С чем реагируют щелочные металлы таблица. Интересно о щелочных металлах

Относятся к числу s-элементов. Электрон внешнего электронного слоя атома щелочного металла по сравнению с другими элементами того же периода наиболее удален от ядра, т. е. радиус атома щелочного металла наибольший по сравнению с радиусами атомов других элементов того же периода. В связи

Распределение электронов по энергетическим уровням у атомов щелочных металловТаблица 1

Элемент

Заряд ядра

Число электронов на энергетических уровнях

Радиус атома

K

L

M

N

O

P

Q

1,57

1,86

2,36

2,43

2,62

с этим валентный электрон внешнего слоя атомов щелочных металлов легко отрывается, превращая их в положительные однозарядные ионы. Этим обусловлено , что соединения щелочных металлов с другими элементами построены по типу ионной связи.

В окислительно-восстановительных реакциях щелочные ведут себя как сильные восстановители, и эта способность возрастает от металла к металлу с увеличением заряда ядра атома.

Среди металлов щелочные металлы проявляют наиболее высокую химическую активность. В ряду напряжений все щелочные металлы располагаются в начале ряда. Электрон внешнего электронного слоя является единственным валентным электроном, поэтому щелочные металлы в любых соединениях одновалентны. Степень окисления щелочных металлов обычно +1.
Физические свойства щелочных металлов приведены в табл. 19.

Физические свойства щелочных металлов. Таблица 19

Элемент

Порядковый номер

Атомный вес

Температура плавления, °С

Температура кипения, °С

Плотность, г/смЗ

Твердость по шкале

6,94

22,997

39,1

85,48

132,91

38,5

1336

0,53

0,97

0,86

1,53

Типичными представителями щелочных металлов являются натрий и калий.
■ 26. Составьте общую характеристику щелочных металлов по следующему плану:
а) сходство и различие в строении атомов щелочных металлов;
б) особенности поведения щелочных металлов в окислительно-восстановительных реакциях;
в) тип кристаллической решетки в соединениях щелочных металлов;
г) особенности изменения физических свойств металлов в зависимости от радиуса атома.

Натрий

Электронная конфигурация атома натрия ls 2 2s 2 2p 6 3s 1 . Структура его внешнего слоя:

Натрий встречается в природе только в виде солей. Наиболее распространенной солью натрия является поваренная соль NaCl, а также минерал сильвинит КCl · NaCl и некоторые сернокислые соли, например глауберова соль Na2SO4 · 10H2O, встречающаяся в больших количествах в заливе Каспийского моря Кара-Богаз-Гол.
Из поваренной соли NaCl металлический натрий получают путем электролиза расплава этой соли. Установка для электролиза изображена на рис. 76. В расплавленную соль опускают электроды. Анодное и катодное пространство разделено диафрагмой, которая изолирует образующийся от натрия, чтобы не произошло обратной реакции. Положительный ион натрия принимает с катода электрон и превращается в нейтральный атом натрия. Нейтральные атомы натрия собираются на катоде в виде расплавленного металла. Происходящий на катоде процесс можно изобразить следующей схемой:
Na + + Na 0 .
Поскольку на катоде происходит принятие электронов, а всякое принятие электронов атомом или ионом является восстановлением, ионы натрия на катоде восстанавливаются. На аноде ионы хлора отдают электроны, т. е. происходит процесс окисления и выделение свободного

газообразного хлора, что можно изобразить следующей схемой:

Cl — — е — → Cl 0

Полученный металлический натрий имеет серебристо-белый цвет, легко режется ножом. Срез у натрия, если его рассмотреть сразу после разреза, имеет яркий металлический блеск, но быстро тускнеет вследствие крайне быстрого окисления металла.

Рис. 76. Схема установки для электролиза расплава поваренной соли. 1 - кольцевой катод; 2 - колокол для выведения газообразного хлора из анодного пространства

Если натрий окислять в небольшом количестве кислорода при температуре около 180°, получается окись натрия:
4Na + О2 = 2Na2O.
При горении в кислороде получается перекись натрия:
2Na + O2 = Na2O2.
При этом натрий сгорает ослепительно желтым пламенем.
В связи с легкой и быстрой окисляемостью натрия его хранят под слоем керосина или парафина, причем предпочтительнее, так как в керосине все же растворяется некоторое количество воздуха и окисление натрия хотя и медленно, но все же происходит.

