но уровень последнего очень незначителен и не представляет серьезной опасности. Галогеновые лампы, которые также применяются для освещения, дают свет с УФ-составляющей. Если человек находится близко от галогеновой лампы без защитного колпака или экрана, то уровень УФ-излучения может вызвать у него серьезные проблемы с глазами.


В промышленности УФ-излучение образуется при сварочных работах, причем его уровень настолько высок, что может привести к серьезному повреждению глаз и кожи

От чего зависит интенсивность воздействия ультрафиолета?

Его интенсивность зависит от многих факторов. Во-первых, высота солнца над горизонтом меняется в зависимости от времени года и суток. Летом в дневные часы интенсивность УФ-B-излучения максимальна. Существует простое правило: когда ваша тень короче, чем ваш рост, то вы рискуете получить на 50 % больше такого излучения.

Во-вторых, интенсивность зависит от географической широты: в экваториальных районах (широта близка к 0°) интенсивность УФ-излучения наиболее высокая - в 2-3 раза выше, чем на севере Европы.
В-третьих, интенсивность возрастает с увеличением высоты над уровнем моря, так как соответствующим образом уменьшается слой атмосферы, способный поглощать ультрафиолет, поэтому большее количество наиболее высокоэнергетического коротковолнового УФ-излучения достигает поверхности Земли.
В-четвертых, на интенсивность излучения влияет рассеивающая способность атмосферы: небо представляется нам синим из-за рассеивания коротковолнового голубого излучения видимого диапазона, а еще более коротковолновый ультрафиолет рассеивается гораздо сильнее.
В-пятых, интенсивность излучения зависит от наличия облаков и тумана. Когда небо безоблачно, УФ-излучение достигает максимума; плотные облака снижают его уровень. Однако прозрачные и редкие облака мало влияют на уровень УФ-излучения, водяной пар тумана может привести к увеличению рассеяния ультрафиолета. Малооблачную и туманную погоду человек может ощущать как более холодную, однако интенсивность УФ-излучения остается практически такой же, как и в ясный день.


Когда небо безоблачно, УФ-излучение достигает максимума

В-шестых, количество отраженного ультрафиолета варьирует в зависимости от вида отражающей поверхности. Так, для снега отражение составляет 90 % падающего УФ-излучения, для воды, почвы и травы - примерно 10 %, а для песка - от 10 до 25 %. Об этом необходимо помнить, находясь на пляже.

Каково воздействие ультрафиолета на организм человека?

Длительное и интенсивное воздействие УФ-излучения может быть вредным для живых организмов - животных, растений и человека. Заметим, что некоторые насекомые видят в УФ-A-диапазоне, а они являются неотъемлемой частью экологической системы и каким-либо образом приносят пользу человеку. Наиболее известный результат воздействия ультрафиолета на организм человека - это загар, который до сих пор является символом красоты и здорового образа жизни. Однако длительное и интенсивное воздействие УФ-излучения может привести к развитию раковых заболеваний кожи. Необходимо помнить, что облака не блокируют ультрафиолет, поэтому отсутствие яркого солнечного света не означает, что защита от УФ-излучения не нужна. Наиболее вредная составляющая данного излучения поглощается озоновым слоем атмосферы. Факт уменьшения толщины последнего означает, что в будущем защита от ультрафиолета станет еще более актуальной. По оценкам ученых, снижение количества озона в атмосфере Земли всего на 1 % приведет к росту раковых заболеваний кожи на 2-3%.

Какую опасность ультрафиолет представляет для органа зрения?

Существуют серьезные лабораторные и эпидемиологические данные, связывающие длительность воздействия ультрафиолета с заболеваниями глаз: , птеригиумом и др. По сравнению с хрусталиком взрослого хрусталик ребенка существенно более проницаем для солнечной радиации, и 80 % кумулятивных последствий воздействия ультрафиолетовых волн накапливаются в организме человека до достижения им 18-летнего возраста. Максимально подверженным проникновению излучения хрусталик является непосредственно после рождения младенца: он пропускает до 95 % падающего УФ-излучения. С возрастом хрусталик начинает приобретать желтый оттенок и становится не столь прозрачным. К 25 годам менее 25 % падающих ультрафиолетовых лучей достигают сетчатки. При афакии глаз лишен естественной защиты хрусталика, поэтому в такой ситуации важно пользоваться УФ-поглощающими линзами или фильтрами.
Следует учитывать, что целый ряд медицинских препаратов обладают фотосенсибилизирующими свойствами, то есть увеличивают последствия от воздействия ультрафиолета. Оптики и оптометристы должны иметь представление об общем состоянии человека и применяемых им препаратах для того, чтобы дать рекомендации по поводу применения средств защиты.

Какие существуют средства защиты глаз?

