Прослушка статья. Кс признал законным запрет на прослушку без лицензии. Порядок судебного разрешения на прослушивание телефонных переговоров

pn переход это тонкая область, которая образуется в том месте, где контактируют два полупроводника разного типа проводимости. Каждый из этих полупроводников электрически нейтрален. Основным условием является то что в одном полупроводнике основные носители заряда это электроны а в другом дырки.

При контакте таких полупроводников в результате диффузии зарядов дырка из p области попадает в n область. Она тут же рекомбенирует с одним из электронов в этой области. В результате этого в n области появляется избыточный положительный заряд. А в p области избыточный отрицательный заряд.

Таким же образом один из электронов из n области попадает в p область, где рекомбенирует с ближайшей дыркой. Следствием этого также является образование избыточных зарядов. Положительного в n области и отрицательного в p области.

В результате диффузии граничная область наполняется зарядами, которые создают электрическое поле. Оно будет направлено таким образом, что будет отталкивать дырки находящиеся в области p от границы раздела. И электроны из области n также будут отталкиваться от этой границы.

Если говорить другими словами на границе раздела двух полупроводников образуется энергетический барьер. Чтобы его преодолеть электрон из области n должен обладать энергией больше чем энергия барьера. Как и дырка из p области.

Наряду с движением основных носителей зарядов в таком переходе существует и движение неосновных носителей зарядов. Это дырки из области n и электроны из области p. Они также двигаются в противоположную область через переход. Хотя этому способствует образовавшееся поле, но ток получается, ничтожно мал. Так как количество неосновных носителей зарядов очень мало.

Если к pn переходу подключить внешнюю разность потенциалов в прямом направлении, то есть к области p подвести высокий потенциал, а к области n низкий. То внешнее поле приведет к уменьшению внутреннего. Таким образом, уменьшится энергия барьера, и основные носители заряда смогут легко перемещаться по полупроводникам. Иначе говоря, и дырки из области p и электроны из области n будут двигаться к границе раздела. Усилится процесс рекомбинации и увеличится ток основных носителей заряда.

Рисунок 1 — pn переход, смещённый в прямом направлении

Если разность потенциалов приложить в обратном направлении, то есть к области p низкий потенциал, а к области n высокий. То внешнее электрическое поле сложится с внутренним. Соответственно увеличится энергия барьера не дающего перемещаться основным носителям зарядов через переход. Другими словами электроны из области n и дырки из области p будут двигаться от перехода к внешним сторонам полупроводников. И в зоне pn перехода попросту не останется основных носителей заряда обеспечивающих ток.

Рисунок 2 — pn переход, смещённый в обратном направлении

Если обратная разность потенциалов будет чрезмерно высока, то напряжённость поля в области перехода увеличится до тех пор, пока не наступит электрический пробой. То есть электрон ускоренный полем не разрушит ковалентную связь и не выбьет другой электрон и так далее.

P-N переход - точка в полупроводниковом приборе, где материал N-типа и материал P-типа соприкасаются друг с другом. Материал N-типа обычно упоминается как катодная часть полупроводника, а материал P-типа - как анодная часть.

Когда между этими двумя материалами возникает контакт, то электроны из материала n-типа перетекают в материал p-типа и соединяются с имеющимися в нем отверстиями. Небольшая область с каждой стороны линии физического соприкосновения этих материалов почти лишена электронов и отверстий. Эта область в полупроводниковом приборе называется обедненной областью.

Эта обедненная область является ключевым звеном в работе любого прибора, в котором есть P-N переход. Ширина этой обедненной области определяет сопротивление протеканию тока через P-N переход, поэтому сопротивление прибора, имеющего такой P-N переход, зависит от размеров этой обедненной области. Ее ширина может изменяться при прохождении какого-либо напряжения через этот P-N переход. В зависимости от полярности приложенного потенциала P-N переход может иметь либо прямое смещение, либо обратное смещение. Ширина обедненной области, или сопротивление полупроводникового прибора, зависит как от полярности, так и от величины поданного напряжения смещения.

Когда P-N переход прямой (с прямым смещением), то тогда на анод подается положительный потенциал, а на катод - отрицательный. Результатом этого процесса является сужение обедненной области, что уменьшает сопротивление движению тока через P-N переход.

