Повышенная загазованность воздуха рабочей зоны углеводородами

- 63.00 Кб

Загазованность воздуха
в рабочих зонах

Воздушная среда производственных помещений, в которой содержат вредные вещества в виде пыли и газов, оказывает непосредственное влияние на безопасность труда. Воздействие пыли и газов на организм человека зависит от их ядовитости (токсичности) и концентрации в воздухе производственных помещений, а также времени пребывания человека в этих помещениях.

Вредные пары и газы. При сжигании различных видов топлива,
работе двигателей транспортных средств, гальванических процессах, во
время окрасочных, сварочных и термических работ, а также при других
процессах на транспорте выделяется большое количество вредных газо-
образных веществ. В большинстве случаев эти вещества являются ядовитыми, оказывающими сильное токсическое действие на организм
человека. Свойства их определяются химической структурой и агрегатным состоянием.

В числе органических веществ, относящихся к ядам, на транспорте
наиболее часто встречаются углеводороды ароматического ряда (бензол,
толуол, ксилол), их производные (хлорбензол, нитробензол, анилин),
спирты, альдегиды. Ядами неорганического происхождения являются
соединения углерода, серы (сероводород, сернистый газ), азота (аммиак,
оксиды азота), тяжелые и редкие металлы (свинец, ртуть, цинк, марга-
нец, кобальт, хром, ванадий).

Ядовитые вещества проникают в организм человека через дыха-
тельные пути, желудочио-кишечный тракт, кожный покров. При дыха-
нии яды, смешанные с воздухом, поступают в легкие. Во время приема
пищи, особенно с загрязненных рук, а также курения яды попадают в
желудок и далее разносятся по организму. На участки кожи яды могут
оказывать локальное болезненное воздействие.

По степени воздействия на организм человека вредные вещества
подразделяются на 4 класса: 1-й - чрезвычайно опасные, 2-й - высоко-
опасные, 3-й - умеренно опасные, 4-й - малоопасные. Для отнесения
вредных веществ к определенному классу опасности (табл. 1) использу-
ются следующие основные показатели .

Предельно допустимые концентрации (ПДК) вредных веществ в
воздухе рабочей зоны - концентрации, которые при ежедневной (кроме
выходных дней) работе в течение 8 ч или при другой продолжительно-
сти, но не более 41 ч в неделю, в течение всего рабочего стажа не могут
вызвать заболеваний или отклонений в состоянии здоровья, обнаружи-
ваемых современными методами исследований в процессе работы или в
отдельные сроки жизни настоящего и последующего поколений.

Таблица 1. Параметры разделения вредных веществ
на классы опасности

Показатель Класс опасности
1-й 2-й 3-й 4-й
Предельно допустимая кон-
центрация (ПДК) вредных
веществ в воздухе рабочей
зоны, мг/м 3
Менее 0,1 0,1 - 1,0 1,1 -10,0 Более 10,0

введении в желудок, мг/кг
Менее 15 15- 150 151-5000 Более 5000
Средняя смертельная доза при
нанесении на кожу, мг/кг
Менее 100 100-500 501-2500 Более 2500
Средняя смертельная концен-
трация в воздухе, мг/м 3
Менее 500 500-5000 5001
50000
Более 50000
Коэффициент возможности
ингаляционного отравления
Более 300 300-30 29-3 Менее 3
Зона острого действия Менее 6,0 6,0-18,0 18,1-54,0 Более 54,0

Таблица 2. Предельно допустимая концентрация некоторых веществ, наиболее часто встречающихся на транспорте

Наименование вещества
(пыпь, аэрозоли)
.ПДК

мг/м 3

Класс
опас-
ности
Наименование вещества (газы и пары) ПДК. мг/м 3 Класс опасности
Пыль, содержащая более 70% SiO 2 (кварц и др.) 2 3 Азота оксиды (в пересчете на NO2) 5 2
Пыль, содержащая от 10 до 70% свободной SiO 2 2 4 Ацетон 200 4
Пыль стеклянного и минерального волокна 3 4 Ангидрид сернистый 10 3
Пыль растительного и животного происхождения,
содержащая до 10% SiO 2
4 4 Бензин топливный
(в пересчете на С)
100 4
Бериллий и его соединения 0,001 1 Керосин, уайт-спирит 300 4
Кобальт (оксид кобальта) 0,5 2 Ртуть металлическая 0,01 1
Оксиды титана 10 3 Тетраэтилсвинец 0,0005 1
Никель (оксиды никеля) 0,5 2 Углерода оксид 20 4

Средняя смертельная доза при введении в желудок - доля вещества, вызывающая гибель 50% животных при однократном введении в
желудок.

Средняя смертельная доза при нанесении на кожу - доля вещества, вызывающая гибель 50% животных при однократном нанесении на
кожу.

Средняя смертельная концентрация в воздухе - концентрация вещества, вызывающая гибель 50% животных при двух – четырехчасовом ингаляционном воздействии.

Коэффициент возможности ингаляционного отравления - отношение максимально достижимой концентрации вредного вещества в воздухе при температуре 20° С к средней смертельной концентрации
вещества для мышей.

Зона острого действия - отношение средней смертельной концентрации вредного вещества к минимальной (пороговой) концентрации, вызывающей изменение биологических показателей на уровне целостного организма, выходящих за пределы приспособительных физиологических реакций.

Содержание вредных веществ в воздухе рабочей зоны не должно
превышать установленных ПДК (табл. 2), которые определены клиническими и санитарно-гигиеническими исследованиями и носят законодательный характер. Для контроля загазованности воздуха часто применяют метод отбора проб в зоне дыхания при выполнении технологических процессов с помощью хроматографов или газоанализаторов. Фактические значения вредных веществ сопоставляют с нормами ПДК.

Для оценки концентрации вредных веществ на рабочих местах используется также экспрессный метод, а для определения содержания в воздухе наиболее опасных веществ - индикационный метод.

В основу экспрессного метода положены быстропротекающие химические реакции с изменением цвета наполнителя в прозрачных стеклянных трубках.