Натрий может давать соединение с водородом - гидрид NaH, в котором проявляет степень окисления - 1. Это солеподобное соединение, которое по характеру химической связи и величине степени окисления отличается от летучих гидридов элементов главных подгрупп IV-VII группы.
Металлический натрий может реагировать не только с кислородом и водородом, но и с многими простыми и сложными веществами. Например, при растирании в ступке с серой натрий бурно реагирует с ней, образуя :
2Na + S = Na2S

Реакция сопровождается вспышками, поэтому ступку нужно держать подальше от глаз и обернуть руку полотенцем. Для реакции следует брать небольшие кусочки натрия.
Натрий энергично сгорает в хлоре с образованием хлорида натрия, что особенно хорошо наблюдать в хлор-кальциевой трубке, в которой через расплавленный и сильно разогретый натрий пропускают ток хлора:
2Na + Сl2 = 2NaCl
Натрий реагирует не только с простыми, но и со сложными веществами, например с водой, вытесняя из нее , так как является весьма активным металлом, в ряду напряжений стоит намного левее водорода и легко вытесняет последний из воды:
2Na + 2Н2O = 2NaOH + H2
Загоревшийся щелочной металл нельзя тушить водой. Лучше всего засыпать его порошком кальцинированной соды. В присутствии натрия бесцветное пламя газовой горелки окрашивается в желтый цвет.
Металлический натрий можно использовать как катализатор в органическом синтезе, например при производстве синтетического каучука из бутадиена. Он служит исходным веществом для получения других соединений натрия, например перекиси натрия.

■ 27. Докажите с помощью приведенных в тексте уравнений реакций с участием металлического натрия, что он ведет себя как восстановитель.

28. Почему натрий нельзя хранить на воздухе?

29. Ученик опустил в раствор сульфата меди кусочек натрия, надеясь вытеснить из соли металлическую . Вместо металла красного цвета получился студенистый голубой осадок. Опишите происшедшие реакции и напишите их уравнения в молекулярной и ионной формах. Как следовало изменить условия реакции, чтобы реакция привела к желаемому результату? Уравнения напишите в молекулярной, полной и сокращенной ионной формах.
30. В сосуд с 45 мл воды поместили 2,3 г металлического натрия. Какова едкого натра, образовавшегося по окончании реакции.
31. Какие средства можно применять при тушении загоревшегося натрия? Дайте обоснованный ответ.

Кислородные соединения натрия. Едкий натр

Кислородными соединениями натрия, как уже было сказано, являются окись натрия Na2O и перекись натрия Na2O2.
Окись натрия Na2O особого значения не имеет. Она энергично реагирует с водой, образуя едкий натр:
Na2O + Н2O = 2NaOH
Перекись натрия Na202 - желтоватый порошок. Ее можно рассматривать как своеобразную соль перекиси водорода, ибо структура ее такая же, как у Н2O2. Как и , перекись натрия является сильнейшим окислителем. При действии воды она образует щелочь и :
Na2O2 + Н2O = Н2O2 + 2NaOH
образуется и при действии разбавленных кислот на перекись натрия:
Na2O2 + H2SO4 = Н2O2 + Na2SO4
Все указанные выше свойства перекиси натрия позволяют использовать ее для отбелки все возможных материалов.

Рис. 77. Схема установки для электролиза раствора поваренной соли. 1 - анод; 2 - диафрагма, разделяющее анодное и катодное пространство; 3 -катод

Очень важным соединением натрия является гидроокись натрия, или едкий натр, NaOH. Его называют также каустической содой, или просто каустиком.
Для получения едкого натра используют поваренную соль - наиболее дешевое природное соединение натрия, подвергая ее электролизу, но в этом случае применяют не расплав, а раствор соли (рис. 77). Описание процесса электролиза раствора поваренной соли см. § 33. На рис. 77 показано, что анодное и катодное пространство разделено диафрагмой. Это сделано с той целью, чтобы образующиеся продукты не вступали между собой во взаимодействие, например Сl2 + 2NaOH = NaClO + NaCl + Н2O.

