Все о капремонте мнения жителей. Фонды капремонтов отменят? Путин готовится к выборам? Куда могут быть потрачены средства, поступившие на общий счет котла

Устройств необходим блок питания (БП), в котором имеется регулировка выходного напряжения и возможность регулирования уровня срабатывания защиты от превышения по току в широких пределах. При срабатывании защиты, нагрузка (подключенное устройство) должна автоматически отключаться.

Поиск в интернете дал несколько подходящих схем блоков питания. Остановился на одной из них. Схема проста в изготовлении и наладке, состоит из доступных деталей, выполняет заявленные требования.

Предлагаемый к изготовлению блок питания выполнен на базе операционного усилителя LM358 и имеет следующие характеристики :
Входное напряжение, В - 24...29
Выходное стабилизированное напряжение, В - 1...20 (27)
Ток срабатывания защиты, А - 0,03...2,0

Фото 2. Схема БП

Описание работы БП

Регулируемый стабилизатор напряжения собран на операционном усилителе DA1.1. На вход усилителя (вывод 3) поступает образцовое напряжение с движка переменного резистора R2, за стабильность которого отвечает стабилитрон VD1, а на инвертирующий вход (вывод 2) напряжение поступает с эмиттера транзистора VT1 через делитель напряжения R10R7. С помощью переменного резистора R2, можно изменять выходное напряжение БП.
Блок защиты от перегрузок по току выполнен на операционном усилителе DA1.2, он сравнивает напряжения на входах ОУ. На вход 5 через резистор R14 поступает напряжение с датчика тока нагрузки - резистора R13. На инвертирующий вход (вывод 6) поступает образцовое напряжение, за стабильность которого отвечает диод VD2 с напряжением стабилизации около 0,6 в.

Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю. В том случае, если ток нагрузки превысит допустимый установленный уровень, увеличится напряжение на датчике тока и напряжение на выходе ОУ DA1.2 возрастет практически до напряжения питания. При этом включится светодиод HL1, сигнализируя о превышении, откроется транзистор VT2, шунтируя стабилитрон VD1 резистором R12. Вследствие чего, транзистор VT1 закроется, выходное напряжение БП уменьшится практически до нуля и нагрузка отключится. Для включения нагрузки нужно нажать на кнопку SА1. Регулировка уровня защиты выполняется с помощью переменного резистора R5.

Изготовление БП

1. Основу блока питания, его выходные характеристики определяет источник тока – применяемый трансформатор. В моем случае нашел применение тороидальный трансформатор от стиральной машины. Трансформатор имеет две выходные обмотки на 8в и 15в. Соединив обе обмотки последовательно и добавив выпрямительный мост на имеющихся под рукой диодах средней мощности КД202М, получил источник постоянного напряжения 23в, 2а для БП.


Фото 3. Трансформатор и выпрямительный мост.

2. Другой определяющей частью БП является корпус прибора. В данном случае нашел применение детский диапроектор мешающийся в гараже . Удалив лишнее и обработав в передней части отверстия для установки показывающего микроамперметра, получилась заготовка корпуса БП.


Фото 4. Заготовка корпуса БП

3. Монтаж электронной схемы выполнен на универсальной монтажной плате размером 45 х 65 мм. Компоновка деталей на плате зависит от размеров, найденных в хозяйстве компонентов. Вместо резисторов R6 (настройка тока срабатывания) и R10 (ограничение максимального напряжения на выходе) на плате установлены подстроечные резисторы с увеличенным в 1,5 раза номиналом. По окончании настройки БП их можно заменить на постоянные.


Фото 5. Монтажная плата

4. Сборка платы и выносных элементов электронной схемы в полном объеме для испытания, настройки и регулировки выходных параметров.


Фото 6. Узел управления БП

5. Изготовление и подгонка шунта и дополнительного сопротивления для использования микроамперметра в качестве амперметра или вольтметра БП. Дополнительное сопротивление состоит из последовательно соединенных постоянного и подстроечного резисторов (на фото сверху). Шунт (на фото ниже) включается в основную цепь тока и состоит из провода с малым сопротивлением. Сечение провода определяется максимальным выходным током. При измерении силы тока, прибор подключается параллельно шунту.