При индикационном методе используется свойство некоторых химических реактивов мгновенно менять окраску под действием ничтожных концентраций определенных веществ или соединений.

В том случае, если содержание вредных веществ в воздухе рабочей
зоны превышает предельно допустимую концентрацию, необходимо
принятие специальных мер предупреждения отравления. К ним относятся ограничение использования токсичных веществ в производственных процессах, герметизация оборудования и коммуникаций, автоматический контроль воздушной среды, применение естественной и искусственной вентиляции, специальной защитной одежды и обуви, нейтрализующих мазей и других индивидуальных средств защиты.

Для работников, постоянно находящихся в зоне выделения ядовитых веществ, установлены сокращенный рабочий день, дополнительный отпуск и другие льготы.

Датчики загазованности

[править]

Материал из Википедии - свободной энциклопедии

Используемые в промышленности датчики загазованности и газосигнализаторы подразделяются на следующие категории:Содержание [убрать]

1 Термохимические датчики

2 Инфракрасные датчики

3 Электрохимические датчики

4 Полупроводниковые датчики

5 Фотоионизационные датчики

[править]

Термохимические датчики

Каталитический датчик MSA 94150

Термохимические датчики, основанные на измерении теплового эффекта реакции каталитического окисления газа, применяют для определения концентраций горючих газов. Они состоят из миниатюрного чувствительного элемента, иногда называемого также "шариком", "пеллистором" (Pellistor) или "сигистором" (Siegistor). Последние два являются зарегистрированными торговыми марками серийных устройств. Они изготовлены из электроподогреваемой катушки с платиновой проволокой, на которую сначала нанесена керамическая подложка, например, оксид алюминия, а затем кроющая наружная оболочка из палладиевого или родиевого катализатора, распыленного на подложку из окиси тория.

Действие этого типа датчика основано на том, что при прохождении газо- воздушной смеси на поверхности катализатора возникает горение и выделяющееся тепло повышает температуру шарика. Вызванное зтим увеличение сопротивления платиновой катушки регистрируется мостовой схемой, второе плечо которой не имеет оболочки - катализатора. При малых концентрациях изменение сопротивления находится в прямой зависимости от концентрации газа в окружающей среде. Типичное напряжение на датчике- несколько вольт, ток 0,1-0,3 ампера. Значение Т90 для каталитических датчиков обычно составляет 20 - 30 секунд.

[править]

Инфракрасные датчики

Инфракрасные датчики работают по принципу поглощения ИК излучения и предназначены для измерения концентраций многоатомных газов.

Двухатомные газы диатермичны (прозрачны), поэтому поглощения излучения в них нет. Инфракрасные датчики позволяют определять тип газа по длине волны поглощения (например, опасных концентраций метана в воздухе).

[править]

Электрохимические датчики

Электрохимические датчики позволяют определять концентрацию газа в смеси по значению электрической проводимости раствора, поглотившего этот газ. Чувствительным элементом датчика является электрохимический сенсор, состоящий из трех электродов, помещенных в в сосуд с электролитом. Чувствительность к различным компонентам определяется материалом электродов и применяемым электролитом. Например, сенсор кислорода представляет собой гальванический элемент с двумя электродами и является источником тока, величина которого пропорциональна концентрации кислорода.

[править]

Полупроводниковые датчики

Полупроводниковые датчики состоят из нагревательной пленки, нанесенной на кремниевую подложку, предназначены для измерения концентрации сероводорода.

[править]

Фотоионизационные датчики

Фотоионизационные датчики предназначены для измерения концентрации летучих органических соединений в воздушной среде, при условии ее загазованности только одним определяемым компонентом.

При прохождении газа через сенсор молекулы органических и неорганических веществ ионизируются под действием ультрафиолетового излучения. Свободные электроны и ионы создают ток в межэлектродном пространстве. Ток ионизации, величина которого пропорциональна концентрации анализируемого газа, измеряется и сравнивается с пороговой уставкой.

С каждым годом оценки экологической обстановки выглядят все более негативно: с 2005 года доля тех, кто считает состояние окружающей среды в месте проживания неблагополучным или даже катастрофическим, возросла с 55 до 64%. Одновременно, все меньше становится россиян, оценивающих экологическую обстановку как благополучную (с 44 до 34%). В негативном свете состояние окружающей среды видится волжанам (76%), москвичам и петербуржцам (77%). Не видят поводов для опасений за экологическую обстановку жители Северо-Западного округа (50%) и жители малых городов (40%).

Россияне все чаще свидетельствуют о том, что экологическая обстановка в их населенном пункте ухудшилась (в 2005 году об этом сообщал каждый третий, в 2010 году - 46%), говорится в данных исследования, опубликованных на сайте ВЦИОМ.

Описание работы

Воздушная среда производственных помещений, в которой содержат вредные вещества в виде пыли и газов, оказывает непосредственное влияние на безопасность труда. Воздействие пыли и газов на организм человека зависит от их ядовитости (токсичности) и концентрации в воздухе производственных помещений, а также времени пребывания человека в этих помещениях.

4.2.1. Вредные вещества в воздухе рабочей зоны и их классификация

В соответствии с ГОСТ 12.0.0030 - 74 «ССБТ. Опасные и вредные производ-ственные факторы. Классификация (с изменениями по И-Л-Х1-91)» повышенная запыленность и загазован­ность воздуха рабочей зоны относятся к физически опасным и вредным производственным факторам. Наличие в воздухе рабо­чей зоны различных веществ оказывает, в зависимости от вида веществ и путей их проникновения в организм, различные воз­действия на организм (токсическое, раздражающее, канцероген­ное, мутагенное и т.п.), ᴛ.ᴇ. запыленность и загазованность явля­ются также и химически опасными и вредными факторами.