Если потенциал увеличивается, то обедненная область будет продолжать уменьшаться, тем самым еще больше понижая сопротивление протеканию тока. В конце концов, если подаваемое напряжение окажется достаточно велико, то обедненная область сузится до точки минимального сопротивления и через P-N переход, а вместе с ним и через весь прибор, будет проходить максимальный ток. Когда P-N переход имеет соответствующее прямое смещение, то он обеспечивает минимальное сопротивление проходящему через него потоку тока.

Когда P-N переход обратный (с обратным смещением), то отрицательный потенциал подается на анод, а положительный - на катод.

Это приводит к тому, что в результате обедненная область расширяется, а это вызывает увеличение сопротивления протеканию тока. Когда на P-N переходе создается обратное смещение, то имеет место максимальное сопротивление протеканию тока, а данный переход действует в основном как разомкнутая цепь.

При определенном критическом значении напряжения обратного смещения сопротивление протеканию тока, которое возникает в обедненной области, оказывается преодоленным и происходит стремительное нарастание тока. Значение напряжения обратного смещения, при котором ток быстро нарастает, называется пробивным напряжением.

Сильно зависит от концентрации примесей. Полупроводники, электрофизические свойства которых зависят от примесей других химических элементов, называются примесными полупроводниками. Примеси бывают двух видов донорной и акцепторной.

Донорной называется примесь, атомы которой дают полупроводнику свободные электроны, а получаемая в этом случае электропроводность, связанная с движением свободных электронов, - электронной . Полупроводник с электронной проводимостью называется электронным полупроводником и условно обозначается латинской буквой n - первой буквой слова «негативный».

Рассмотрим процесс образования электронной проводимости в полупроводнике. За основной материал полупроводника возьмём кремний (кремниевые полупроводники самые распространённые). У кремния (Si) на внешней орбите атома есть четыре электрона, которые обуславливают его электрофизические свойства (т.е. они перемещаясь под действием напряжения создают электрический ток). При введении в кремний атомов примеси мышьяка (As), у которого на внешней орбите пять электронов, четыре электрона вступают во взаимодействие с четырьмя электронами кремния, образуя ковалентную связь, а пятый электрон мышьяка остаётся свободным. При этих условиях он легко отделяется от атома и получает возможность перемещаться в веществе.

Акцепторной называется примесь, атомы которой принимают электроны от атомов основного полупроводника. Получаемая при этом электропроводность, связанная с перемещением положительных зарядов - дырок, называется дырочной. Полупроводник с дырочной электропроводностью называется дырочным полупроводником и условно обозначается латинской буквой p - первой буквой слова «позитивный».

Рассмотрим процесс образования дырочной проводимости. при введении в кремний атомов примеси индия (In), у которого на внешней орбите три электрона, они вступают в связь с тремя электронами кремния, но эта связь оказывается неполной: не хватает ещё одного электрона для связи с четвёртым электроном кремния. Атом примеси присоединяет к себе недостающий электрон от одного из расположенных поблизости атомов основного полупроводника, после чего он оказывается связанным со всеми четырьмя соседними атомами. Благодаря добавлению электрона он приобретает избыточный отрицательный заряд, то есть превращается в отрицательный ион. В тоже время атом полупроводника, от которого к атому примеси ушёл четвёртый электрон оказывается связанным с соседними атомами только тремя электронами. таким образом, возникает избыток положительного заряда и появляется незаполненная связь, то есть дырка .

Одним из важных свойств полупроводника является то, что при наличии дырок через него может проходить ток, даже если в нём нет свободных электронов. Это объясняется способностью дырок переходить с одного атома полупроводника на другой.

Перемещение «дырок» в полупроводнике

Вводя в часть полупроводника донорную примесь, а в другую часть - акцепторную, можно получить в нём области с электронной и дырочной проводимостью. На границе областей электронной и дырочной проводимости образуется так называемый электронно-дырочный переход.

P-N-переход

Рассмотрим процессы происходящий при прохождении тока через электронно-дырочный переход . Левый слой, обозначенный буквой n, имеет электронную проводимость. Ток в нём связан с перемещением свободных электронов, которые условно обозначены кружками со знаком «минус». Правый слой, обозначенный буквой p, обладает дырочной проводимостью. Ток в этом слое связан с перемещением дырок, которые на рисунке обозначены кружками с «плюсом».