Едкий натр - твердое кристаллическое вещество белого цвета, прекрасно растворимое в воде. При растворении едкого натра в воде выделяется большое количество тепла и раствор сильно разогревается. Едкий натр необходимо хранить в хорошо закупоренных сосудах, чтобы предохранить его от проникновения водяных паров, под действием которых он может сильно увлажниться, а также двуокиси углерода, под действием которой едкий натр может постепенно превратиться в карбонат натрия:
2NaOH + СO2 = Na2CO3+ Н2O.
Едкий натр-типичная щелочь, поэтому меры предосторожности при работе с ним такие же, как и при работе с любыми другими щелочами.
Едкий натр применяется во многих отраслях промышленности, например для очистки нефтепродуктов, производства мыла из жиров, в бумажной промышленности, в производстве искусственного волокна и красителей, производстве медикаментов и др. (рис. 78).

Запишите в тетрадь области применения едкого натра.

Из солей натрия следует отметить в первую очередь поваренную соль NaCl, которая служит основным сырьем для получения едкого натра и металлического натрия (подробно об этой соли см. стр. 164), соду Na2CO3 (см. стр. 278), Na2SO4 (см. стр. 224), NaNO3 (см. стр. 250) и др.

Рис. 78. Применение едкого натра

■ 32. Опишите способ получения едкого натра электролизом поваренной соли.
33. Едкий натр можно получить действием на карбонат натрия гашеной известью. Составьте молекулярную и ионные формы уравнения этой реакции, а также рассчитайте, сколько соды, содержащей 95% карбоната, потребуется для получения 40 кг едкого натра.
34. Почему при хранении раствора едкого натра в склянках с притертыми пробками пробки «заедают» и их нельзя вынуть? Если же в течение некоторого срока подержать склянку опрокинутой в воду, то пробка свободно вынимается. Объясните, приведя уравнения реакций, что за процессы имеют место в данном случае.
35. Напишите уравнения реакций в молекулярной и ионных формах, характеризующих свойства едкого натра как типичной щелочи.
36. Какие меры предосторожности следует соблюдать при работе с едким натром? Какие меры первой помощи следует оказать при ожогах едким натром?

Калий

Калий К - также довольно распространенный щелочной металл, отличающийся от натрия величиной атомного радиуса (четвертый период) и потому обладающий большей химической активностью, чем натрий. Электронная конфигурация атома калия 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 .
Структура его внешнего электронного слоя


Калий - мягкий металл, который хорошо режется ножом. Во избежание окисления его, как и натрий, хранят под слоем керосина.
С водой калий реагирует еще более бурно, чем натрий, с образованием щелочи и с выделением водорода, который загорается:
2К + 2Н2O = 2КОН + Н2.
При сжигании в кислороде (при этом для сжигания рекомендуется брать еще более мелкие кусочки металла, чем для сжигания натрия) он, подобно натрию, сгорает очень энергично с образованием перекиси калия.
Следует отметить, что в обращении калий гораздо опаснее натрия. Сильный взрыв может произойти даже при разрезании калия, поэтому обращаться с ним нужно еще осторожнее.
Гидроокись калия, или едкое кали КОН - белое кристаллическое вещество. Едкое кали во всех отношениях сходно с едким натром. Они широко применяются в мыловаренной промышленности, но его получение обходится несколько дороже, поэтому такого применения, как NaOH, оно не находит.
Соли калия следует отметить особо, так как некоторые из них широко используются в качестве удобрения. Таковы хлорид калия КСl, нитрат калия KNO3, который является также азотным удобрением.

■ 37. Чем объяснить то, что едкое кали химически активнее едкого натра?
38. В кристаллизатор с водой опустили кусочек калия. После того как реакция закончилась, туда же поместили немного цинка в виде белого студенистого осадка. Осадок исчез, а при испытании раствора фенолфталеином последний окрасился в малиновый цвет. Какие химические процессы здесь произошли?
Какие 34

К щелочным металлам относятся металлы IA группы Периодической системы Д.И. Менделеева – литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs) и франций (Fr). На внешнем энергетическом уровне щелочных металлов находится один валентный электрон. Электронная конфигурация внешнего энергетического уровня щелочных металлов – ns 1 . В своих соединениях они проявляют единственную степень окисления равную +1. В ОВР являются восстановителями, т.е. отдают электрон.