Многие вещества (к примеру, пары бензина, ацетона, аммиа­ка), попадая в организм, приводят к острым и хроническим от­равлениям. При воздействии на человека больших доз на протя­жении одной рабочей смены возникает острое отравление. Эти отравления зависят в основном от вполне устранимых причин - плохой организации производства, нарушений трудовой дисцип­лины и т.д. При этом небольшая часть связана с несовершенством технологии и вентиляции. Постепенное поступление в организм небольших количеств токсичных веществ может привести к хро­ническим отравлениям.

При любой форме отравления характер действия промыш­ленных ядов определяется степенью его физической активно­сти - токсичности. Промыш-ленными ядами называют те ядо­витые вещества, с которыми рабочий встреча-ется на производстве и которые при неправильной организации труда и отсутствии соответствующих санитарно-технических мер могут оказать вред-ные воздействия на организм человека и его работоспособность.

Способность веществ оказывать вредные действия на жизне­деятельность организма называют токсичностью. Токсичное действие химических веществ на организм определяется сле­дующими факторами: концентрацией и агрегат-ным состоянием веществ, составом, физико-химическими свойствами, а также пу­тями проникновения веществ в организм и взаимодействием их с тканями организма, способностью к накоплению (кумуляции) и выделœению из организма, продолжительностью действия, а также состоянием воздушной среды и т.д.

Влияние внешних факторов (t , φ ω) объясняется нарушением термо-регуляции организма и вследствие этого снижением сопротивляемости организма воздействию вредных веществ. Напри­мер, при повышении t увели-чивается легочная вентиляция и уве­личивается скорость кровотечения, усили-вается проникновение веществ в организм.

По степени потенциальной опасности воздействия на организм человека вредные вещества , содержащиеся в воздухе в виде газов, паров или аэрозолей, разделœены на четыре класса опасности ;

I класс - вещества чрезвычайно опасные (диоксид хлора, озон и др. );

II класс - вещества высоко-опасные (сероводород, серная и со­ляная кислоты, растворы едких щелочей и др.);

III класс - вещества умеренно опасные (диоксид серы, камфара и др.);

IV класс - веще­ства малоопасные (аммиак, этиловый спирт и др.).

К основным вредным веществам, воздействующим на орга­низм человека, относятся следующие:

· раздражающие вещества, которые поражают поверхность тканей дыхательного тракта͵ слизистых оболочек и кожи (кислоты, щелочи, аммиак, хлор, сернистые соединœения и др.);

· удушающие вещества – физически вредные газы, разбавляющие содержание кислорода в воздухе (углекислый газ, азот, метан и др.);

· яды, вызывающие повреж­дение внутренних органов кровеносной системы (бензол, фе­нол) и нервной системы (спирты, эфиры);

· летучие наркотиче­ские вещества (ацетилен, летучие углеводороды); промышленные пыли, которые либо вызывают аллергические реакции организма, либо инœертны.

Токсичные вещества могут поступать в организм человека че­рез органы дыхания (пары, газы, пыли), кожу (в основном жидкие и масляные продукты) и желудочно-кишечный тракт (жидкие, твердые и газообразные вещества).

Наиболее часто вредные вещества попадают в организм чело­века через органы дыхания: носоглотку и легкие. Из легких яды всасываются в кровь и разносятся ею по всœему организму. Разные химические продукты имеют раз-личную способность проникно­вения в организм через органы дыхания, это зависит в основном от растворимости отдельных веществ в воде, в тканевых жидко­стях и средах организма.

Аммиак, а также хлористый водород и диоксид серы хорошо растворимы в воде, в связи с этим они задерживаются на слизистых оболочках верхних дыхательных путей и вызывают их раздраже­ние. Хлор и оксиды азота малорастворимы в воде, в связи с этим они не задерживаются на слизистых оболочках дыхательных путей, про­никают в легкие, сорбируются в них и вызывают их отек.

Пыль, попадая в организм человека через органы дыхания, тоже оказы­вает вредное действие. Степень влияния определяется рядом свойств пыли. Из этих свойств существенное значение имеет размер частичек пыли. Наиболее опасны частички пыли разме­ром от 0,25 до 10 мкм. Οʜᴎ не успевают осœедать в верхних дыха­тельных путях и, попадая в легкие, не выдыхаются с воздухом обратно.

Многие токсичные вещества поступают в организм через ко­жу. Непосредственно через кожу могут проникать вещества, хо­рошо растворимые в жирах (углеводороды, металлоорганические соединœения и др.). Жидкости с большой летучестью быстро испа­ряются с поверхности кожи и не попадают в организм. При этом эти летучие вещества, если они входят в состав паст, мазей, клея, задерживаются длительное время на коже. Твердые вещества также вса-сываются через кожу. Опасны малолетучие вещества, такие как анилин и нитробензол.

В производственных условиях токсичные вещества через же­лудочно-кишечный тракт поступают сравнительно редко - в ос­новном через грязные руки.

Кумуляция (накопление) токсичных веществ в организме происходит в том случае, если их превращение или выделœение происходит медленнее, чем поступление. Кумулированные яды (ртуть, свинœец, мышьяк), накапливаясь в организме, оказывают на него длительное и сильное действие.

Выделœение токсичных веществ из организма может происходить через кожу, почки, легкие, желудочно-кишечный тракт. Через легкие выводятся в основном легколетучие вещества (спирты, эфиры, бен­зин и др.), через почки - хорошо растворимые в воде вещества, со­единœения тяжелых металлов (свинœец, ртуть), а марганец выводится в основном через желудочно-кишечный тракт. Через кожу выводятся всœе растворимые в жирах вещества (медь, мышьяк, ртуть).

4.2.2. Нормирование содержания вредных веществ в воздухе рабочей зоны

Основным критерием качества воздуха являются концентрации вредных веществ. Существуют раз­личные единицы выражения концентрации: массовые, объем­ные, в долях, в процентах и другие. При санитарной оценке ка­чества воздуха принято выражать содержание загрязняющих веществ (концентрацию) в миллиграммах на кубический метр воздуха (мг/м 3). Это удобно тем, что применимо для любого агрегатного состояния примесей: газов, паров, аэрозолей, твердых веществ.