Движение электронов и дырок в режиме прямой проводимости



Движение электронов и дырок в режиме обратной проводимости.

При соприкосновении полупроводников с различными типами проводимости электроны вследствие диффузии начнут переходить в p-область, а дырки - в n-область, в результате чего пограничный слой n-области заряжается положительно, а пограничный слой p-области - отрицательно. Между областями возникает электрическое поле, которое является как бы барьеров для основных носителей тока, благодаря чему в p-n переходе образуется область с пониженной концентрацией зарядов. Электрическое поле в p-n переходе называют потенциальным барьером, а p-n переход - запирающим слоем. Если направление внешнего электрического поля противоположно направлению поля p-n перехода («+» на p-области, «-» на n-области), то потенциальный барьер уменьшается, возрастает концентрация зарядов в p-n переходе, ширина и, следовательно, сопротивление перехода уменьшается. При изменении полярности источника внешнее электрическое поле совпадает с направлением поля p-n перехода, ширина и сопротивление перехода возрастает. Следовательно, p-n переход обладает вентильными свойствами.

Полупроводниковый диод

Диодом называется электро преобразовательный полупроводниковый прибор с одним или несколькими p-n переходами и двумя выводами. В зависимости от основного назначения и явления используемого в p-n переходе различают несколько основных функциональных типов полупроводниковых диодов: выпрямительные, высокочастотные, импульсные, туннельные, стабилитроны, варикапы.

Основной характеристикой полупроводниковых диодов является вольт-амперная характеристика (ВАХ). Для каждого типа полупроводникового диода ВАХ имеет свой вид, но все они основываются на ВАХ плоскостного выпрямительного диода, которая имеет вид:


Вольт-амперная характеристика (ВАХ) диода: 1 — прямая вольт-амперная характеристика; 2 — обратная вольт-амперная характеристика; 3 — область пробоя; 4 — прямолинейная аппроксимация прямой вольт-амперной характеристики; Uпор — пороговое напряжение; rдин — динамическое сопротивление; Uпроб — пробивное напряжение

Масштаб по оси ординат для отрицательных значений токов выбран во много раз более крупным, чем для положительных.

Вольт-амперные характеристики диодов проходят через нуль, но достаточно заметный ток появляется лишь при пороговом напряжении (U пор), которое для германиевых диодов равно 0,1 - 0,2 В, а у кремниевых диодов равно 0,5 - 0,6 В. В области отрицательных значений напряжения на диоде, при уже сравнительно небольших напряжениях (U обр.) возникает обратный ток (І обр). Этот ток создается неосновными носителями: электронами р-области и дырками n-области, переходу которых из одной области в другую способствует потенциальный барьер вблизи границы раздела. С ростом обратного напряжения увеличение тока не происходит, так как количество неосновных носителей, оказывающихся в единицу времени на границе перехода, не зависит от приложенного извне напряжения, если оно не очень велико. Обратный ток для кремниевых диодов на несколько порядков меньше, чем для германиевых. Дальнейшее увеличение обратного напряжения до напряжения пробоя (U проб) приводит к тому что электроны из валентной зоны переходят в зону проводимости, возникает эффект Зенера . Обратный ток при этом резко увеличивается, что вызывает нагрев диода и дальнейшее увеличение тока приводит к тепловому пробою и разрушению p-n-перехода.

Обозначение и определение основных электрических параметров диодов


Обозначение полупроводникового диода

Как указывалось ранее диод в одну сторону ток проводит (т. е. представляет собой в идеале просто проводник с малым сопротивлением), в другую – нет (т. е. превращается в проводник с очень большим сопротивлением), одним словом, обладает односторонней проводимостью . Соответственно выводов у него всего два. Они как повелось ещё со времён ламповой техники, называются анодом (положительным выводом) и катодом (отрицательным).

Все полупроводниковые диоды можно разделить на две группы: выпрямительные и специальные. Выпрямительные диоды , как следует из самого названия, предназначены для выпрямления переменного тока. В зависимости от частоты и формы переменного напряжения они делятся на высокочастотные, низкочастотные и импульсные. Специальные типы полупроводниковых диодов используют различные свойства p-n-переходов; явление пробоя, барьерную емкость, наличие участков с отрицательным сопротивлением и др.

