Показателями санитарного состояния почвы являются. Показатели санитарного состояния почвы. Показатели биологической активности почвы

При помощи санитарно-гельминтологических исследований обнаруживают яйца и личинки гельминтов в окружающей среде, определяют видовой, количественный состав, их жизнеспособность.

Исследование почвы на яйца гельминтов . Пробы почвы массой 100- 300 г отбирают на глубине 10-60 см вблизи выгребов, мусорных ящиков, на детских площадках и т. д. Заливают их 0,85% водным раствором натрия хлорида или 3% жидкостью Барбагалло и хранят до исследования в бытовом холодильнике. Срок хранения проб - не более 1 мес. Исследуют почву по методу Романенко (1968, 1982): 25 г почвы помещают в центрифужные пробирки объемом 250 мл, приливают 3% раствор натриевого или калиевого основания в соотношении 1:1. Полученную смесь тщательно размешивают, отстаивают в течение 20- 30 мин, после чего центрифугируют 5 мин при 800 об/мин. Надосадочную жидкость удаляют, а осадок промывают 1-5 раз до получения прозрачной надосадочной жидкости. Затем к осадку добавляют 150 мл насыщенного раствора азотнокислого натрия (относительная плотность - 1,38-1,40), тщательно размешивают и центрифугируют, после чего в каждую пробирку добавляют тот же раствор до уровня на 2-3 мм ниже их краев. Пробирки накрывают предметным стеклом так, чтобы оставался зазор шириной не более 10 мм, через который пипеткой добавляют раствор азотнокислого натрия до соприкосновения его с нижней поверхностью предметного стекла. Затем осторожно полностью закрывают предметным стеклом пробирку и после 20-25-минутного отстаивания стекло снимают и переворачивают его нижней поверхностью вверх. На место снятого стекла ставится второе, а при необходимости - и третье. На снятые стекла наносится капля 50% раствора глицерина, накрывается покровным стеклом и микроскопируется под световым микроскопом. Можно исследовать поверхностную пленку непосредственно в центрифужной пробирке под бинокулярным микроскопом МБС (Н. Л. Чекина, 1977).

На личинки гельминтов почву исследуют по методу Бермана .
Исследование воды на яйца гельминтов . Пробу воды отбирают и* водоемов в количестве от 0,5 до 10 л, что зависит от степени ее загрязнения, а из колодцев - от 20 до 25 л. Рекомендуется отбирать воду по« 0,5 - 1 л через каждые 3-5 мни. Содержащиеся в воде яйца концентрируют путем осаждения или фильтрации при помощи мембранных, бумажных или тканевых фильтров. Анализ воды осуществляют по методу Васильковой.

Исследование сточных вод на яйца гельминтов . Пробы сточной воды в условиях малых очистных сооружений отбирают на следующих этапах ее очистки: до поступления на очистные сооружения («сырая» вода), в отстойной части установки, контактном резервуаре, при впадении в биоируд или открытый водоем. На централизованных очистных: сооружениях воду отбирают до поступления на очистные сооружения, после механической очистки, после вторичных отстойников, биологических прудов, полей фильтрации, земледельческих полей орошения. «Сырую» воду исследуют в количестве от 2 до 5 л, а в процессе искусственной биологической очистки и после завершения ее - от 10 до 15 л. Пробы отбирают через каждый час в течение суток (среднесуточная) или с 7 до 20 ч (среднедневная). Исследуют сточную воду по методу Романенко. Сточную воду наливают в стеклянный цилиндр емкостью 1-2 л, добавляют один из коагулянтов (сернокислые алюминий, железо или медь) в дозе 0,3-0,5 г/л и тщательно размешивают. Спустя 40-50 мин осветленную надосадочную жидкость удаляют сифоном, а осадок переносят в центрифужные пробирки и центрифугируют в течение 3 мин при 1000 об/мин. Затем сливают жидкую часть, а к осадку приливают 2-4 мл 1-3% раствора соляной кислоты для растворения хлопьев коагулянта. Полученную смесь центрифугируют, удаляют жидкую часть, а осадок исследуют в дальнейшем по методике Романенко, применяемой для анализа почвы.
И. К. Падченко с соавторами (1982) разработал следующие методики исследования почвы, воды и сточных вод на яйца гельминтов.

Исследование почвы на яйца гельминтов. Отобранную пробу почвы (не менее 300 г) вносят в большую фаянсовую ступку, постепенно добавляют к ней 3% раствор натриевого или калиевого основания и тщательно растирают пестиком до образования гомогенной массы. Полученную смесь выливают в стеклянный цилиндр емкостью 10 л, предварительно наполненный на 3/4 объема водопроводной водой, и отстаивают в течение 5 мин. Всплывшие на поверхности смеси плотные примеси удаляют петлей с сеткой. После 5-минутного отстаивания надосадочную жидкость переливают сифоном в другой большой цилиндр, а образовавшийся осадок переносят в цилиндр емкостью 1 л и повторно отмывают водопроводной водой (не менее 2-3 раз). Образующуюся при этом в малом цилиндре надосадочную жидкость каждый раз переливают сифоном после 5-минутного отстаивания в большой цилиндр, где она смешивается с жидкой частью смеси, полученной после первого 5-минутного отстаивания. К собранной в большом цилиндре жидкости добавляют один из коагулянтов (сернокислый алюминий, сернокислое железо и др.) из расчета 0,3 г на 1 л жидкости и отстаивают ее 1-1,5 ч до полного просветления. Образовавшуюся надосадочную жидкость удаляют сифоном, а к осадку добавляют 1-3% раствор соляной кислоты для растворения хлопьев коагулянта. Полученную смесь отстаивают 18-24 ч, после чего жидкую часть удаляют сифоном, а осадок исследуют на яйца гельминтов. С этой целью осадок тщательно встряхивают и пастеровской пипеткой наносят 1 каплю полученной взвеси на предметное стекло, накрывают покровным стеклом и микроскопируют. Исследуют не менее 1 мл осадка, а затем математически пересчитывают на весь его объем. При незначительном загрязнении проб почвы микроскопическому исследованию подлежит весь осадок.