Предельно допустимые концентрации (ПДК) вредных ве­ществ в воздухе рабочей зоны - концентрации, которые при ежедневной (кроме выходных дней) работе в течение 8 ч. или при другой продолжительности, но не боле 41 ч. в неделю, в течение всœего рабочего стажа не могут вызвать заболе-ваний или отклонений в состоянии здоровья, обнаруживаемых со­времен-ными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколе­ний (ГОСТ 12.1.005-88).

Величина ПДК зависит от влияния веществ на здоровье людей и окружающую среду. Вредные вещества по степени воз­действия на организм человека разделœены на четыре класса опас­ности (в соответствии с ГОСТ 12.1.007-76 «ССБТ. Вредные ве­щества. Классификация. Общие требования безопасности (с изменениями по И-1-ХП-81; И-2-И-90)»:

· чрезвычайно опасные вещества, у которых значение ПДК в воздухе рабочей зоны не превышает 0,1 мг/м 3 (1 класс);

· высокоопасные со значением ПДК от 0,1 до 1,1 мг/м 3 (II класс);

· умеренно опасные при изменении ПДК в интервале от 1,0 до 10,0 мг/м 3 (Ш класс);

· малоопасные вещества, для которых ПДК больше 10,0 мг/ м 3 (1V класс).

Фактическая концентрация вредных веществ не должна пре­вышать соответствующих значений ПДК в соответствии с ГОСТ 12.1.007-76.

В воздухе, поступающем внутрь зданий и сооружений через приемные отверстия систем вентиляции и кондиционирования воздуха и через проемы для естественной проточной вентиляции, содержится 30% предельно допус-тимых концентраций вредных веществ в рабочей зоне производственных поме-щений.

4.2.3. Определœение содержания вредных веществ в воздухе рабочей зоны

Важно заметить, что для санитарного контроля воздушной среды производствен­ных помещений применяют следующие методы: лабораторный (аналитический), индика-торный, экспрессный и автоматический.

Лабораторные методы точны и позволяют определить микро­количества токсичных веществ в воздухе. При этом они требуют значительного времени и применяются главным образом в иссле­довательских и контрольных работах.

Индикаторные методы характеризуются простотой, с их по­мощью можно быстро производить качественные определœения. Такие методы применяют в случае срочной крайне важности, когда нежелательно присутствие токсичных веществ даже в очень ма­лых концентрациях (при пуске аварийной вентиляции, нейтрали­зации загазованного участка, применении средств индивидуаль­ной защиты и т.д.). При этом количественные определœения токсичных веществ в воздухе при помощи индикаторных мето­дов можно произвести только ориентировочно.

Экспресс-методы служат для точного определœения концен­трации вредных паров и газов в воздухе производственных по­мещений и на территории предприятия. Для проведения контроля экспресс-методом применяют универсальные газоанализаторы УГ-2 и УГ-1, кондуктометрическую установку КО-1 и фотоэлек­трические калориметры. Автоматические газоанализаторы не­прерывного действия осуществляют обычно непрерывную реги­страцию уровня загазованности на рабочих местах. Газоанализаторы и газосигнализаторы в зависимости от условий применения и типа анализируемого вещества построены на раз­личных принципах и имеют различную чувствительность. При­боры, имеющие высокую чувствительность, определяют воздуш­ные загряз-нения на уровне предельно допустимых концентраций, на уровне взрывных и огнеопасных концентраций, дают световой или звуковой сигнал при дости-жении соответствующего уровня концентрации. Отбор проб на анализ на со-держание газов, паров и пыли проводит специально обученный персонал в соответствии с требованиями технических условий на определœение вредных ве-ществ в воздухе.

Экспресс-анализ воздуха с помощью универсальных газоана­лизаторов может проводиться работниками предприятий, не имеющими специальной подготовки. На газоанализаторах УГ-2 и УГ-3 с помощью предварительно сжатого сильфона производится просасывание фиксированного объема загрязненного воздуха че­рез индикаторные стеклянные трубки, заранее заполненные спе­циальным индикаторным порошком.

По градуировочной шкале, по длинœе окрашенного столбика порошка в индикаторной трубке определяют концентрацию примеси в воздухе.

В закрытой части корпуса 12 воздухозаборного устройства (рис. 4.4.а) находится резиновый сильфон 11 с двумя фланцами и стакан с пружиной 10. Во внутренних гофрах сильфона установ­лены распорные кольца 9 для придания сильфону жесткости и сохранения постоянства объема. На верхней плите 4 расположена неподвижная втулка 6 для направления штока 7 при сжатии сильфона. На штуцер 2 с внутренней стороны надета резиновая трубка 1, которая через нижний фланец соединяется с внутренней полостью сильфона. К свободному концу трубки 3 при анализе присоединяется индикаторная труба.

Рис.4.4. Универсальный переносной газоанализатор УГ-2: а) воздухозаборное устройство: 1,3 – трубки резиновые; 2 – штуцер; 4 – плита; 5 – фиксатор; 6 – втулка; 7 – шток; 8 – канавка; 9 – кольцо распорное; 10 – пружина; 11 – сильфон; 12 – корпус; б) шкала

Исследуемый воздух через индикаторную трубку просасывается после предварительного сжатия сильфона штоком. На гранях (под головкой) штока обо­значены объемы просасываемого при анализе воздуха. На цилин­дрической поверхности штока предусмотрены четыре продоль­ные канавки с двумя углуб-лениями 8, служащими для фиксации двух положений штока фиксатором 5.

Расстояние между углублениями на канавках подобрано та­ким образом, чтобы при ходе штока от одного углубления к дру­гому сильфон забирал задан-ный объем исследуемого воздуха.

Длина окрашенного столбика индикаторного порошка в труб­ке пропор-циональна содержанию измеряемого вещества в иссле­дуемом воздухе и из-меряется по специально градуированной шкале (рис. 4.4.б).