Фото 7. Микроамперметр, шунт и дополнительное сопротивление

Подгонка длины шунта и величины дополнительного сопротивления производится при соответствующем подключении к прибору с контролем на соответствие по мультиметру. Переключение прибора в режим Амперметр/Вольтметр выполняется тумблером в соответствии со схемой:


Фото 8. Схема переключения режима контроля

6. Разметка и обработка лицевой панели БП, монтаж выносных деталей. В данном варианте на лицевую панель вынесен микроамперметр (тумблер переключения режима контроля A/V справа от прибора), выходные клеммы, регуляторы напряжения и тока, индикаторы режима работы. Для уменьшения потерь и в связи с частым использованием, дополнительно выведен отдельный стабилизированный выход 5 в. Для чего напряжение, от обмотки трансформатора на 8в, подается на второй выпрямительный мост и типовую схему на 7805 имеющую встроенную защиту.


Фото 9. Лицевая панель

7. Сборка БП. Все элементы БП устанавливаются в корпус. В данном варианте, радиатором управляющего транзистора VT1 служит алюминиевая пластина толщиной 5 мм, закрепленная в верхней части крышки корпуса, служащего дополнительным радиатором. Транзистор закреплен на радиаторе через электроизолирующую прокладку.


Фото 10. Сборка БП без крышки


Фото 11. Общий вид БП.

Детали:

Операционный усилитель LM358N имеет в своем составе два ОУ.

Транзистор VT1 можно заменить на любой из серий КТ827, КТ829. Транзистор VT2 любой из серии КТ315. Стабилитрон VD1 можно использовать любой, с напряжением стабилизации 6,8…8,0в и током 3…8 мА. Диоды VD2-VD4 из серии КД521 или КД522Б. Конденсаторы С3, C4 - пленочные или керамические. Оксидные конденсаторы: C1 - К50-18 или аналогичный импортный, остальные - из серии К50-35. Постоянные резисторы серии МЛТ, переменные - СП3-9а.

Налаживание блока питания - движок переменного резистора R2 перемещают в верхнее по схеме положение и измеряют максимальное выходное напряжение, устанавливают его равным 20 В, подбирая резистор R10. После этого подключают к выходу нагрузку и производят замеры тока срабатывания защиты. Для уменьшения уровня срабатывания защиты, уменьшить сопротивление резистора R6. Для увеличения максимального уровня срабатывания защиты - уменьшить сопротивление резистора R13 - датчика тока нагрузки.

Ощутимым недостатком плавких предохранителей является их одноразовость, необходимость последующей ручной замены на другой предохранитель, рассчитанный на тот же ток защиты. Зачастую, когда под рукой нет подходящего, используют предохранители на другой ток или более того, ставят самодельные (суррогатные) предохранители или просто массивные перемычки, что крайне негативно отражается на надежности работы аппаратуры и небезопасно в пожарном отношении.
Обеспечить автоматическую многоразовую защиту устройства и одновременно повысить ее быстродействие можно за счет использования электронных предохранителей. Эти устройства можно подразделить на два основных класса: первые из них самовосстанавливают цепь питания после устранения причин аварии, вторые - только после вмешательства человека. Известны также устройства с пассивной защитой - при аварийном режиме они только индицируют световым или звуковым сигналом о наличии опасной ситуации.
Для защиты радиоэлектронных устройств от перегрузок по току обычно используют резистивные или полупроводниковые датчики тока, включенные последовательно в цепь нагрузки. Как только падение напряжения на датчике тока превысит заданный уровень, срабатывает защитное устройство, отключающее нагрузку от источника питания. Преимуществом такого способа защиты является то, что величину тока срабатывания защиты можно легко изменять. Чаще всего этого достигают с помощью датчика тока.
Другим эффективным методом защиты нагрузки является ограничение величины предельного тока через нее. Даже при наличии в цепи нагрузки короткого замыкания ток ни при каких обстоятельствах не сможет превысить заданный уровень и повредить нагрузку. Для ограничения предельного тока нагрузки используют генераторы стабильного тока.
Схемы простой автоматической защиты радиоэлектронных устройств от перегрузок по току представлены на рис. 5.1 и 5.2 . Работа устройств такого типа (стабилизатор тока на основе полевого транзистора) подробно рассматривалась ранее в главе 5 (книга 2). Ток нагрузки при использовании такого ограничителя не сможет превысить начального тока стока полевого транзистора. Величину этого тока можно задавать подбором типа транзистора, например, для приведенного на схеме транзистора типа КП302В максимальный ток через нагрузку не превысит значения 30...50 мА. Увеличить значение этого тока можно параллельным включением нескольких транзисторов.