Исследование сточной воды на яйца гельминтов . Пробы сточной воды, взятые на разных этапах ее очистки на очистных сооружениях, наливают в 10-литровые цилиндры и отстаивают 5 мин. Всплывшие на поверхность жидкости плотные примеси удаляют петлей. После 5-минутного отстаивания надосадочную жидкость переливают сифоном в другой большой цилиндр, а осадок удаляют. Полученную жидкую часть сточной воды смешивают в большом цилиндре с коагулянтом и исследуют в дальнейшем по той же методике, что и почву (на этапе добавления коагулянта).
Пробы воды из водопроводной сети и различных водоемов смешивают в большом цилиндре с коагулянтом и исследуют в дальнейшем по той же методике, что и сточную воду.

Исследование осадков сточных вод на яйца гельминтов . Пробы осадков сточных вод отбирают с 5-10 мест по 100 мл, помещают в стеклянные сосуды объемом 1-2 л. Сухие осадки забирают по той же методике, что и почву. Вносят 100-150 мл осадка в центрифужную пробирку объемом 250 мл, центрифугируют в течение 5 мин при 1000 об/мин. Затем жидкую часть сливают, а к осадку добавляют чистую воду до прежнего объема, тщательно размешивают и центрифугируют. Такую промывку осадка повторяют 2-3 раза, после чего к нему добавляют 3-5 г чистого песка и полученную смесь исследуют по той нее методике, что и почву.
Согласно нашим данным, осадок сточных вод исследуют на яйца гельминтов по следующей методике: пробу осадка в количестве 1 л тщательно растирают пестиком в большой фаянсовой ступке, постепенно добавляя к нему 3% раствор натриевого или калиевого основания, а в дальнейшем исследуют по той же методике, что и почву.

Исследование смывов на яйца гельминтов . Объекты внешней среды, подлежащие исследованию, смывают ватными тампонами, смоченными в 1% растворе натриевого основания или в 20% растворе глицерина. Тампоны смывают в центрифужные пробирки 2-3% раствором гидрокарбоната натрия или 1% раствором натриевого основания и центрифугируют. Полученный осадок микроскопируют.

Определение жизнеспособности яиц и личинок гельминтов . Жизнеспособность яиц и личинок гельминтов по внешнему виду определяют при помощи витальных красителей, методов культивирования и постановки биопроб на лабораторных животных.
Под световым микроскопом у мертвых или дегенерирующих яиц гельминтов оболочки разорваны или деформированы, цитоплазма разрыхлена, мутная. При подогревании зрелых яиц аскариды, власоглава, острицы до температуры +37° С личинки этих гельминтов проявляют активную подвижность.

Культивирование яиц и личинок гельминтов . Незрелые яйца аскариды культивируют при температуре +24...+30°С в чашках Петри (влажная камера) в 3% растворе формалина, приготовленном на 0,85% растворе натрия хлорида, а яйца власоглава - в 3% растворе хлористоводородной кислоты при температуре +30...+35°С, яйца остриц -в 0,85% растворе натрия хлорида при температуре Ч-37°С. Чашки Петри 1-2 раза в неделю открывают для аэрации и увлажняют в них фильтровальную бумагу чистой водой. Развитие яиц контролируют 2 раза в неделю по наличию признаков деления протопласта на отдельные бластомеры. В первые дни яйцо развивается до 16 бластомеров, переходящих в стадию морулы (вторая стадия). Если в течение 2-3 мес у янц не наблюдается признаков развития, их следует считать погибшими.

При выборе объектов для данного исследования необходимо учитывать их роль как возможных факторов передачи возбудите­лей инвазии (возможность обсеменения инвазионным материалом, а также контакта с человеком).

Бесполезно изучать обсемененность яйцами гельминтов участков почвы, плотно утрамбованных и по­стоянно облучаемых солнцем (например, на дорожках яйца гельмин­тов на их поверхности погибают, а попадания их с поверхности утрамбованной почвы в более глубокие слои не происходит).

Отбор проб почвы. При изучении степени загрязнения почвы яйцами гельминтов пробы ее отбирают в соответствии с ГОСТом17-4.4-02-84 «Охрана природы. Почвы. Методы отбора и подго­товки проб для химического, бактериологического, гельминтоло­гического и протозоологического исследования». Их берут с поверх­ности (1-3 см) - во дворах; с поверхности и с глубины 10-20 см - на огородах, в садах, на полях орошения.

С поверхности (1-3 см) пробы почвы берут ложкой, совочком или большим шпателем, а с глубины 10-20 см - лопатой или буром Некрасова. Пробы помещают в банки с крышками или пакеты из клеенки, целлофана. Каждая проба должна иметь этикетку с указа­нием места забора, даты, глубины, характера исследуемого участ­ка (в тени или на солнце, состав почвы, наличие растительности и т.п.).

Для выяснения обсеменения яйцами гельминтов исследуемой тер­ритории на участках вблизи выгребов, мусорных ящиков и подоб­ных мест выделяют площадку в 25 м2. Другую площадку такого же размера берут вдали от указанных объектов. С каждой из этих пло­щадок по диагонали отбирают 5-10 навесок по 10-20 г. После тщательного перемешивания этих навесок составляют среднюю пробу (масса каждой не менее 100-200 г).