Физические свойства щелочных металлов

Все щелочные металлы легкие (обладают небольшой плотностью), очень мягкие (за исключением Li легко режутся ножом и могут быть раскатаны в фольгу), имеют низкие температуры кипения и плавления (с ростом заряда ядра атома щелочного металла происходит понижение температуры плавления).

В свободном состоянии Li, Na, K и Rb – серебристо-белые металлы, Cs – металл золотисто-желтого цвета.

Щелочные металлы хранят в запаянных ампулах под слоем керосина или вазелинового масла, поскольку они обладают высокой химической активностью.

Щелочные металлы обладают высокой тепло- и электропроводностью, что обусловлено наличием металлической связи и объемоцентрированной кристаллической решетки

Получение щелочных металлов

Все щелочные металлы возможно получить электролизом расплава их солей, однако на практике таким способом получают только Li и Na, что связано с высокой химической активностью K, Rb, Cs:

2LiCl = 2Li + Cl 2

2NaCl = 2Na + Cl 2

Любой щелочной металл можно получить восстановлением соответствующего галогенида (хлорида или бромида), применяя в качестве восстановителей Ca, Mg или Si. Реакции проводят при нагревании (600 – 900С) и под вакуумом. Уравнение получения щелочных металлов таким способом в общем виде:

2MeCl + Ca = 2Mе + CaCl 2 ,

где Ме – металл.

Известен способ получения лития из его оксида. Реакцию проводят при нагревании до 300°С и под вакуумом:

2Li 2 O + Si + 2CaO = 4Li + Ca 2 SiO 4

Получение калия возможно по реакции между расплавленным гидроксидом калия и жидким натрием. Реакцию проводят при нагревании до 440°С:

KOH + Na = K + NaOH

Химические свойства щелочных металлов

Все щелочные металлы активно взаимодействуют с водой образуя гидроксиды. Из-за высокой химической активности щелочных металлов протекание реакции взаимодействия с водой может сопровождаться взрывом. Наиболее спокойно с водой реагирует литий. Уравнение реакции в общем виде:

2Me + H 2 O = 2MeOH + H 2

где Ме – металл.

Щелочные металлы взаимодействуют с кислородом воздуха образую ряд различных соединений – оксиды (Li), пероксиды (Na), надпероксиды (K, Rb, Cs):

4Li + O 2 = 2Li 2 O

2Na + O 2 =Na 2 O 2

Все щелочные металлы при нагревании реагируют с неметаллами (галогенами, азотом, серой, фосфором, водородом и др.). Например:

2Na + Cl 2 =2NaCl

6Li + N 2 = 2Li 3 N

2Li +2C = Li 2 C 2

2Na + H 2 = 2NaH

Щелочные металлы способны взаимодействовать со сложными веществами (растворы кислот, аммиак, соли). Так, при взаимодействии щелочных металлов с аммиаком происходит образование амидов:

2Li + 2NH 3 = 2LiNH 2 + H 2

Взаимодействие щелочных металлов с солями происходит по следующему принципу –вытесняют менее активные металлы (см. ряд активности металлов) из их солей:

3Na + AlCl 3 = 3NaCl + Al

Взаимодействие щелочных металлов с кислотами неоднозначно, поскольку при протекании таких реакций металл первоначально будет реагировать с водой раствора кислоты, а образующаяся в результате этого взаимодействия щелочь будет реагировать с кислотой.

Щелочные металлы реагируют с органическими веществами, такими, как спирты, фенолы, карбоновые кислоты:

2Na + 2C 2 H 5 OH = 2C 2 H 5 ONa + H 2

2K + 2C 6 H 5 OH = 2C 6 H 5 OK + H 2

2Na + 2CH 3 COOH = 2CH 3 COONa + H 2

Качественные реакции

Качественной реакцией на щелочные металлы является окрашивание пламени их катионами: Li + окрашивает пламя в красный цвет, Na + — в желтый, а K + , Rb + , Cs + — в фиолетовый.