4.2.4. Определœение запыленности воздуха производственных помещений

Производственной пылью называются находящиеся во взве­шенном состоя-нии в воздухе рабочей зоны твердые частицы раз­мером от нескольких десят-ков до долей микрона. Пыль принято также называть аэрозолем, имея в виду, что воздух является дис­персной средой, а твердые частицы - дисперсной фазой. Произ­водственную пыль классифицируют по способу образования, происхождения и размерам частиц.

В соответствии со способом образования различают пыли (аэ­розоли) дез-интеграции и конденсации. Первые являются следствием производственных операций, связанных с разрушением или измельчением твердых материалов и транспортировкой сыпучих веществ. Второй путь образования пыли – возник-новение твер­дых частиц в воздухе вследствие охлаждения или конденсации паров металлов или неметаллов, выделяющихся при высокотем­пературных процессах.

По происхождению различают пыль органическую, неоргани­ческую и смешанную. Характер и выраженность вредного дейст­вия зависят, прежде всœего, от химического состава пыли, который главным образом определяется ее происхождением. Вдыхание пыли может вызвать поражение органов дыхания - бронхит, пневмокониоз или развитие общих реакций (интоксикация, ал­лергия). Некоторые пыли обладают канцерогенными свойствами. Действие пыли проявляется в заболеваниях верхних дыхательных путей, слизистой оболочки глаз, кожных покровов. Вдыхание пыли может способствовать возникновению пневмоний, туберку­леза, рака легких. Пневмокониозы относятся к числу наиболее распространенных профессиональных заболеваний. Исключи­тельно высокое значение имеет классификация пыли по размеру пылевых частиц (дисперсности):

· видимая пыль (размер свыше 10 мкм) быстро осœедает из воздуха, при вдыхании она задерживается в верхних дыхательных путях и удаляется при кашле, чихании, с мокротой;

· микроскопическая пыль (0,25 -10 мкм) более устойчи­ва в воздухе, при вдыхании попадает в альвеолы легких и дейст­вует на легочную ткань; у

· льтрамикроскопическая пыль (менее 0,25 мкм), в легких ее задерживается до 60-70%, но роль ее в раз­витии пылевых поражений не является решающей, так как неве­лика ее общая масса.

Вредное действие пыли определяется также и другими ее свойствами: растворимостью, формой частиц, их твердостью, структурой, адсорбцион-ными свойствами, электрозаряженностью. К примеру, электрозаряженность пыли влияет на устойчивость аэрозоля; частицы, несущие электрический заряд, в 2-3 раза больше задерживаются в дыхательном тракте.

Основным способом борьбы с пылью является предупреждение ее образо-вания и выделœения в воздух, где наиболее эффективными являются мероп-риятия технологического и организационного ха­рактера:

· внедрение непрерывной технологии, механизации работ;

· герметизация оборудования, пневно-транспортирование, дистанци­онное управление;

· замена пылящих материалов влажными, пасто­образными, гранулиро-вание;

· аспирация и др.

Большое значение имеет применение систем искусственной вентиляции, дополняющее основные технологические мероприя­тия по борьбе с пылью. Для борьбы с вторичным пылеобразованием, ᴛ.ᴇ. поступлением в воздух уже осœев-шей пыли, используют влажные методы уборки, ионизации воздуха и др.

В случаях, когда не удается снизить запыленность воздуха в рабочей зоне более радикальными мероприятиями технологиче­ского и другого характера, применяются индивидуальные защит­ные средства различного типа: респи-раторы, специальные шлемы и скафандры с подачей в них чистого воздуха.

Необходимость строгого соблюдения ПДК требует система­тического контроля за фактическим содержанием пыли в воздухе рабочей зоны производ-ственного помещения.

К автоматическим приборам определœения концентрации пыли относятся серийно выпускаемые промышленностью ИЗВ-1, ИЗВ-3 (измеритель запыленности воздуха), ПРИЗ-1 (переносной радио­изотопный измеритель запыленности), ИКП-1 (измеритель кон­центрации пыли) и др.

Столица России - один из самых больших городов на планете. Разумеется, в ней присутствуют все проблемы мегаполисов. Главная из них - это загрязнение воздуха в появилась больше десятилетия назад и с каждым годом только усугубляется. Это может стать причиной настоящей техногенной

Норма чистого атмосферного воздуха

Естественный атмосферный воздух - это смесь газов, основными из которых считаются азот и кислород. Их объем составляет 97-99 % в зависимости от местности и атмосферного давления. Также в небольших количествах в воздухе содержатся водород, инертные газы, пары воды. Такой состав считается оптимальным для жизнедеятельности. В результате этого происходит постоянный круговорот газов в природе.

Но деятельность человека вносит в него существенные изменения. К примеру, просто в закрытом помещении без растений один человек за несколько часов может изменить процентное соотношение кислорода, углекислого газа и паров воды только за счет того, что он будет там дышать. Представьте только, каким может быть загрязнение воздуха в Москве сегодня, где живут миллионы людей, ездят тысячи машин и работают огромные промышленные предприятия?

Главные вредные примеси

По данным исследований, больше всего концентрация в атмосфере над городом у фенола, углекислого и бензапирена, формальдегида, диоксидов азота. Следовательно, увеличение процентного количества этих газов влечет за собой снижение концентрации кислорода. На сегодня можно констатировать, что уровень загрязнения воздуха в Москве превысил допустимые нормы в 1,5-2 раза, что становится крайне опасно для проживающих на этой территории людей. Ведь мало того, что они недополучают необходимый им кислород, так еще и травят организм опасными ядовитыми и канцерогенными газами, которые имеют огромную концентрацию в московском воздухе даже в закрытых помещениях.

Источники загрязнения воздуха в Москве

Почему же с каждым годом в столице России становится все труднее дышать? По данным последних исследований, главной причиной загрязнения воздуха в Москве выступают автомобили. Они заполнили столицу на каждой большой автостраде и маленькой улочке, на проспектах и во дворах. 83 % поступает в атмосферу именно вследствие работы двигателей внутреннего сгорания.