Наиболее эффективный способ защиты от ультрафиолета - прикрытие глаз специальными защитными очками, масками, щитками, которые полностью поглощают УФ-излучение. На производстве, где применяются источники УФ-излучения, использование таких средств является обязательным. Во время пребывания на открытом воздухе в яркий солнечный день рекомендуется носить солнцезащитные очки со специальными линзами, которые надежно защищают от УФ-излучения. Такие очки должны иметь широкие заушники или прилегающую форму для предупреждения проникновения излучения сбоку. Бесцветные очковые линзы также могут выполнять эту функцию, если в их состав введены добавки-абсорберы или проведена специальная обработка поверхности. Хорошо прилегающие солнцезащитные очки защищают как от прямого падающего излучения, так и от рассеянного и отраженного от различных поверхностей. Эффективность использования солнцезащитных очков и рекомендации по их применению определены путем указания категории фильтра, светопропусканию которого соответствуют очковые линзы.


Наиболее эффективный способ защиты от ультрафиолета - прикрытие глаз специальными защитными очками, масками, которые полностью поглощают УФ-излучение

Какие стандарты регламентируют светопропускание линз солнцезащитных очков?

В настоящее время в нашей стране и за рубежом разработаны нормативные документы, регламентирующие светопропускание солнцезащитных линз согласно категориям фильтров и правила их применения. В России это ГОСТ Р 51831-2001 «Очки солнцезащитные. Общие технические требования», а в Европе - EN 1836: 2005 «Personal eye protection - Sunglasses for general use and filters for direct observation of the sun».

Каждый вид солнцезащитных линз разработан для определенных условий освещенности и может быть отнесен к одной из категорий фильтров. Всего их пять, и они нумеруются от 0 до 4. Согласно ГОСТ Р 51831-2001, светопропускание T,  %, солнцезащитных линз в видимой области спектра может составлять от 80 до 3-8 % в зависимости от категории фильтра. Для УФ-B- диапазона (280-315 нм) этот показатель не должен быть больше 0,1T (в зависимости от категории фильтра он может быть от 8,0 до 0,3-0,8 %), а для УФ-A-излучения (315-380 нм) - не больше 0,5T (в зависимости от категории фильтра - от 40,0 до 1,5-4,0 %). В то же время производители качественных линз и очков устанавливают более жесткие требования и гарантируют потребителю полное отрезание ультрафиолета до длины волны 380 нм или даже до 400 нм, о чем свидетельствует специальная маркировка на линзах очков, их упаковке или сопроводительной документации. Следует отметить, что для линз солнцезащитных очков эффективность защиты от ультрафиолета не может однозначно определяться степенью их затемнения или стоимостью очков.

Правда ли, что ультрафиолет более опасен, если человек носит некачественные солнцезащитные очки?

Это действительно так. В естественных условиях, когда человек не носит очки, его глаза автоматически реагируют на избыточную яркость солнечного света изменением размера зрачка. Чем ярче свет, тем меньше зрачок, и при пропорциональном соотношении видимого и ультрафиолетового излучения этот защитный механизм работает весьма эффективно. Если же применяется затемненная линза, то освещение кажется менее ярким и зрачки увеличиваются, позволяя большему количеству света достигать глаз. В том случае, когда линза не обеспечивает надлежащую защиту от ультрафиолета (количество видимого излучения уменьшается больше, чем ультрафиолетового), суммарное количество попадающего в глаза ультрафиолета оказывается более значительным, чем при отсутствии солнцезащитных очков. Именно поэтому окрашенные и светопоглощающие линзы должны содержать УФ-абсорберы, которые снижали бы количество УФ-излучения пропорционально уменьшению излучения видимого спектра. По международным и отечественным стандартам светопропускание солнцезащитных линз в УФ-области регламентируется как пропорционально зависимое от светопропускания в видимой части спектра.

Какой оптический материал для очковых линз обеспечивает защиту от ультрафиолета?

Некоторые материалы для очковых линз обеспечивают поглощение УФ-излучения благодаря своей химической структуре. Оно активизирует фотохромные линзы, которые в соответствующих условиях блокируют его доступ к глазу. Поликарбонат содержит группы, поглощающие излучение в ультрафиолетовой области, поэтому он оберегает глаза от ультрафиолета. CR-39 и другие органические материалы для очковых линз в чистом виде (без добавок) пропускают некоторое количество УФ-излучения, и для надежной защиты глаз в их состав вводят специальные абсорберы. Эти компоненты не только защищают глаза пользователей, обеспечивая отрезание ультрафиолета до 380 нм, но и предупреждают фотоокислительную деструкцию органических линз и их пожелтение. Минеральные очковые линзы из обычного кронового стекла непригодны для надежной защиты от УФ-излучения, если в состав шихты для его производства не введены специальные добавки. Такие линзы можно использовать в качестве солнцезащитных фильтров только после нанесения качественных вакуумных покрытий.