Примеры решения задач

ПРИМЕР 1

Задание Осуществите химические превращения Na→Na 2 O→NaOH→Na 2 SO 4
Решение 4Na + O 2 →2Na 2 O

Щелочные металлы — общее название элементов 1-й группы периодической системы химических элементов. Ее состав: литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs), франций (Fr), и гипотетический элемент — унуненний (Uue). Наименование группы произошло от названия растворимых гидроксидов натрия и калия, обладающих реакцией и вкусом щелочи. Рассмотрим общие черты строения атомов элементов, свойства, получение и применение простых веществ.

Устаревшая и новая нумерация группы

По устаревшей системе нумерации щелочные металлы, занимающие крайний слева вертикальный столбец таблицы Менделеева, относятся к I-А группе. В 1989 году в качестве основного Международный химический союз (IUPAC) предложил иной вариант (длиннопериодный). Щелочные металлы в соответствии с новой классификацией и сплошной нумерацией относятся к 1-й группе. Открывает эту совокупность представитель 2-го периода — литий, завершает ее радиоактивный элемент 7-го периода — франций. У всех металлов 1-й группы во внешней оболочке атомов содержится один s-электрон, который они легко отдают (восстанавливаются).

Строение атомов щелочных металлов

Для элементов 1-й группы характерно наличие второго энергетического уровня, повторяющего строение предшествующего инертного газа. У лития на предпоследнем слое — 2, у остальных — по 8 электронов. В химических реакциях атомы легко отдают внешний s-электрон, приобретая энергетически выгодную конфигурацию благородного газа. Элементы 1-й группы обладают малыми величинами энергии ионизации и электроотрицательности (ЭО). Они легко образуют однозарядные положительные ионы. При переходе от лития к францию возрастает количество протонов и электронов, радиус атома. Рубидий, цезий и франций легче отдают внешний электрон, чем предшествующие им в группе элементы. Следовательно, в группе сверху вниз увеличивается восстановительная способность.

Легкая окисляемость щелочных металлов приводит к тому, что элементы 1-й группы существуют в природе в виде соединений своих однозарядных катионов. Содержание в земной коре натрия — 2,0%, калия — 1,1%. Другие элементы в ней находятся в малых количествах, например, запасы франция — 340 г. Хлорид натрия растворен в морской воде, рапе соленых озер и лиманов, образует залежи каменной или поваренной соли. Вместе с галитом встречаются сильвинит NaCl . KCl и сильвин KCl. Полевой шпат образован алюмосиликатом калия K 2 . В воде ряда озер растворен карбонат натрия, а запасы сульфата элемента сосредоточены в акватории Каспийского моря (Кара-Богаз-Гол). Встречаются залежи нитрата натрия в Чили (чилийская селитра). Существует ограниченное число природных соединений лития. В качестве примесей к соединениям элементов 1-й группы встречаются рубидий и цезий, а франций находят в составе урановых руд.

Последовательность открытия щелочных металлов

Британский химик и физик Г. Дэви в 1807 году провел электролиз расплавов щелочей, впервые получив натрий и калий в свободном виде. В 1817 году шведский ученый Иоганн Арфведсон открыл элемент литий в минералах, а в 1825-м Г. Дэви выделил чистый металл. Рубидий был впервые обнаружен в 1861 году Р. Бунзеном и Г. Кирхгофом. Немецкие исследователи анализировали состав алюмосиликатов и получили в спектре красную линию, соответствующую новому элементу. В 1939 году сотрудница Парижского института радиоактивности Маргарита Пере установила существование изотопа франция. Она же дала название элементу в честь своей родины. Унуненний (эка-франций) — предварительное название нового вида атомов с порядковым номером 119. Временно используется химический символ Uue. Исследователи с 1985 года предпринимают попытки синтеза нового элемента, который станет первым в 8-м периоде, седьмым в 1-й группе.