Выпрямительные диоды

Конструктивно выпрямительные диоды делятся на плоскостные и точечные, а по технологии изготовления на сплавные, диффузионные и эпитаксиальные. Плоскостные диоды благодаря большой площади p-n-перехода используют для выпрямления больших токов . Точечные диоды имеют малую площадь перехода и, соответственно, предназначены для выпрямления малых токов . Для увеличения напряжения лавинного пробоя используют выпрямительные столбы, состоящие из ряда последовательно включенных диодов.

Выпрямительные диоды большой мощности называют силовыми . Материалом для таких диодов обычно служит кремний или арсенид галлия. Кремниевые сплавные диоды используют для выпрямления переменного тока с частотой до 5 кГц. Кремниевые диффузионные диоды могут работать на повышенной частоте, до 100 кГц. Кремниевые эпитаксиальные диоды с металлической подложкой (с барьером Шотки) могут использоваться на частотах до 500 кГц. Арсенидгалиевые диоды способны работать в диапазоне частот до нескольких МГц.

Силовые диоды обычно характеризуются набором статических и динамических параметров. К статическим параметрам диода относятся:

  • падение напряжения U пр на диоде при некотором значении прямого тока;
  • обратный ток I обр при некотором значении обратного напряжения;
  • среднее значение прямого тока I пр.ср. ;
  • импульсное обратное напряжение U обр.и. ;

К динамическим параметрам диода относятся его временные и частотные характеристики. К таким параметрам относятся:

  • время восстановления t вос обратного напряжения;
  • время нарастания прямого тока I нар. ;
  • предельная частота без снижения режимов диода f max .

Статические параметры можно установить по вольт-амперной характеристике диода.

Время обратного восстановления диода t вос является основным параметром выпрямительных диодов, характеризующим их инерционные свойства. Оно определяется при переключении диода с заданного прямого тока I пр на заданное обратное напряжение U обр. Во время переключения напряжение на диоде приобретает обратное значение. Из-за инерционности диффузионного процесса ток в диоде прекращается не мгновенно, а в течении времени t нар. По существу, происходит рассасывание зарядов на границе p-n-перехода (т. е. разряд эквивалентной емкости). Из этого следует, что мощность потерь в диоде резко повышается при его включении, особенно, при выключении. Следовательно, потери в диоде растут с повышением частоты выпрямляемого напряжения.

При изменении температуры диода изменяются его параметры. Наиболее сильно от температуры зависят прямое напряжение на диоде и его обратный ток. Приблизительно можно считать, что ТКН (температурный коэффициент напряжения) Uпр = -2 мВ/К, а обратный ток диодаимеет положительный коэффициент. Так при увеличении температуры на каждые 10 °С обратный ток германиевых диодов увеличивается в 2 раза, а кремниевых – 2,5 раз.

Диоды с барьером Шотки

Для выпрямления малых напряжений высокой частоты широко используются диоды с барьером Шотки . В этих диодах вместо p-n-перехода используется контакт металлической поверхности с . В месте контакта возникают обеднённые носителями заряда слои полупроводника, которые называются запорными. Диоды с барьером Шотки отличаются от диодов с p-n-переходом по следующим параметрам:

  • более низкое прямое падение напряжения;
  • имеют более низкое обратное напряжение;
  • более высокий ток утечки;
  • почти полностью отсутствует заряд обратного восстановления.

Две основные характеристики делают эти диоды незаменимыми: малое прямое падение напряжения и малое время восстановления обратного напряжения. Кроме того, отсутствие неосновных носителей, требующих время на обратное восстановление, означает физическое отсутствие потерь на переключение самого диода.

Максимальное напряжение современных диодов Шотки составляет около 1200 В. При этом напряжении прямое напряжение диода Шотки меньше прямого напряжения диодов с p-n-переходом на 0,2…0,3 В.

Преимущества диода Шотки становятся особенно заметны при выпрямлении малых напряжений. Например, 45-вольтный диод Шотки имеет прямое напряжение 0,4…0,6 В, а при том же токе диод с p-n-переходом имеет падение напряжения 0,5…1,0 В. При понижении обратного напряжения до 15 В прямое напряжение уменьшается до 0,3…0,4 В. В среднем применение диодов Шотки в выпрямителе позволяет уменьшить потери примерно на 10…15 %. Максимальная рабочая частота диодов Шотки превышает 200 кГц.

Теория это хорошо, но без практического применения это просто слова.