В лаборатории пробы помещают (в пакетах) в холодильник или каждую из них пересыпают в кристаллизатор, заливают 3 % раство­ром формалина на физиологическом растворе (жидкость Барбагалло) или 3 % раствором соляной кислоты, а затем ставят в холодиль­ник. В холодильнике почву можно хранить не более 1 мес, время от времени аэрируя и увлажняя ее.

Методика исследования. Для исследования почвы на яйца гель­минтов предложены следующие методы.

Метод З.Г.Васильковой и В.А.Гефтер (1948) заключается в том, что 5-Ю г почвы тщательно смешивают с 5 % раствором едкого натра (или калия) в центрифужных пробирках объемом 50 см3, смесь центрифугируют в течение 1-2 мин, после чего избыток едкого натрия (или калия) сливают, осадок тщательно смешивают с насы­щенным раствором нитрата натрия (плотность 1,39) и центрифуги­руют в течение 2 мин не менее 5 раз. После каждого центрифугиро­вания поверхностную пленку переносят петлей в стаканчик с водой; смесь вновь тщательно перемешивают и центрифугируют. Снятую поверхностную пленку фильтруют в аппарате Гольдмана с исполь­зованием планктонных фильтров, которые затем микроскопируют. По данным авторов, эффективность метода достигает 44,6 %. Было предложено вместо снятия поверхностной пленки из центрифужных пробирок сливать часть насыщенного раствора соли в стаканчик с водой, а в пробирки с осадком добавлять столько же чистого ра­створа соли. Такую процедуру следует повторять не менее 3-5 раз. Последний раз сливается весь раствор соли, который фильтруют в аппарате Гольдмана, используя фильтры № 6, затем проводят микроскопию последних. Благодаря такому усовершенствованию автору удалось повысить эффективность выявления яиц гельминтов из почвы до 60-69,2 %.

В.А.Лугина (1968) рекомендовал вначале обрабатывать почву по методу З.Г.Васильковой и В.А.Гефтер, а затем, удалив щелочь, к осадку добавлять насыщенный раствор нитрата аммония. После пе­ремешивания и центрифугирования смеси сливают насыщенный раствор в стаканчик высотой 3 см, последний накрывают счетной пластинкой и весь раствор микроскопируют. Это исключает исполь­зование аппарата Гольдмана, насоса Камовского, фильтры. Недо­статки: трудность просмотра раствора соли, многократные перели­вы последнего снижают эффективность выявления яиц гельминтов на 20-30 %.

Н.А.Романенко (1968) и Г.Ш.Гуджабидзе (1969) предложили помещать 25 г почвы в центрифужные пробирки объемом 250 мл (в случае отсутствия пробирок такого объема можно пользоваться пробирками объемом 80-100 мл, но помещать в них следует 15 г почвы) и заливать ее 3 % раствором натриевой или калиевой щело­чи (в соотношении 1:1). После этого содержимое пробирок тщатель­но размешивают при помощи электромешалки или стеклянных па­лочек, отстаивают в течение 20-30 мин, а затем центрифугируют 5 мин при 800 об/мин. Надосадочную жидкость сливают, а почву промывают водой (1-5 раз в зависимости от типа почвы: для пес­чаных и супесчаных - достаточно одной промывки, для глинистых, суглинистых, черноземных - от 2 до 5) до получения прозрачной надосадочной жидкости. После промывки к почве добавляют 150 мл (45 мл в пробирки объемом 100 мл) насыщенного (плотность 1,38- 1,4) раствора нитрата натрия, тщательно размешивают и центрифу­гируют. Пробирки устанавливают в штатив, доливают тем же ра­створом соли до уровня на 2-3 мм ниже краев пробирок и накры­вают предметными стеклами. При этом очень важно исключить какую-либо потерю поверхностной пленки. Для этого между краем пробирки и предметным стеклом следует оставлять пространство шириной не более 10 мм, куда с помощью пипетки вносят насыщен­ный раствор соли до его соприкосновения с нижней поверхностью стекла. После этого предметные стекла осторожно передвигают до полного покрытия центрифужных пробирок. Через 20-25 мин от­стоя стекла снимают, переворачивая нижней поверхностью вверх, а на их место ставят другие, при необходимости и третьи. На снятые стекла наносят несколько капель 50 % раствора глицерина. Капли накрывают покровным стеклом и микроскопируют. Для обнаруже­ния яиц гельминтов предметные стекла просматривают при увели­чении в 80 раз (окуляр 10х, объектив 8X0,2), а для определения сте­пени их развития или деформации - в 400 раз (окуляр 10х, объек­тив 40X0,65). Эффективность метода 59,6-83,1 %, в среднем 73 %; на нее оказывают влияние тип и механический состав почвы, содер­жание перегноя, илистых фракций, емкость поглощения. Путем эк­спериментальных исследований рассчитаны поправочные коэффи­циенты (табл. 11) для установления истинного загрязнения некото­рых типов почв яйцами гельминтов. Применение поправочных ко­эффициентов позволяет определять истинное обсеменение почвы яйцами гельминтов. Для других типов почв и яиц гельминтов необ­ходимо провести дополнительные экспериментальные исследования.