На территории столицы есть несколько крупных промышленных предприятий, которые также выступают источниками, вызывающими загрязнение воздуха в Москве. Хотя на большинстве из них и стоят современные очистительные системы, в атмосферу все же попадают опасные для жизни газы.

Третьим по величине загрязняющим источником являются большие ТЭС и котельные, которые работают на угле и мазуте. Они обогащают воздух мегаполиса большим количеством продуктов сгорания, таких как угарный и углекислый газы.

Факторы, повышающие концентрацию вредных веществ

Примечательно то, что количество вредных газов в воздухе столицы России не всегда и не всюду одинаково. Есть несколько факторов, которые способствуют его очищению или большему загрязнению.

По статистическим данным, на одного человека в Москве приходится примерно 7 квадратных метров зеленых насаждений. Это очень мало в сравнении с другими большими городами. В тех регионах, где концентрация парков больше, воздух намного чище, чем во всем остальном городе. Во время облачной погоды воздух не может сам очищаться, и у земли собирается большое количество газов, которые вызывают жалобы местного населения на плохое самочувствие. Повышенная влажность также удерживает у земли газы, вызывая загрязнение атмосферного воздуха в Москве. А вот морозная погода, наоборот, способна его временно очистить.

Самые загрязненные регионы

В столице самыми грязными регионами считаются промышленные Южный и Юго-Восточный округи. Особенно плохой воздух в Капотне, Люблино, Марьино, Бирюлево. Здесь располагаются крупные промышленные заводы.

Высок уровень загрязнения воздуха в Москве и непосредственно в центре. Здесь нет огромных предприятий, зато самая большая концентрация автомобилей. К тому же все помнят о знаменитых московских пробках. Именно в них машины вырабатывают больше всего вредных газов, поскольку двигатели работают не на полную мощность, и нефтепродукты не успевают сгореть полностью, образуя угарный газ.

ТЭС также больше всего в центральной части Москвы. Они сжигают уголь и мазут, обогащая воздух все теми же угарным и углекислым газами. Кроме того, они дают еще и опасные канцерогены, существенно влияющие на здоровье москвичей.

Чистый воздух в Москве

Есть в столице и относительно чистые регионы, в которых уровень вредных газов приближается к норме. Конечно, автомобили и небольшая промышленность оставляют и здесь свой негативный след, но по сравнению с промышленными регионами здесь довольно чисто и свежо. Географически это западные районы, особенно расположенные за МКАД. В Ясенево, Теплом Стане и Северном Бутово можно без опасений дышать полной грудью. В северной части города также есть несколько районов, которые относительно благоприятны для нормальной жизни, - это Митино, Строгино и Крылатское. Во всем остальном загрязнение воздуха в Москве сегодня можно назвать близким к критическому. Это особенно настораживает потому, что с каждым годом ситуация только ухудшается. Есть опасения, что скоро в городе не останется районов, где воздух будет более-менее чистым.

Болезни

Невозможность нормально дышать вызывает целый ряд неприятных ощущений и хронических заболеваний. Особенно к этому чувствительны дети и люди пожилого возраста.

Ученые констатируют, что загрязнение воздуха в Москве сейчас стало причиной наличия у каждого пятого астмы или астматического фактора. Дети в пять раз чаще болеют пневмонией, бронхитом, аденоидами и полипами верхних дыхательных путей.

Недостаток кислорода вызывает кислородное голодание мозга. Вследствие этого развиваются частые головные боли, мигрени, пониженный уровень Опасный угарный газ становится причиной сонливости и общей усталости. На фоне всего этого развиваются сердечно-сосудистые заболевания, диабет, неврозы.

Наличие большого количества пыли в воздухе не позволяет естественным фильтрам в носу всю ее задержать. Она попадает в легкие, оседает в них и сокращает их объем. Кроме того, пыль может содержать очень опасные вещества, которые, накапливаясь, вызывают раковые опухоли.

Когда москвичи попадают за город или в лес, у них начинается головокружение и мигрень. Так организм реагирует на непривычно большое количество кислорода, который поступает в кровь. Это ненормальное явление показывает реальное влияние загрязнения воздуха в Москве на здоровье человека.

Борьба за очищение воздуха

Ученые каждый год внимательно изучают причины, факторы и темпы загрязнения воздуха в Москве. 2014 год показал, что наблюдается тенденция к ухудшению, хотя постоянно принимаются меры по уменьшению вредных примесей в воздухе.

На заводах и ТЭС устанавливают фильтры, которые удерживают самые опасные продукты их деятельности. Для разгрузки автомобильного потока строятся новые развязки, мосты и тоннели. Чтобы воздух стал намного чище, постоянно увеличиваются площади зеленых насаждений. Ведь ничто так не очищает атмосферу, как деревья. Принимаются и административные меры наказания. За нарушение режима газообмена и выброс большего количества вредных газов штрафуются как владельцы частных автомобилей, так и крупные предприятия.

Но все равно результаты прогнозов неутешительные. Скоро в Москве чистый воздух может стать дефицитом, как это уже произошло в самых Чтобы этого не случилось завтра, нужно уже сегодня думать о том, стоит ли оставлять автомобиль с включенным двигателем на длительное время, пока вы ждете кого-то у подъезда.

Допустимая концентрация карбоксигемоглобина в крови 1%. Превышение этой концентрации вызывает головную боль, усталость, головокружение, нарушение сна. Из диаграммы видно, что концентрация окиси углерода в воздухе, равная 100 частям на миллион (0,01% по объему), при длительном нахождении человека в данной среде вызывает головную боль и приводит к снижению работоспособности.

При повышенных концентрациях СО (0,2-0,035%) возникает атеросклероз, поражения центральной нервной системы, легочные заболевания и инфаркт миокарда. При наличии 1% окиси углерода во вдыхаемом воздухе около 66% гемоглобина превращается в карбоксигемоглобин, вследствие чего ассимиляция кровью кислорода прекращается и наступает удушье.