Рис. 5.1. Ограничение предельного тока нагрузки при помощи полевого транзистора

Рис. 5.6. Схема стабилизатора напряжения со звуковой индикацией перегрузки

При работе стабилизатора ток нагрузки проходит через датчик тока R1, создавая на нем падение напряжения. Пока ток небольшой (при указанной на схеме величине этого резистора не более 0,3 А), транзистор VT1 закрыт. По мере роста тока потребления и, соответственно, увеличения напряжения на резисторе, транзистор приближается к порогу открывания. Когда напряжение между базой и эмиттером транзистора VT1 достигнет 0,7 В, он открывается и при дальнейшем росте тока переходит в состояние насыщения. При открывании транзистора выпрямленное напряжение поступает на акустический сигнализатор и приводит его в действие.
Звуковой сигнализатор перегрузки на транзисторе VT1 может быть встроен в любой другой источник питания.
Электронный предохранитель для цепей постоянного тока и, одновременно, стабилизатор напряжения может быть выполнен по схеме, показанной на рис. 5.7. На первых двух транзисторах (VT1 и VT2) собран стабилизатор напряжения по традиционной схеме, однако параллельно стабилитрону VD1
цключен релейный каскад на транзисторах VT3 - VT5 с дат-сом тока на резисторе Rx. При увеличении сверх заданной эмы тока в нагрузке этот каскад сработает и зашунтирует ста-питрон. Напряжение на выходе стабилизатора упадет до не-(чительной величины.


5.7. Схема электронного предохранителя - стабилизатора напряжения постоянного тока

Для разблокировки схемы защиты достаточно кратковре--ю нажать кнопку SB1.
Использование автоматических выключателей нагрузки по-!яет предотвратить разряд элементов питания или защитить чник питания от перегрузки. Выполнять функции таймера и матически отключать нагрузку при коротком замыкании по-яет устройство по схеме на рис. 5.8 .
Автовыключатель нагрузки работает следующим образом, кратковременном нажатии кнопки SB1 конденсатор С1 заря-ся от источника питания через резистор R1. Одновременно атывает ключ (ключи) /ШО/7-коммутатора (DA1), обеспе-я тем самым включение мощного транзистора VT1. Если ключатель SA1 разомкнут, устройство работает по схеме ера. Конденсатор С1 разряжается через цепочку включен-1араллельно ему резисторов R3 и R2. Когда конденсатор С1 чдится, устройство самостоятельно отключится от источника <ия и отключит нагрузку.
При замкнутом переключателе SA1 таймер не работает. 7-коммутатор блокируется подачей на управляющий вход (входы) напряжения высокого уровня через диод VD2 и резисторы R4, R5. Схема защиты источника питания от короткого замыкания в нагрузке выполнена на транзисторе VT2 и работает следующим образом. При работе устройства в нормальном режиме транзистор VT2 закрыт и не влияет на функционирование других элементов схемы. При коротком замыкании в нагрузке ток через диод VD2 не протекает, транзистор VT2 оказывается подключенным к конденсатору С1, на его базу поступает отпирающее смещение через резисторы R5 и R6. Конденсатор С1 разряжается, и происходит отключение устройства. Резистор R4 ограничивает начальный бросок тока при разряде конденсатора С1.