Таблица 11. Поправочные коэффициенты для расчета истинной загрязненности некоторых почв яйцами гельминтов bgcolor=white>1,71
Почва Яйца
аскарид власоглавов
Дерново-подзолистая (супесь) 1,23 1,43
Дерново-подзолистая (суглинок) 1,45 1,5
Торфяно-глеевые 1,84 2,4
Чернозем обыкновенный 1,6 1,85
» типичный 1,7 2,3
» выщелоченный 1,43 2,1
» каштановый (супесь) 1,28 1,95
» каштановый (суглинок) 1,64 2,15
Аллювиально-лугово-лесная 1,37 1,65
Сероземы 1,39 1,6
Черная лесная 1,49
Горная лесная бурая 1,54 1,72
Желтоземы 1,79 1,94

На обработку проб почвы рекомендуемым методом затрачива­ется 4,6-10 ч (метод З.Г.Васильковой и В.А.Гефтер в модификации А.А.Намитокова требует 9-51,5 ч, т.е. в 2-5 раз больше), а эконо­мические расходы при этом снижаются в 2 раза. При этом исклю­чаются применение такой дефицитной и дорогостоящей аппарату­ры, как воронка Гольдмана, насосы Шинца и Камовского, фильт­рование, фильтры № 6. Некоторые авторы предложили проводить исследование поверхностной пленки непосредственно в центрифуж­ной пробирке под бинокулярным микроскопом МБС. Это позволя­ет сократить время исследования и повышает эффективность ана­лиза, так как исключает потери яиц гельминтов во время снятия по­верхностной пленки предметным стеклом.

Авторы рекомендуют подвергать почву трехкратной механической обработке электроме­шалкой с флотационным раствором, учитывая при этом, что добав­ление солевого раствора в пробирку после последней механической обработки нарушает поверхностную пленку. В связи с этим необ­ходима 10-минутная экспозиция исследуемой пробы перед ее микроскопированием, чтобы все яйца гельминтов снова оказались в поверхностной пленке. При этих условиях в пробах обнаруживает­ся свыше 70 % яиц гельминтов [Межазакис Ф.И., 1979].

Необходимо помнить, что в очагах описторхоза, клонорхоза дан­ная методика малопригодна, ибо яйца этих гельминтов, имеющие плотность больше таковой насыщенного раствора нитрата натрия, не будут всплывать в поверхностную пленку, а, наоборот, выпа­дут в осадок.

В таких случаях целесообразно применять флотационные раство­ры высокой плотности. Некоторые авторы предлагают для исследо­вания почвы и донных отложений на яйца гельминтов методику с использованием малогабаритной клинической центрифуги ОПН-3.

Пробы донных отложений поверхностных водоемов отбирают в соответствии с ГОСТом 17.1.5.01.-80 «Охрана природы. Гидросфе­ра. Общие требования к отбору донных отложений водных объек­тов для анализа на загрязненность». Для отбора проб применяют различные системы пробоотборников: дночерпатели, драги, стратиметры и трубки различных конструкций. Отбор проб донных отло­жений ручным или механизированным способом проводят с берега или различных плавсредств. Пробы помещают в стеклянные или другие емкости, этикетируют и доставляют в лабораторию, где их хранят в холодильнике.

В 20 клинических центрифужных пробирок объемом по 10 мл наливают 6 мл 2-3 % раствора едкого натрия (или калия) и вносят 2 = 2,5 г почвы или донных отложений (общая масса материала со­ставляет 40-50 г). Содержимое пробирок перемешивают стеклян­ной палочкой и центрифугируют при 1500 об/мин в течение 3 мин. В дальнейшем режим центрифугирования остается постоянным. После центрифугирования надосадочную жидкость сливают, а к осадку добавляют 8 мл воды. Смесь перемешивают и центрифуги­руют. Надосадочную жидкость сливают, а к осадку добавляют 3 мл раствора натриевой или аммиачной селитры (молярное соотноше­ние 9,4:5, плотность 1,4). Содержимое пробирок вновь тщательно перемешивают. При этом яйца гельминтов из почвы переходят в насыщенный раствор. Пробирки центрифугируют и оставляют в покое на 5 мин, после чего надосадочную жидкость переливают в чистый ряд пробирок (одна в одну) и доливают в каждую из них чистой воды до отметки 10 мл. При этом плотность раствора по­нижается до 1,05. Пробирки встряхивают и центрифугируют при 1500 об/мин в течение 5 мин. Этот прием позволяет сконцентриро­вать яйца гельминтов в осадке. Надосадочную жидкость сливают, а осадок из каждых 10 пробирок переносят в 2 пробирки. Таким об­разом, из 20 пробирок осадок концентрируется в 4. В каждую про­бирку к осадку доливают воду и сверху наслаивают 1 мл эфира. Про­бирки интенсивно встряхивают в течение 30-40 с, центрифугиру­ют при 1500 об/мин в течение 5 мин. Надосадочную жидкость сливают, осадок переносят пастеровской пипеткой на предметное стекло и накрывают покровными стеклами размером 20X20 мм. В случае если осадка мало, его просматривают весь, если его мно­го - к нему добавляют до 0,5 мл воды и просматривают из всего осадка только 0,1 или 0,2 мл, а полученный результат пересчитыва­ют на весь объем осадка, умножая в первом случае на 5, во втором на 2,5. Результаты просмотра осадка, взятого из каждой пробирки, суммируют.

Для повышения эффективности выявления яиц гельминтов и со­кращения затрат времени на микроскопирование при исследовании почвы нами предложена камера для количественного учета яиц гель­минтов во флотационной жидкости. Камера - усеченный стеклян­ный конус с углом наклона стенок 85°, приваренный широкой час­тью к дну чашки Петри. Диаметр верхней части 2,5 см, нижней 4 см, площадь соответственно 5,3 и 15,2 см2, высота 3,5 см, объем 25,6 см3.

Верхняя часть камеры покрывается счетной пластинкой из плек­сигласа размером 7X7X0,1 см. На одной поверхности пластинки на­несены параллельные линии - борозды, окрашенные в красный цвет; расстояние между ними 1,2 мм. Последнее равно диаметру поля зрения микроскопа МБИ-1 при кратности увеличения 10x10. Каме­ру заполняют поверхностным слоем флотационной жидкости до об­разования выпуклого мениска, после чего ее покрывают счетной пластинкой так, чтобы разлинованная поверхность была обращена к жидкости. Яйца гельминтов всплывают в течение 3-5 мин. Затем камеру помещают на предметный столик микроскопа и просматри­вают последовательно по интервалам между линиями. Для макси­мального выявления яиц гельминтов рекомендуется несколько раз собрать поверхностный слой флотационной жидкости. Камеру обез­зараживают кипячением в течение 10 мин, а счетную пластинку опускают на 15-20 ч в 2 % раствор карболовой кислоты.