Загазованность воздуха влияет на состояние здоровья водителей и, как следствие, на вероятность возникновения дорожно-транспортных происшествий. Исследования, проведенные в Англии, показали, что на улице с интенсивностью движения 830 автомобилей и водителей ухудшалась внимательность и замедлялась реакция. Из общего количества водителей, повинных в уличных катастрофах Парижа, у 38 % была отмечена высокая концентрация окиси углерода в крови.

Окислы азота образуются в результате термической обратимой реакции окисления азота воздуха при высоких температуре и давлении в цилиндрах двигателя. Увеличению выхода окислов азота из двигателя способствуют повышение максимальной температуры рабочего цикла и избыток кислорода. По мере охлаждения отработавших газов и разбавления их воздухом окись азота превращается в двуокись, три окись и четырех окись.

Окислы азота разрушающе действуют на легкие человека. Это объясняется образованием в органах дыхания азотной и азотистой кислот при взаимодействии окислов азота с водой. Окислы азота играют основную роль в образовании фотохимического тумана в атмосферном воздухе. Причиной образования такого тумана являются химические реакции, происходящие в атмосфере.

Двуокись азота, выделяемая работающим двигателем, под действием солнечных лучей распадается на окись азота и атомарный кислород, которые, соединяясь с кислородом воздуха, снова образуют двуокись азота и озон. Последний, вступая в химическую реакцию с ненасыщенными углеводородами, образует соединения, которые раздражают слизистые оболочки и органы дыхания человека, вызывают обострение легочных и некоторых других хронических заболеваний, симптомы удушья, что может привести к смертельному исходу.

В составе отработавших газов содержится более двухсот видов углеводородов. Большое количество углеводородов выделяется при торможении и на режимах холостого хода. В первой стадии превращений сложные углеводороды, из которых состоит топливо, под действием термических процессов разлагаются на ряд простых углеводородов и свободных радикалов. Вторая стадия характерна отщеплением атомов водорода от образовавшихся веществ ввиду недостатка кислорода. Полученные вещества соединяются между собой во все более сложные циклические, а затем полициклические структуры.

Воздействие различных углеводородов на человека и окружающую среду неодинаково. Наиболее опасными являются ненасыщенные углеводороды (олефины), обладающие высокой реакционной способностью. Именно олефины, соединяясь с озоном, образуют высокоактивные недоокисленные вещества - основные токсичные составляющие фотохимического тумана. Особо токсичным из многоядерных ароматических углеводородов является 3,4-бенз-пирен, обладающий сильным канцерогенным действием. Многие ученые видят в загрязнении окружающей среды токсичными углеводородами, и в частности 3,4-бензпиреном, главную причину заболеваемости и смертности от рака легких. В Англии с 1900 до 1952 г. смертность от рака легких возросла в 43 раза. Такая же тенденция отмечена и в других зарубежных странах с высоким уровнем производства.

Свинец (РЬ) входит в состав этиловой жидкости, применяемой в качестве антидетонатора. Соединения свинца применяются для повышения октанового числа бензина, обеспечивающего получение высоких экономических показателей бензиновых двигателей.

<< ПРЕДЫДУЩАЯ ГЛАВА
Воздействие отработавших газов на окружающую среду
СЛЕДУЮЩАЯ ГЛАВА >>
Вредные примеси в атмосфере
<< Содержание >>

Во многих сферах промышленности имеет место интенсивное выделение пыли и опасных для здоровья химических веществ. В группу повышенного риска входят работники следующих отраслей промышленности:

  • производство стройматериалов;
  • производство текстиля;
  • машиностроение;
  • металлургическое производство;
  • нефтегазовая промышленность;
  • горнодобывающее производство;
  • агропромышленное производство.

В указанных отраслях и не только имеет место такое явление как запыленность и загазованность воздуха . Сама по себе пыль, выделяемая в процессе производства, влияет как на возможность видеть и ориентироваться в помещении, так и на организм человека.

Уровень токсичности газа, пыли зависит от производства и веществ, применяемых в нем. Особо опасны металлургия, добыча горных пород, машиностроение и нефтегазовая промышленность. В этих отраслях имеет место повышенная загазованность и запыленность воздуха рабочей зоны . Здесь имеют место выделения аммиака, газа метана, окисей углерода, альдегида, паров растворителей, сероводородов, сернистого газа и других веществ.

С целью обеспечения безопасности процесса определения запыленности и загазованности воздуха в производственных помещениях фиксируют класс токсичности веществ в пределах конкретного помещения.

Классы опасности веществ

Определено 4 типа опасности веществ:

  1. 1 тип — представляющие чрезвычайную опасность (ртуть, двуокись хлора, озон фосген, свинец, гексохлоран, другие);
  2. 2 тип — представляющие высокую опасность (едкая щелочь, бензол, соляная кислота, медь, йод, серная кислота, марганец, соединения хлора, сероводороды, оксиды азота, другие);
  3. 3 тип — опасные умеренно (толуол, метанол, ацетон, фенол);
  4. 4 тип — представляющие малую опасность (бензин, скипидар, сода, этанол, аммиак).

Дополнительно выделяют 4 вида опасности веществ:

  • постоянная опасность;
  • техногенная опасность;
  • естественная;
  • антропогенная.

Следуя этой классификации, запыленность и загазованность воздуха относятся к опасности техногенной. Это вид опасности, которую создают сооружения, машины, вещества.

С целью установления типа опасности веществ используют специальные методы определения загазованности воздуха производственных помещений .

Методы, используемые в производстве

Чаще всего уровень наличия пыли определяют при помощи следующих методов:

  • электрический;
  • весовой;
  • фотоэлектрический;
  • счетный.

При электрическом методе концентрация пылевых частиц определяется при помощи электрического поля, на котором они осаждаются. Подсчет их ведется при помощи микроскопа.

При весовом методе вычисляется концентрация пыли на м 3 . Для этого используют фильтры АФА-В-10, которые улавливают частицы пыли.