Рис. 5.8. Схема автовыключателя нагрузки - таймера

При суммарном сопротивлении резисторов R2 и R3 100 кОм таймер обеспечивает выдержку в 1 сек, при суммарном сопротивлении 200 кОм - 2 сек, 300 кОм - 3 сек и т.д. до 33 сек. Увеличить время выдержки на один-два порядка можно увеличением номиналов R2, R3 и С1.
Максимальный ток нагрузки определяется типом используемого транзистора VT1 и наличием у него теплоотвода. Незадействованные ключи коммутатора можно подключить параллельно DA1.1 либо использовать в подобных взаимонезависимых схемах автовыключения нагрузки. Такое включение может быть использовано в схемах резервирования функций для обеспечения повышенной надежности работы устройств: выход из строя одного из сопротивлений нагрузки не вызовет отключения или повреждения других каналов. Переключатель SA2 может быть включен при
малых (до 10 мА на ключ) токах нагрузки. При токах нагрузки до 40 мА можно исключить из схемы транзистор VT1 . В этом случае все ключи /ШО/7-коммутатора DA1 должны быть соединены параллельно.
Устройство работает в диапазоне питающих напряжений 5... 15 В и даже при 4 б. Отключить устройство можно нажатием кнопки SB2. В отключенном состоянии оно потребляет ток до долей-единиц мкА.
Известно, что в последовательно соединенной цепи элементы аккумуляторной батареи, разряженные до напряжения ниже 1,1 В, из источника напряжения превращаются в своего рода дополнительную нагрузку для еще неразрядившихся элементов, вызывая резкое падение напряжения на выводах батареи аккумуляторов. Кроме снижения энергоемкости батареи аккумуляторов в целом, это может привести и к "повреждению отдельных ее элементов.


Рис. 5.9. Схема устройства автоматического отключения аккумуляторной батареи

Устройство , схема которого показана на рис. 5.9, предотвращает слишком глубокую разрядку элементов в батарее. Оно включается между аккумуляторной батареей и нагрузкой. Принцип действия основан на контроле напряжения на нагрузке. Когда оно снижается до уровня 1,1х пВ (где п - число элементов з аккумуляторной батарее) нагрузка и само устройство отклю-наются контактной группой реле, и ток через аккумуляторные элементы прекращается (если в самой батарее отсутствуют ка-<ие-либо неисправности).
При нажатии кнопки SB1 к источнику тока подключаются и нагрузка, и само контролирующее устройство. Напряжение на
инвертирующем входе микросхемы DA1 (вывод 2) определяется стабилитроном VD1 и составляет 3,9 В, а на неинвертирующем (вывод 3) - делителем напряжения на резисторах R1 и R2, причем при нормальном напряжении источника оно несколько выше, чем на инвертирующем входе. В таком состоянии на выходе микросхемы имеется высокий уровень напряжения - реле К1 включается, и его контакты К1.1 оставляют включенными нагрузку и контролирующее устройство даже при отпускании кнопки включения.
Когда напряжение на батарее упадет настолько, что его величина на неинвертирующем входе станет менее 3,9 6, на выходе микросхемы напряжение станет низким, и реле обесточится, разрывая цепь питания. Момент переключения зависит от напряжения на батарее аккумуляторов и величины сопротивления резистора R1, которое следует выбрать в соответствии с таблицей 5.1. Для ограничения базового тока транзистора между выходом микросхемы и базой следует включить резистор сопротивлением 1...10/Ю/И.

Таблица 5.1. Сопротивление резистора R1 при различном напряжении батареи

Данное устройство может давать ложные срабатывания, если к источнику питания подключают слишком мощную нагрузку, при которой напряжение батареи мгновенно «подсаживается». В этом случае отключение нагрузки еще не говорит о том, что элемент (элементы) батареи аккумуляторов разрядился до нижней допустимой границы. Повысить помехозащищенность
/стройства позволит подключение конденсаторов параллельно $ходам компаратора.
Зарядные устройства (ЗУ) обычно снабжены электронной ощитой от короткого замыкания на выходе . Однако еще!стречаются простые ЗУ, состоящие из понижающего транс-рорматора и выпрямителя. В этом случае можно применить неложную электромеханическую защиту с использованием реле 1ли автоматических выключателей многократного действия (на-|ример, автоматические предохранители или АВМ в квартирных >лектросчетчиках) . Быстродействие релейной защиты со-тавляет примерно 0,1 сек, а с использованием ABM - 1...3 сек.
Когда аккумулятор (или аккумуляторная батарея) соединен выходом устройства, реле К1 срабатывает и своими контактами 11.1 подключает ЗУ (рис. 5.10).