Эффективность выявления яиц гельминтов с помощью предла­гаемой камеры изучена в сравнении с таковой при использовании способа В.А.Лугйны, применяемого при исследовании почвы и бы­товых сточных вод с одновременным учетом времени, затрачивае­мого на микроскопирование при каждом из сравниваемых способов.

Предлагаемой нами камерой выявляется больше на 15,9 % яиц гельминтов в почве и на 32 % в сточных водах и затрачивается в 4 раза меньше времени на микроскопирование. Большую определяемость яиц гельминтов и снижение затрат времени на микроскопи­рование предлагаемой камерой, по-видимому, можно объяснить уменьшением площади микроскопирования в конусе, более полным просмотром поверхностной пленки и исключением повторного мик­роскопирования полей зрения, а также возможностью просмотра всей толщи флотационной жидкости.

Приготовление насыщенных растворов. Для приготовления насы­щенных растворов можно применять как химически чистую соль, так и техническую селитру, используемую в ветеринарной практи­ке, сельском хозяйстве.

Раствор натрия н и трат a (NaN03). В кастрюле или ведер­ке смешивают натрия нитрат (или любую другую соль) с водой в соотношении 1:1 (1 кг соли на 1 л воды) и подогревают ее до обра­зования кристаллической пленки на поверхности растврра. Затем ра­створ охлаждают, измеряют денситометром его плотность (должна быть не ниже 1,38-1,4). При охлаждении насыщенного раствора на дно сосуда должны выпадать кристаллы соли.

Раствор свинца нитрата , Готовят раствор плотностью 1,5 (обладает высокой флотационной способностью). Берут 650 г вещества на 1 л воды. Соль растворяют в горячей воде в эмалированном ведре. Ее кладут в ведро с горячей водой порция­ми, подогревая содержимое ведра на электроплитке и постоянно пе­ремешивая до полного растворения. Фильтровать раствор необяза­тельно. Раствор свинца нитрата со временем дает осадок. В связи с этим его плотность уже через 24 ч после приготовления несколько падает. Поэтому раствор готовят в день исследования. Если же он приготовлен в большом количестве, то в последующие дни перед ис­следованием его подогревают, размешивая осадок. Свинца нит­рат - соль тяжелого металла, поэтому при работе соблюдают ос­торожность, избегая попадания вещества исследующему внутрь.

Санитарное состояние почвы - это совокупность ее физических, физико-химических и биологических свойств, определяющих безопасность почвы в эпидемическом и химическом отношении. Оценка санитарного состояния почвы, уровня ее загрязнения и степени опасности для здоровья людей основывается на результатах лабораторных исследований: санитарно-физических, санитарно-химических, физико-химических, санитарно-микробиологических, санитарно-гельминтологических, санитарно-энтомологических и радиометрических. Комплекс критериев, дающий возможность оценить качество почвы, называют показателями санитарного состояния почвы. Классификация показателей санитарного состояния почвы приведена в табл. 49.

Все показатели санитарного состояния почвы можно разделить на прямые и косвенные (непрямые). Прямые показатели дают возможность непосредственно по результатам лабораторного исследования почвы оценить уровень ее загрязнения и степень опасности для здоровья населения. По косвенным показателям можно сделать выводы о факте существования загрязнения, его давности и продолжительности путем сравнения результатов лабораторного анализа исследуемой почвы с чистой контрольной почвой того же типа (имеющей одинаковый природный состав с опытной), отобранной с незагрязненных территорий.

Большинство санитарно-химических показателей эпидемической безопасности почвы являются косвенными. Непосредственно оценить степень загрязнения и опасности почвы можно лишь по величине санитарного числа Хлебникова. Это отношение содержания азота гумуса к общему органическому азоту, который состоит из азота гумуса и азота чужеродных для почвы органических веществ, загрязняющих почву. Если почва чистая, то санитарное число Хлебникова равно 0,98-1. Другие санитарно-химические показатели исследуемой почвы оценивают путем сравнения с аналогичными показателями контрольной незагрязненной почвы.

О свежем загрязнении свидетельствуют высокое содержание общего органического азота, органического углерода, хлоридов, окисляемость в исследуемой почвы по сравнению с контрольной почвой. Повышенное содержание аммиака, нитритов и нитратов свидетельствует о процессах самоочищения почвы от азотсодержащих органических веществ. Значительное содержание общего органического азота, органического углерода и повышенная окисляемость исследуемой почвы при условии одинакового количества в исследуемой и контрольной почве аммиака, нитритов и нитратов свидетельствует о свежем загрязнении почвы и торможении процессов минерализации.

Если количество общего органического азота и органического углерода в почве опытного участка не превышает их содержания в почве контрольного участка, то исследуемую почву оценивают как чистую. Наличие в такой почве нитратов и хлоридов в повышенных количествах указывает на давнее загрязнение и на завершение процессов минерализации органического вещества.

Санитарно-микробиологические, санитарно-гельминтологические и санитарно-энтомологические показатели эпидемической безопасности, в отличие от санитарно-химических, являются прямыми, т. е. дают возможность непосредственно оценить степень загрязнения и опасности почвы.. Кроме того, по ним можно оценить давность загрязнения. Так, для свежего загрязнения характерны увеличение микробного числа и количества жизнеспособных недеформированных яиц геогельминтов, уменьшение коли-титра и перфрингенс-титра почвы с обязательным превалированием неспорообразующих форм микроорганизмов. Превалирование клостридиальных форм и наличие деформированных яиц аскарид свидетельствуют о давнем загрязнении почвы.