Правда ли, что эффективность защиты от ультрафиолета для фотохромных линз определяется их светопоглощением в активированной стадии?

Некоторые пользователи очков с задают подобный вопрос, так как беспокоятся о том, будут ли они надежно защищены от ультрафиолета в пасмурный день, когда нет яркого солнечного излучения. Следует отметить, что современные фотохромные линзы поглощают от 98 до 100 % УФ-излучения при любых уровнях освещенности, то есть вне зависимости от того, являются ли они в данный момент бесцветными, средне- или темно-окрашенными. Благодаря этой особенности фотохромные линзы подходят для пользователей очков, находящихся на открытом воздухе в различных погодных условиях. В настоящее время растет число людей, которые начинают понимать, какую опасность представляет длительное воздействие УФ-излучения для здоровья глаз, и многие выбирают фотохромные линзы. Последние отличаются высокими защитными свойствами в сочетании с особым преимуществом - автоматическим изменением светопропускания в зависимости от уровня освещенности.

Является ли темная окраска линз гарантией защиты от ультрафиолетового излучения?

Сама по себе интенсивная окраска солнцезащитных линз не дает гарантии защиты от ультрафиолета. Следует отметить, что дешевые органические солнцезащитные линзы, выпущенные в условиях крупносерийного производства, могут иметь достаточно высокий уровень защиты. Как правило, сначала смешивают специальный УФ-абсорбер с сырьем для производства линз и делают бесцветные линзы, а затем осуществляют окрашивание. Добиться обеспечения УФ-защиты для солнцезащитных минеральных линз сложнее, так как их стекло пропускает больше излучения, чем многие виды полимерных материалов. Для гарантированной защиты необходимо введение ряда добавок в состав шихты для выпуска заготовок линз и применение дополнительных оптических покрытий.
Окрашенные рецептурные линзы делают из соответствующих бесцветных линз, которые могут иметь или нет достаточное количество УФ-абсорбера для надежного отрезания соответствующего диапазона излучения. Если нужны линзы со 100 %-й защитой от ультрафиолета, задача контроля и обеспечения такого показателя (до 380-400 нм) возлагается на оптика-консультанта и мастера - сборщика очков. В этом случае введение УФ-абсорберов в поверхностные слои органических очковых линз производится по технологии, аналогичной окрашиванию линз в растворах красителей. Единственное исключение состоит в том, что УФ-защиту не увидеть глазом и для ее проверки нужны специальные приборы - УФ-тестеры. Производители и поставщики оборудования и красителей для окраски органических линз включают в свой ассортимент различные составы для поверхностной обработки, обеспечивающие разные уровни защиты от ультрафиолета и коротковолнового видимого излучения. Провести контроль светопропускания ультрафиолетовой составляющей в условиях стандартной оптической мастерской не представляется возможным.

Следует ли вводить абсорбер ультрафиолетового излучения в бесцветные линзы?

Многие специалисты считают, что введение УФ-абсорбера в бесцветные линзы принесет только пользу, так как защитит глаза пользователей и предупредит ухудшение свойств линз под воздействием УФ-излучения и кислорода воздуха. В некоторых странах, где существует высокий уровень солнечной радиации, например в Австралии, это является обязательным. Как правило, стараются обеспечить отрезание излучения до 400 нм. Таким образом, исключены наиболее опасные и высокоэнергетические составляющие, а оставшегося излучения достаточно для правильного восприятия цвета предметов окружающей действительности. Если границу отрезания сдвинуть в видимую область (до 450 нм), то у линз появится желтый цвет, при увеличении до 500 нм - оранжевый.

Как можно убедиться, что линзы обеспечивают защиту от ультрафиолетового излучения?

На оптическом рынке представлено много различных УФ-тестеров, которые позволяют проверить светопропускание очковых линз в ультрафиолетовом диапазоне. Они показывают, какой уровень пропускания у данной линзы в УФ-диапазоне. Однако следует учитывать и то, что оптическая сила корригирующей линзы может оказать влияние на данные измерения. Более точные данные удается получить при помощи сложных приборов - спектрофотометров, которые не только показывают светопропускание при определенной длине волны, но и учитывают при измерении оптическую силу корригирующей линзы.

Защита от ультрафиолетового излучения является важным аспектом, который нужно учитывать при подборе новых очковых линз. Надеемся, что приведенные в данной статье ответы на вопросы об ультрафиолетовом излучении и способах защиты от него помогут вам подобрать очковые линзы, которые дадут возможность сохранить здоровье ваших глаз на долгие годы.