Рис. 5.10. Схема устройства защиты для зарядных устройств

При коротком замыкании выходное напряжение резко уменьится, обмотка реле будет обесточена, что приведет к размыка-ию контактов и отключению аккумулятора от ЗУ. Повторное ключение после устранения неисправности осуществляется кноп-эй SB1. Конденсатор С1, заряженный до выходного напряжения эшрямителя, подключается к обмотке реле. Резистор R1 огранивает импульс тока при ошибочном включении, когда короткое тыкание на выходе еще не устранено.
Резистор R2 ограничивает ток короткого замыкания. Его ожно не устанавливать, если диоды имеют запас по току. Сле-/ет помнить, что в этом случае выходное напряжение ЗУ долж-з быть больше на значение падения напряжения на резисторе 2 при номинальном зарядном токе. АВМ защищает при пере->узках по току, чего релейная защита выполнить не может.
Автоматический предохранитель (или выключатель) подключают последовательно с контактами реле. Сопротивление АВМ - около 0,4 Ом. В этом случае резистор R2 можно не включать.
Для ЗУ автомобильных аккумуляторных батарей необходимо выбрать реле на номинальное напряжение 12 Б с допустимым током через контакты не менее 20 А. Этим условиям удовлетворяет реле РЭН-34 ХП4.500.030-01, контакты которого следует включить параллельно. Для ЗУ с номинальным током до 1 А можно применить реле РЭС-22 РФ4.523.023-05.
Тиристорно-транзисторная схема защиты источника питания от короткого замыкания показана на рис. 5.11. Схема работает следующим образом. При номинальном режиме тиристор отключен, транзисторы устройства, включенные по схеме Дарлингтона, находятся в состоянии насыщения, падение напряжения на них минимально (обычно единицы вольт). При возникновении короткого замыкания в нагрузке начинает протекать ток через управляющий переход тиристора VS1, происходит его включение. Открытый тиристор шунтирует цепь управления составного транзистора, ток через который снижается до минимума.


Рис. 5.11. Схема защиты источника питания от короткого замыкания

Светодиод HL1 индицирует наличие короткого замыкания в нагрузке.
Схема рассчитана на работу при больших токах, поэтому на самой схеме защиты падает довольно значительная часть напряжения питания и рассеивается, соответственно, большая мощность.
Устройство, описанное ниже, одновременно может выпол-ять роль стабилизатора постоянного и переменного тока боль-юй величины, защищать цепь нагрузки от короткого замыкания, ыполнять роль регулируемой активной нагрузки с предельной ощностью рассеяния сотни бг.
Основой стабилизатора тока является токостабилизирую-(ий двухполюсник, схема которого приведена на рис. 5.12. Он эедставляет собой модифицированный источник тока, описанный работе . Ток через канал полевого транзистора VT1 опреде-чется, преимущественно, напряжением U1 (рис. 5.12) и может эггь вычислен из выражения: I=U1/RM. Напряжение U1 является 1стыо напряжения +Е, приложенного к двухполюснику, а посколь-/ резистивный делитель R1/R2 обеспечивает прямо пропорцио-1льную зависимость между величинами U1 и +Е, то такое же ютношение будет наблюдаться между током I и напряжением +Е.


Рис. 5.12. Токостабилизирующий двухполюсник на основе дифференциального усилителя и полевого транзистора

Эквивалентное сопротивление двухполюсника можно пред-авить как: R3=E/l=ExRM/U1. В свою очередь U1=E*RM/(R1+R2).
Отсюда R3=RM+(R1XRM/R2) или R3=R|/,"<(1+R1/R2). Следова-пьно, ток через двухполюсник можно изменять, регулируя либо личину Ри, либо соотношение сопротивлений делителя R1/R2. in R1»R2 выражение для вычисления эквивалентного сопро-вления двухполюсника упростится: R3=RMxR1/R2.
Практическая схема узла активной нагрузки - стабилиза-эа постоянного тока - приведена в статье , а ниже, на с. 5.13 показана возможность использования этого схемного шения для стабилизации переменного тока .