Показатели химической безопасности почвы в большинстве случаев являются прямыми и дают возможность не только оценить степень загрязнения почвы ЭХВ, но и решить проблему адекватной оценки состояния здоровья населения под влиянием загрязняющих почву ЭХВ. Решение этой проблемы приобретает сегодня особую актуальность из-за ухудшения состояния окружающей среды и снижения уровня здоровья населения Украины в последние годы.

Изучение влияния загрязнения почвы ЭХВ на состояние здоровья населения проводится путем специальных эпидемиологических исследований и математико-статистического многофакторного моделирования в системе окружающая среда - здоровье. По санитарному состоянию почвы, еще до изучения показателей, характеризующих здоровье населения, можно с достаточной вероятностью прогнозировать влияние загрязнения почвы на здоровье людей.

Оценка санитарного состояния почвы по уровню загрязнения ЭХВ основывается на определении фактического содержания ЭХВ в почве и его сравнен и и с ПДК. Причем особое внимание уделяют ЭХВ 1 - го и 2 - го классов опасности (чрезвычайно и высокоопасным веществам). Согласно оценочной шкале, к чистым почвам относятся такие, в которых содержание ЭХВ не превышает ПДК, к слабозагрязненным - при содержании ЭХВ в пределах от 1 до 10 ПДК; к загрязненным - при превышении ПДК ЭХВ в 11-100 раз и к очень загрязненным -при превышении ПДК больше чем в 100 раз. По степени загрязнения почвы определяют степень ее опасности для здоровья населения.

Для количественной оценки степени загрязнения почвы ЭХВ можно использовать вместо ПДК показатель БОК для данного климатоландшафтного региона. Обычно БОК для наиболее распространенных в Украине дерново-подзолистых почв составляет 1/2 ПДК.

В зависимости от содержания в почве ЭХВ 1 -го и 2-го классов опасности можно сделать ориентировочный прогноз относительно ее вероятного влияния на состояние здоровья населения. Зависимость состояния здоровья населения от уровня загрязнения почвы вытекает из двух положений. Во-первых, количество ЭХВ мигрирующих из почвы в атмосферный воздух, даже в экстремальных условиях составляет лишь 20-25% от содержащихся в почве. Во-вторых, минимальные физиологические нарушения в организме человека наблюдаются при содержании ЭХВ в атмосферном воздухе в пределах 2-3 ПДК; существенные - при 4-7 ПДК, а уровни в 8-10 ПДК приводят к повышению заболеваемости соответствующей популяции. При содержании ЭХВ в воздухе до 100 ПДК наблюдаются острые отравления, а при превышении их в 500 раз - летальные исходы. С учетом этого разработана ориентировочная шкала оценки состояния здоровья населения в зависимости от уровней загрязнения почвы ЭХВ.

Необходимо отметить, что на практике загрязнение почвы ЭХВ в концентрациях, вызывающих смертельные отравления, в основном не встречается. Если, например, ПДК гексахлорциклогексана (ГХЦГ) в почве составляет 0,1 мг/кг, то в реальных почвенно-климатических условиях смертельно опасная концентрация этого препарата будет равняться 1000 ПДК, т. е. 100 мг/кг, или 300 кг/га, а норма применения ГХЦГ в аграрной практике составляет всего 3 кг/га.

Иногда при определенных метеорологических условиях (антициклон, приземная температурная инверсия, скорость движения воздуха, приближающаяся к штилю, температура воздуха 20 °С, влажность воздуха 100%, ясная солнечная погода, дожди накануне, интенсивность УФ-радиации 2700 мкВт/мин на 1 см 2) в весенне-летний период наблюдались случаи острого и хронического отравления сельскохозяйственных работников на полях при незначительном содержании ЭХВ в почве (не более 4 ПДК, или 8 БОК). Это связывали с действием токсических высоколетучих метаболитов пестицидов - фосгена, дифосгена, хлорциана, хлорида, фторида, цианида водорода и др. Было доказано, что они могут образовываться как в почве при определенных почвенно-климатических условиях вследствие биотрансформации и взаимодействия с компонентами азотных минеральных удобрений, так и в приземном слое атмосферного воздуха вследствие фотохимических превращений. Кроме того, выяснилось, что указанные выше метеорологические условия способствуют образованию токсического тумана на сельскохозяйственных полях, который также является причиной острых отравлений даже при сравнительно невысоком содержании ЭХВ в почве.

Приведенная методика оценки возможного влияния почвы на состояние здоровья населения дает возможность ориентировочно оценивать здоровье жителей определенной зоны наблюдения лишь на основании результатов лабора¬орного анализа почвы, без специальных исследований состояния здоровья.

Уровни радиоактивного загрязнения почвы в условиях последствия чернобыльской катастрофы оценивают по гигиеническим регламентам, разработанным Национальной комиссией радиационной защиты населения.

Пригодными для проживания населения и сельскохозяйственного производства без ограничений считают: во-первых, территории, почвы которых не содержат искусственных радионуклидов, а естественная радиоактивность почвы находится в пределах 0,5-2 Ku/км 2 ; во-вторых, территории, загрязненные искусственными радионуклидами при условии, что активность почвы не превышает 1 Ku/км 2 . Почвы, загрязненные искусственными радионуклидами, активность которых составляет от 1 до 5 Ku/км 2 , признают условно чистыми, пригодными для проживания лишь ограниченной части населения (категория Б согласно классификации норм радиационной безопасности НРБ-97). При таком уровне загрязнения радионуклидами количество пищевых продуктов местного производства не должно превышать границы годового поступления для этой категории населения. Умеренно загрязненные почвы (активность 5-15 Ku/км 2) пригодны для проживания населения и сельскохозяйственно¬го производства лишь при условии проведения специальных агрохимических и агромелиоративных работ при контроле за радиоактивностью объектов окружающей среды. При этом доза облучения населения не должна превышать пожизненно допустимой - 35 бэр. Загрязненные почвы (активность 15-40 Ки/км 2) можно использовать для проживания населения лишь при условии обеспечения чистыми пищевыми продуктами. Если почвы очень загрязнены (активность 40-100 Ки/км 2), проживать населению не рекомендуется.