Физические свойства щелочных металлов

Почти все щелочные металлы обладают серебристо-белым цветом и металлическим блеском на свежем срезе (цезий имеет золотисто-желтую окраску). На воздухе блеск тускнеет, появляется серая пленка, на литии — зеленовато-черная. Этот металл обладает наибольшей твердостью среди соседей по группе, но уступает тальку — самому мягкому минералу, открывающему шкалу Мооса. Натрий и калий легко сгибаются, их можно разрезать. Рубидий, цезий и франций в чистом виде представляют тестообразную массу. Плавление щелочных металлов происходит при относительно низкой температуре. Для лития она достигает 180,54 °С. Натрий плавится при температуре 97,86 °С, калий — при 63,51 °С, рубидий — при 39,32 °С, цезий — при 28,44 °С. Плотность щелочных металлов меньше, чем родственных им веществ. Литий плавает в керосине, поднимается на поверхность воды, калий и натрий также всплывают в нем.

Кристаллическое состояние

Кристаллизация щелочных металлов происходит в кубической сингонии (объемно-центрированной). Атомы в ее составе обладают зоной проводимости, на свободные уровни которой могут переходить электроны. Именно эти активные частицы осуществляет особую химическую связь — металлическую. Общность строения энергетических уровней и природа кристаллических решеток объясняют сходство элементов 1-й группы. При переходе от лития к цезию возрастают массы атомов элементов, что приводит к закономерному увеличению плотности, а также к изменению других свойств.

Химические свойства щелочных металлов

Единственный внешний электрон в атомах щелочных металлов слабо притягивается к ядру, поэтому им свойственна низкая энергия ионизации, отрицательное или близкое к нулю сродство к электрону. Элементы 1-й группы, обладая восстановительной активностью, практически не способны окислять. В группе сверху вниз возрастает активность в химических реакциях:

Получение и применение щелочных металлов

Металлы, относящиеся к 1-й группе, в промышленности получают электролизом расплавов их галогенидов и других природных соединений. При разложении под действием электрического тока положительные ионы на катоде присоединяют электроны и восстанавливаются до свободного металла. На противоположном электроде происходит окисление аниона.

При электролизе расплавов гидроксидов на аноде окисляются частицы OH - , выделяется кислород и получается вода. Еще один метод заключается в термическом восстановлении щелочных металлов из расплавов их солей кальцием. Простые вещества и соединения элементов 1-й группы имеют практическое значение. Литий служит сырьем в атомной энергетике, используется в ракетной технике. В металлургии применяется для удаления остатков водорода, азота, кислорода, серы. Гидроксидом дополняют электролит в щелочных аккумуляторах.

Натрий необходим для атомной энергетики, металлургии, органического синтеза. Цезий и рубидий используются при изготовлении фотоэлементов. Широкое применение находят гидроксиды и соли, особенно хлориды, нитраты, сульфаты, карбонаты щелочных металлов. Катионы обладают биологической активностью, особенно важны для организма человека ионы натрия и калия.

ЩЕЛОЧНЫЕ МЕТАЛЛЫ

К щелочным металлам относятся элементы первой группы, главной подгруппы: литий, натрий, калий, рубидий, цезий, франций.

Нахождение в природе

Na-2,64% (по массе), K-2,5% (по массе), Li, Rb, Cs - значительно меньше, Fr- искусственно полученный элемент




Li

Li 2 O Al 2 O 3 4SiO 2 – сподумен

Na

NaCl – поваренная соль (каменная соль), галит

Na 2 SO 4 10H 2 O – глауберова соль (мирабилит)

NaNO 3 – чилийская селитра

Na 3 AlF 6 - криолит
Na 2 B 4 O 7 · 10H 2 O - бура

K

KCl NaCl – сильвинит

KCl MgCl 2 6H 2 O – карналлит

K 2 O Al 2 O 3 6SiO 2 – полевой шпат (ортоклаз)

Свойства щелочных металлов



С увеличением порядкового номера атомный радиус увеличивается, способность отдавать валентные электроны увеличивается и восстановительная активность увеличивается:




Физические свойства

Низкие температуры плавления, малые значения плотностей, мягкие, режутся ножом.