Рис. 5.13. Стабилизатор переменного (и постоянного) тока с регулируемым током нагрузки от единиц мА до 8 А

Ток в цепи стабилизатора можно плавно регулировать поворотом ручки потенциометра R2 в пределах от нескольких мА до 8 А, причем максимальный ток нагрузки при необходимости можно увеличить еще на порядок, применив вентиляторы, радиаторы, нарастив количество параллельно задействованных полевых транзисторов.

Силовые транзисторы IGBT и MOSFET стали основными элементами, применяемыми в мощных импульсных преобразователях. Их уникальные статические и динамические характеристики позволяют создавать устройства, отдающие в нагрузку сотни кВт при минимальных габаритах и кпд, превышающем 95%.

Общим у IGBT и MOSFET является изолированный затвор, в результате чего эти элементы имеют схожие характеристики управления. Благодаря отрицательному температурному коэффициенту тока короткого замыкания, появилась возможность создавать транзисторы, устойчивые к короткому замыканию.

Для ключевых элементов с управляющим затвором опасным также является состояние, когда напряжение управления падает до значения, при котором транзистор может перейти в линейный режим и выйти из строя из-за перегрева кристалла.

Отсутствие тока управления в статических режимах и общее низкое по-требление по цепям питания позволяет отказаться от гальванически изолированных схем управления на дискретных элементах и создать интегральные схемы управления - драйверы. В настоящее время ряд фирм и прежде всего фирма International Rectifier выпускает широкую гамму таких устройств, управляющих одиночными транзисторами, полумостами и мостами - двух и трехфазными. Кроме обеспечения тока затвора они способны выполнять и ряд вспомогательных функций, таких, как защита от перегрузки по току, падения напряжения управления и ряд других.

В данной статье рассматриваются способы использования серийных драйверов для режимов защиты.

Режимы короткого замыкания

Рис. 1

Причины возникновения токовых перегрузок разнообразны. Чаще всего это аварийные случаи, такие как пробой на корпус или замыкание нагрузки.

Перегрузка может быть вызвана и особенностями схемы, например переходным процессом или током обратного восстановления диода оппозитного плеча. Такие перегрузки должны быть устранены схемотехническими методами: применением цепей формирования траектории (снабберов), выбором резистора затвора, изоляцией цепей управления от силовых и др.

Подробно поведение транзисторов в режимах короткого замыкания (КЗ) дано в 1 .

Включение транзистора при коротком замыкании в цепи нагрузки

Рис. 2

Принципиальная схема и эпюры напряжения, соответствующие этому ре-жиму, приведены на рис. 1а и 2. Все графики получены при анализе реальных схем с помощью программы PSpice. Для анализа били использованы усовер-шенствованные модели транзисторов MOSFET фирмы International Rectifier и макромодели IGBT и драйверов, разработанные автором статьи.

Рис. 3

Как было отмечено, установившееся значение тока КЗ определяется на-пряжением на затворе. Однако уменьшение этого напряжения приводит к повышению напряжения насыщения и, следовательно, к увеличению потерь проводимости. Устойчивость к КЗ тесно связана и с крутизной транзистора. IGBT с высоким коэффициентом усиления по току имеют низкое напряжение насыщения, но небольшое допустимое время перегрузки. Как правило транзисторы, наиболее устойчивые к КЗ имеют высокое напряжение насыщения и, следовательно, высокие потери.

Допустимый ток КЗ IGBT гораздо выше, чем у биполярного транзистора. Обычно он равен 10-кратному номинальному току при допустимых напряжениях на затворе. Ведущие фирмы, такие как International Rectifier, Siemens, Fuji выпускают транзисторы, выдерживающие без повреждения такие перегрузки. Этот параметр оговаривается в справочных данных на транзисторы и называется Short Circuit Ration., а допустимое время перегрузки - tsc - Short Circuit Time.

Быстрая реакция схемы защиты вообще полезна для большинства применений. Использование таких схем защиты в сочетании с высокоэффективными IGBT повышают эффективность работы схемы без снижения надежности.

Применение драйверов IR для защиты от КЗ

Рассмотрим методы отключения транзисторов в режиме перегрузки на примере драйверов фирмы International Rectifier, так как эти микросхемы позволяют реализовать функции защиты наиболее полно.