Исследование механического состава и физических свойств почвы

Взятие пробы почвы для исследования

Пробы почвы должны отражать средние показатели определенного земельного участка. Берут их специальным буром или чистой лопатой. Предварительно с поверхности почвы убирают (удаляют) растительность и другие посторонние предметы. Образцы почвы отбирают в хорошую сухую погоду на различной глубине в зависимости от поставленной задачи. Например, послойный (через каждые 20 см) способ отбора проб на глубине до 1 м важен для выяснения давности загрязнения почвы (определяют) по применению хлоридов и других продуктов минерализации органических веществ из верхних слоев в нижние).

Каждую пробу массой 2-3 кг помещают в стеклянные банки с притертой пробкой или в чистый полиэтиленовый пакет, прикладывают записку с указанием даты, места и глубины взятия образца. В лаборатории отобранные пробы почвы рассыпают тонким слоем на листы бумаги, раздавливают слежавшиеся комки и высушивают на воздухе. Для анализа отбирают 0,5-1 кг, остальную часть хранят. Перед началом лабораторных исследований из образца почвы удаляют корни и другие нехарактерные примеси, взвешивают их для установления процентного содержания.

Определение структуры и типа почвы

После высушивания пробы почву рассматривают на бумаге или тарелке и предварительно определяют ее тип и структуру. Если в почве содержится до 90% песка и до 10% глины, ее называют песчаной, от 10 до 30% глины – суглинистой; более 50% глины – глинистой. В черноземной почве гумус (растительный перегной) составляет более 20%. В торфе содержится большое количество органического перегноя (50-80%).

Определение механического состава почвы

От размера частиц, составляющих почву, и их соотношения зависит обмен почвенного воздуха с атмосферным. Насыщение почвы кислородом необходимо для процессов окисления органических веществ.

Для определения соотношения частиц почвы по их размеру применяют набор сит с разным диаметром отверстий. Чаще всего такие наборы состоят из 5-7 сит с отверстиями диаметром 10, 7, 5, 3, 2, 1, 0,25 мм. Складывают сита так, чтобы они плотно входили одно в другое. В верхнее сито, с самыми крупными отверстиями, насыпают, 100 г разрыхленной воздушно-сухой почвы, закрывают его крышкой и, осторожно сотрясая весь набор, просеивают пробу. Частицы диаметром 10 мм и более остаются в сите №1, их называют крупным хрящом; частицы диаметром от 7 до 10 мм и от 5 до 7 мм остаются на ситах №2,3 – средний хрящ; частицы диаметром от 2 до 5 мм остаются на ситах №4,5 – мелкий хрящ; частицы диаметром от 1 до 2 мм остаются на сите №6 – крупный песок; частицы диаметром от 0,25 до 1 мм остаются на сите №7 – мелкозем; на дне набора сит собираются частицы диаметром менее 0,25 мм – мелкий песок.

После просеивания почвы взвешивают содержимое всех сит и определяют соотношение частиц разного размера, ее механический состав.

Определение основных физических свойств почвы

Цвет почвы может быть темным (черным), светло-серым, светло-желтым и других оттенков в зависимости от количества находящихся в ней органических веществ и примесей.

Темная (черная) окраска указывает на содержание в почве большого количества органических веществ. При санитарной оценке такой почвы следует учитывать, что окраску почве придает гумус (перегной) в результате внесения больших доз навоза. В таких почвах патогенные микроорганизмы встречаются чаще.

Почвы, бедные гумусом, органическими веществами, имеют светло-серую (подзолистые) или светло-желтую (песчаные, глинистые) окраску, содержат малые количества биологически активных минеральных соединений (соединений кальция, фосфора и калия).

Запах почвы можно определить непосредственно на месте, при взятии пробы. Для этого пробу почвы помещают в колбу, заливают горячей водой, закрывают пробкой и встряхивают, затем открывают пробку и определяют запах.

Чистая, незагрязненная почва не имеет запаха. Гнилостный, аммиачный, сероводородный и другие запахи свидетельствуют о загрязнении почвы навозом, мочой, неочищенными сточными водами, трупными остатками животных.

Температуру почвы в гигиенических целях измеряют при выборе мест для устройства летних лагерей, стойбищ животных ранней весной или поздней осенью, на пастбищах и в загонах с помощью специальных термометров. В поверхностном слое почвы используют изогнутые термометры Саввинова, которые в зависимости от глубины исследуемого слоя имеют различную длину, а в глубоких (не более 1 м) – длинные термометры в металлической оправе с острым наконечником.

Водоподъемная способность (капиллярность) почвы зависит от ее механического состава, т.е. чем меньше размер частиц почвы, тем выше подъем влаги по капиллярам. Высокая капиллярность нередко служит причиной сырости почвы, помещений, если не приняты соответствующие меры (гидроизоляция).

Водоподъемная способность почвы определяется в лабораторных условиях. Для этого в штатив устанавливают стеклянные трубки диаметром 2,5-3 см (с сантиметровыми делениями и длиной 1 м). Нижние концы трубок обвязывают полотном. Каждую трубку заполняют исследуемой почвой, нижние концы трубок погружают в стаканы или ванночки с водой на глубину 0,5 см. В зависимости от размера частиц, а отсюда и размера капилляров в почве вода с неодинаковой скоростью будет подниматься вверх. По изменению окраски увлажненной почвы в трубках следят за скоростью и высотой поднявшейся по капиллярам воды, отмечая ее уровень через 5, 10, 30 и 60 минут и далее через каждый час до прекращения подъема уровня. По 3-5 пробам почвы получают результаты ее водоподъемной способности.