При фотоэлектрическом методе гальванометр, фотоэлемент через пропущенный сквозь пылевой столб световой луч измеряют, в какой концентрации пыль присутствует в воздухе.

При счетном методе на прибор кониметр осаждают определенный объем пыли, а затем при помощи микроскопа подсчитывают ее концентрацию на см 3 .

Для определения загазованности воздуха рабочей зоны применяются несколько типов анализаторов, среди которых:

  1. газоанализатор (УГ-2);
  2. насос-пробоотборник (НП-3М);
  3. аспиратор (АМ-0059).

Применение газоанализатора УГ-2

При помощи газоанализатора УГ-2 можно измерить загазованность рабочей зоны . Этот прибор для измерения загазованности воздуха работает по принципу пропускания через трубку-индикатор загрязненного пылью воздуха. В состав трубки-индикатора входит химический реактив, который изменяет цвет, если в пропускаемом воздухе обнаруживаются вредные примеси. Концентрация пылевых частиц определяется по длине полоски порошка, окрашенного реактивом в трубке.

Основными элементами газоанализатора УГ-2 являются: трубка-индикатор и устройство, делающее забор воздуха.

Трубка-индикатор имеет вид стеклянной трубы, длина которой 90 мм, а диаметр составляет 2,6 мм. Внутри нее помещают стержень из стали, вату гигроскопическую и индикаторный порошок. Важно хорошо уплотнить содержимое трубки, чтобы анализатор дал точную информацию о концентрации вредных веществ.

Показатели фиксируются по результатам продувания воздушных потоков через индикатор при помощи устройства, делающего забор воздуха.

Применение насоса-пробоотборника (НП-3М)

Основа работы насоса заключается в том, что внутри него есть цилиндр, который заполняется смесью из газа, поступающей через насадку. Шток внутри цилиндра разряжает воздух. Когда в цилиндре возникает разрежение, то в нем прогибается мембрана. Затем из окошка исчезает черная точка. Когда внутреннее давление в цилиндре и внешнее атмосферное давление становятся равны, то в окошке вновь появляется точка. Это говорит о том, что прохождение потоков через средство контроля завершилось. Шток прокручивают на 90 0 , а после вводят в цилиндр. Воздух благодаря обратному клапану выходит наружу из цилиндра. Наполнитель, входящий в защитный патрон, всасывает частицы из поступающего воздушного потока. Данные о концентрации газовых частиц также фиксируются при помощи длины полоски порошка внутри индикаторной трубки, расположенной в насосе.

Использование аспиратора АМ-0059

Аспиратором АМ-0059 удается определить не только уровень газовых частиц в промышленных выбросах и атмосфере предприятий, но и загазованность воздуха выхлопными газами .

Указанный прибор имеет вид насоса, работающего по принципу ручного действия. Аспиратор состоит из:

  • обтюратора, внутри которого очистной фильтр;
  • сильфона;
  • индикатора;
  • трубки, вставляемой в обтюратор, с помощью которой делаются необходимые измерения;
  • табло;
  • кнопки выключения и включения.

Порядок работы аспиратора состоит в следующем:

  1. прибор включается, на табло должна отображаться цифра «0»;
  2. в обтюратор вставляется трубка-индикатор;
  3. сильфон сжимается, а цифра «0» на табло должна начать мигать;
  4. выполняется нажатие на рычаг, в результате чего сильфон самостоятельно разжимается, на табло появляется цифра «1»;
  5. действие повторяется;
  6. индикаторная трубка вынимается из аспиратора, и по ней фиксируются данные о запыленности и загазованности воздуха рабочей зоны .

Контроль загазованности рабочей зоны

Помимо указанных выше методов, по которым можно определить загазованность воздуха , используются и иные варианты контроля. Выделяют три способа контроля:

  1. экспрессный;
  2. лабораторный;
  3. индикаторный.

Лабораторный метод применяется с использованием специальных приборов в лабораторных условиях, для которых специально отбираются пробы.

Индикаторный метод используется с целью обнаружить особо опасные частицы в воздушном пространстве. Например, ртути и цианистых соединений.

Экспрессный метод применяется тогда, когда необходимо быстро сделать необходимые замеры запыленности помещения, рабочей зоны.

В целом, организация системы постоянного контроля загазованности рабочей зоны происходит за счет установки в цехах предприятий сигнализаторов загазованности и специальных газоанализаторов. С этой целью используется следующее оборудование:

  1. пылемеры как стационарные, так и переносные;
  2. индикаторы газа или течеискатели;
  3. персональные газоанализаторы как однокомпонентные, так и многокомпонентные (в том числе, переносные);
  4. газоаналитические системы;
  5. стационарные газоанализаторы (многоканальные и одноканальные, в том числе, переносные).

Дополнительной целью установки газоанализаторов является наличие на предприятиях повышенной загазованности воздуха рабочей зоны . Это опасный фактор для производства. ГОСТ 12.1.005-88 устанавливает допустимую концентрацию различных веществ в воздушном пространстве для предприятий. Особое внимание уделяется наличию в нем таких веществ, как алифатические соединения и сероводород. Для первых установлен предел в концентрации 300 мг. на м 3 , для второго — 3 мг. на м 3 .

Производственная санитария

ГОСТ 12.0.003-74 указывает на то, что загазованность воздуха рабочей зоны относится к группе вредных производственных и физически опасных для человека факторов.

Мероприятия по уменьшению и предотвращению негативного воздействия вредных факторов производства являются производственной санитарией запыленности и загазованности воздуха . В производственную санитарию входят следующие мероприятия:

  • создание микроклимата через терморегуляцию в рабочей зоне;
  • поддержание системы отопления в производственном помещении;
  • поддержание системы кондиционирования.

Микроклимат в производственных помещениях обеспечивается за счет:

  • установления определенной скорости движения воздушных потоков;
  • установления стабильной температуры в помещении;
  • регулирования интенсивности излучения от нагреваемого оборудования;
  • поддержания определенной влажности.