Химические свойства

Типичные металлы, очень сильные восстановители. В соединениях проявляют единственную степень окисления +1. Восстановительная способность увеличивается с ростом атомной массы. Все соединения имеют ионный характер, почти все растворимы в воде. Гидроксиды R–OH – щёлочи, сила их возрастает с увеличением атомной массы металла.

Воспламеняются на воздухе при умеренном нагревании. С водородом образуют солеобразные гидриды. Продукты сгорания чаще всего пероксиды.

Восстановительная способность увеличивается в ряду Li–Na–K–Rb–Cs



1. Активно взаимодействуют с водой :

2Li + 2H 2 O → 2LiOH + H 2 ­

2. Реакция с кислотами:

2Na + 2HCl → 2NaCl + H 2 ­

3. Реакция с кислородом:

4Li + O 2 → 2Li 2 O(оксид лития)

2Na + O 2 → Na 2 O 2 (пероксид натрия)

K + O 2 → KO 2 (надпероксид калия)

На воздухе щелочные металлы мгновенно окисляются. Поэтому их хранят под слоем органических растворителей (керосин и др.).

4. В реакциях с другими неметаллами образуются бинарные соединения:

2Li + Cl 2 → 2LiCl (галогениды)

2Na + S → Na 2 S (сульфиды)

2Na + H 2 → 2NaH (гидриды)

6Li + N 2 → 2Li 3 N (нитриды)

2Li + 2C → Li 2 C 2 (карбиды)

5. Качественная реакция на катионы щелочных металлов - окрашивание пламени в следующие цвета:

Li + – карминово-красный

Na + – желтый

K + , Rb + и Cs + – фиолетовый


Получение

Т.к. щелочные металлы - это самые сильные восстановители, их можно восстановить из соединений только при электролизе расплавов солей:
2NaCl=2Na+Cl 2

Применение щелочных металлов

Литий - подшипниковые сплавы, катализатор

Натрий - газоразрядные лампы, теплоноситель в ядерных реакторах

Рубидий - научно-исследовательские работы

Цезий – фотоэлементы


Оксиды, пероксиды и надпероксиды щелочных металлов

Получение

Окислением металла получается только оксид лития

4Li + O 2 → 2Li 2 O

(в остальных случаях получаются пероксиды или надпероксиды).

Все оксиды (кроме Li 2 O) получают при нагревании смеси пероксида (или надпероксида) с избытком металла:

Na 2 O 2 + 2Na → 2Na 2 O

KO 2 + 3K → 2K 2 O

Особенности соединений лития по сравнению с соединениями других щелочных металлов.

Гидриды, оксиды, пероксиды, гидроксиды щелочных металлов: химическая связь в соединениях, получение и свойства.

Получение натрия, гидроксида натрия и карбоната натрия в промышленности.

Взаимодействие с растворами щелочей: а)амфотерных металлов; б)неметаллов; в)кислотных оксидов; г)амфотерных оксидов.

Металлы подгруппы IA периодической системы элементов I. И. Менделеева Li, Na, К, Rb, Cs и Fr называются щелочными.

Щелочные, щелочноземельные металлы, Be и Mg относятся к наиболее электроположительным, элементам. В соединениях с други­ми элементами для металлов подгруппы IA типична степень окисления + 1, а для металлов подгруппы ПА +2. С ростом числа электронных слоев и увеличением радиусов энергия ионизации атомов уменьшается. Вследствие этого химическая активность элементов в подгруппах увеличивается с ростом их порядкового номера. С малой энергией ионизации связан характерный для них фотоэффект, а также окрашивание их солями пламени" газовой горелки. Благодаря легкой отдаче наружных электронов щелочные и щелочноземельные металлы образуют соединения преимуществен­но с ионной связью.

Щелочные и щелочноземельные металлы проявляют высокую

химическую активность. При нагревании в водороде они образуют

гидриды - солеподобные соединения, в которых водород находится

а виде отрицательно заряженного иона. На воздухе щелочные

металлы быстро окисляются, образуя в зависимости от их активности

оксиды, пероксиды, надпероксиды или озониды.