Драйвер одиночного транзистора

На рис.4 приведена типовая схема подключения драйвера транзистора верхнего плеча IR2125 с использованием функции защиты от перегрузки. Для этой цели используется вывод 6 - CS. Напряжение срабатывания защиты - 230мВ. Для измерения тока в эмиттере установлен резистор RSENSE, номинал которого и делитель R1,R4 определяют ток защиты.

Рис. 4

Как было указано выше, если при появлении перегрузки уменьшить на-пряжение на затворе, период распознавания аварийного режима может быть увеличен. Это необходимо для исключения ложных срабатываний. Данная функция реализована в микросхеме IR2125. Конденсатор С1, подключенный к выводу ERR, определяет время анализа состояния перегрузки. При С1=300пФ, время анализа составляет около 10мкс. На это время включается схема стабилизации тока коллектора и напряжение на затворе снижается. Если состояние перегрузки не прекращается, то через 10мкс транзистор отключается полностью.

Отключение защиты происходит при снятии входного сигнала, что позволяет пользователю организовать триггерную схему защиты. При использовании такой защиты особое внимание следует уделить выбору времени повторного включения, которое должно быть больше тепловой постоянной времени кристалла силового транзистора. Тепловая постоянная времени может быть определена из графика теплового импеданса Zthjc.

Для анализа состояния перегрузки по напряжению насыщения измерительный резистор не требуется. При подаче положительного управляющего сигнала на затвор, на входе защиты драйвера SC появляется напряжение, определяемое суммой падения напряжения на открытом диоде VD2 и на открытом силовом транзисторе Q1 и делителем R1, R4, который задает ток срабатывания. Падение напряжения на диоде практически неизменно и составляет около 0,5В. Напряжение открытого транзистора при выбранном токе КЗ определяется из графика Von=f(Ic). Диод VD2, как и VD1 должен быть быстродействующим и высоковольтным.

Рис. 5

Кроме защиты от перегрузки по току, драйвер анализирует напряжение питания входной части VСС и выходного каскада VB, отключая транзистор при падении VB ниже 9В, что необходимо для исключения линейного режима работы транзистора. Такая ситуация может возникнуть как при повреждении низковольтного источника питания, так и при неправильном выборе бутстрепной емкости С2. Величина емкости С2 должна вычисляться исходя из тока затвора силового транзистора и минимальной частоты следования импульсов. Если возможно пропадание импульсов, необходимо использовать "плавающий" источник питания. Данный способ защиты является наиболее предпочтительным и использовать первую схему целесообразно только тогда, когда нужно точное задание тока защиты.

Драйвер трехфазного моста

На рис.6 приведена схема подключения драйвера трехфазного моста IR2130 с использованием функции защиты от перегрузки. Для этой цели используется вход ITR. Напряжение срабатывания защиты - 500мВ. Для измерения полного тока моста в эмиттерах установлен резистор RSENSE, номинал которого вместе с делителем R2, R3 определяет ток защиты.

Драйвер IR2130 обеспечивает управление MOSFET и IGBT транзисторами при напряжении до 600В, имеет защиту от перегрузки по току и от снижения питающих напряжений. Схема защиты содержит полевой транзистор с открытым стоком для индикации неисправности (FAULT). Он также имеет встроенный усилитель тока нагрузки, что позволяет вырабатывать контрольные сигналы и сигналы обратной связи. Драйвер формирует время задержки (deadtime) между включением транзисторов верхнего и нижнего плеча для исключения сквозных токов. Это время составляет 1-2 мкс.

Для правильного использования указанной микросхемы и создания на ее основе надежных схем надо учитывать несколько нюансов.

Рис. 6

Особенностью драйвера IR2130 является отсутствие функции ограничения напряжения на затворе при КЗ. По этой причине постоянная времени цепочки R1C1, предназначенной для задержки включения защиты, не должна превышать 1мкс. Разработчик должен учитывать это обстоятельство и рассчитывать, что отключение моста произойдет через 1мкс после возникновения КЗ, в результате чего ток (особенно при активной нагрузке) может превысить расчетное значение.

Указанные обстоятельства обычно не создают проблем, и данная микросхема на сегодняшний день является оптимальным элементом для управления трехфазными мостовыми усилителями.

1 - Силовые IGBT модули. Материалы по применению. Издательство "Додека", М.1997