При этом Ci, Na и К"загораются на воздухе или в атмосфере сухого кислорода только

при нагревании, a, Rb и Cs самовоспламеняются без нагревания.

Образование при горении оксида состава М 2 О характерно только

для лития. Натрий образует пероксид состава М 2 O 2 , калий, рубидий

и цезий - надпероксиды состава МО 2 .

Щелочные металлы энергично взаимодействуют с водой, вытес-из нее водород и образуя соответствующие гидроксиды. Активность взаимодействия этих металлов с водой возрастает по мере увеличения порядкового номера элемента. Так,- литий реагирует с водой без плавления, натрий - плавится, калий - самовозгорает-ся, взаимодействие рубидия и цезия протекает еще более энергично. Щелочные металлы энергично взаимодействуют с галогенами, а при нагревании - с серой.

Гидроксиды щелочных металлов - соединения с преимуществен-

но ионной связью. В водных растворах они нацело диссоциируют

ным характером связи объясняется и их высокая термическая

устойчнвость:они не, отщепляют воду дажепри нагревании до температуры кипения (выше 1300 °С) Исключение составляет, гидроксид лития, который при нагревании разлагается с отщепле-нием,воды. Поведение лития отличается и в других отношениях от поведения остальных щелочных металлов. Это объясняется его неполной электронной аналогией с остальными элементами группы.

Из щелочных металлов только литий при сравнительно не­большом нагревании взаимодействует с азотом, углеродом и крем-нием, образуя соответственно нитрид Li 3 N, карбид Li 2 С 2 и силицид Li 6 Si 2 . В присутствии влаги образование нитрида идёт уже при ком­натной температуре.

В отличие от щелочных металлов, почти все соли которых хорошо растворимы в воде, литий образует малорастворимый фторид LiF карбонат Li 2 CO 3 и фосфат Li 3 PO 4 .

Кальций, стронций и барий по отношению к кислороду и воде ведут себя подобно щелочным металлам. Они разлагают воду с выде­лением водорода и образованием гидроксидов М(ОН) 2 . Взаимодей­ствуя с кислородом, образуют оксиды (СаО) и пероксиды (SrO 2 , ВаО 2), которые реагируют с водой подобно аналогичным соедине­ниям щелочных металлов.

Магний также существенно отличается от щелочноземельных металлов. Например, из-за малой растворимости его гидроксида он не взаимодействует с холодной водой. При нагревании процесс облегчается.

В целом металлы подгруппы ПА химически активны: при нагревании они взаимодействуют с Галогенами и серой с.образо­ванием соответствующих солей, соединяются с молекулярным азотом.

Соли щелочноземельных металлов, как и соли щелочных метал­лов, состоят из ионов. Соли этих металлов окрашивают пламя го­релки в характерные цвета, для соединений Be и Mg этого не наблю­дается.

В отличие от солей щелочных металлов многие соли металлов подгруппы ПА малорастворимы, в частности фториды (кроме BeF 2). сульфаты (кроме BeSО 4 и MgSO 4), карбонаты. Из водных раствороэ Ве 2+ осаждается в виде основных карбонатов перемен-.ного состава, Mg 2+ - в виде 4MgCO 3 -Mg(OH) 2 -5H 2 O, а Са 2+ , Sr 2 + и Ва 2+ осаждаются в виде средних карбонатов МСОз.

А ) Be+2NaOH= Na2BeO2+H2

Al+NaOH+H2O=NaAlO2+H2

Б) Неметаллы, за исключением галогенов, не реагируют с растворами щелочей

Cl2+NaOH=NaClO3+NaCl+H2O

В) кислотные оксиды растворяются только в щелочах с образование соли и воды

SO3+2NaOH=Na2So4+H2o

Г) Амф ме реагируют с сильными щелочами, проявляя этим свои кислотные свойства, например:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O Амфотерные оксиды могут реагировать с щелочами двояко: в растворе и в расплаве.

При реакции с щёлочью в расплаве образуется обычная средняя соль(как показано на примере выше).

При реакции с щёлочью в растворе образуется комплексная соль.

Al 2 O 3 + 2NaOH + 3H 2 O → 2Na (В данном случае образуется тетрагидроксоаллюминат натрия)