Фильтрационная способность (водопроницаемость) почвы – скорость просачивания воды через почвы различных типов – зависит от их структуры. Водопроницаемость имеет большое санитарно-гигиеническое значение, поскольку определяет водно-воздушный режим почвы.

Для определения водопроницаемости сухой измельченной почвы берут стеклянную трубку диаметром 3-4 см и длиной 25-30 см. Отмерив от нижнего конца трубки 20 и 24 см, отмечают эти уровни на стекле. Нижний конец трубки обвязывают тонким полотном и при встряхивании наполняют исследуемой почвой до нижней черты (на 20 см). Укрепив трубку в штативе вертикально, подставляют под ее нижний конец мерный цилиндр с воронкой. Мерный цилиндр должен быть одинакового диаметра с трубкой. На цилиндре делают отметку снизу на уровне 4 см. Зафиксировав время, осторожно наливают в трубку на почву слой воды высотой 4 см, все время поддерживая этот уровень над почвой. Водопроницаемость выражают двумя показателями: временем, в течение которого вода пройдет через слой почвы толщиной 20 см, и временем, которое требуется для накопления в цилиндре слоя воды высотой 4 см.

От объема пор почвы зависит ее аэрация. Для определения объема пор почвы берут мерный цилиндр, наливают в него 50 мл воды и высыпают 50 мл исследуемой почвы. Смешав почву с водой, отмечают на цилиндре общий объем. В результате заполнения пространства водой (пор между частицами почвы) общий объем смеси будет меньше 100 мл. Разница между заданным и фактическим объёмом составит объем пор почвы.

Влагоемкость – способность почвы впитывать и удерживать в себе определенное количество воды. При большой влагоемкости уменьшается ее возможность воздухо- и водопроницаемости. На таких участках почвы нередко наблюдается отсыревание полов, стен, ограждающих конструкций помещений, замедляется разложение органических веществ.

Для определения влагоемкости почвы берут стеклянный цилиндр с сетчатым дном и насыпают в него 100 г воздушно-сухой пробы. Цилиндр с почвой взвешивают. После этого погружают его в воду и наблюдают до появления воды в верхнем слое почвы. Это говорит о том, что часть воды впиталась почвой, находящейся в цилиндре. Вынув цилиндр из воды, ждут пока полностью стечет невпитавшаяся вода. После этого цилиндр снова взвешивают. Разница между вторым и первым взвешиванием укажет массу влаги, удерживаемой исследуемой почвой.

Пример: масса цилиндра с сухой почвой (первое взвешивание) 150 г. Масса того же цилиндра с почвой после поглощения воды (второе взвешивание) 170 г. Разница между вторым и первым взвешиванием составит 20 г (170-150). Следовательно, влагоемкость равна 20%.

Санитарно-химический анализ почвы

Отбор проб для химического анализа выполняется также, как для исследования физико-механических свойств почвы. Выбирают две площадки по 25 м 2 каждая, из которых одну вблизи источника загрязнения, а другую – вдали от него. Площадки разбивают на квадраты в 1 м 2 . Пробы почвы отбирают по диагонали буром Некрасова, почвенным буром Френкеля, щупом конструкции В. А. Рождественского. Пробы почвы (5–8, массой до 1 кг каждая) отбирают в сухую погоду на глубине 0,25; 0,75-1, 1,75-2 м. При этом для каждого горизонтального слоя берут отдельно средний образец. Помещают пробы в полиэтиленовый мешок, который нумеруют и снабжают сопроводительным документом.

В лаборатории образцы почвы в зависимости от целей исследования анализируют в натуральном виде или в воздушно-сухом состоянии после высушивания в хорошо вентилируемом помещении. Пробы почвы исследуют сразу же после поступления в лабораторию или консервируют их при 0 °С толуолом или хлороформом. В таком состоянии пробы можно хранить в течение нескольких суток.

От химического состава почвы зависит качество произрастающей на ней растительности. Многие болезни животных возникают в связи с недостатком или отсутствием в почве минеральных солей и микроэлементов.

В почве постоянно идут сложные химические процессы разложения – перехода органических веществ в минеральные (минерализация). Это, естественно, влечет за собой освобождение (самоочищение) почвы от загрязнений продуктами жизнедеятельности человека, выделениями животных, сточными водами.

Для установления степени самоочищения и минерализации почвы определяют содержание в ней аммиака, нитритов, нитратов, хлоридов, окисляемость водной вытяжки. Под воздействием воды большинство из образующихся минеральных солей легко растворяется и переходит в водную вытяжку, в которой их определяют соответствующими методами.

Приготовление водной вытяжки из почвы. В колбу помещают 50 г свежей исследуемой почвы и добавляют 250 мл бидистилированной воды. В течение 3-5 минут содержимое колбы взбалтывают. Для осветления жидкости в колбу вносят 1 мл 13%-ного раствора сернокислого аммония и вновь взбалтывают в течение 30 с. Если жидкость не осветлилась, в колбу прибавляют 0,5 мл 7%-ного раствора гидроксида калия и взбалтывают. Содержимое колбы фильтруют. Если полученный фильтрат (вытяжка из почвы) оказался окрашенным, использовать его для исследования на наличие азотсодержащих веществ и хлоридов нельзя, его дополнительно обрабатывают вышеуказанными растворами сернокислого аммония и гидрооксида калия до полного обесцвечивания.

Определение наличия аммиака. Навеску исследуемой почвы массой 5 г помещают в пробирку, доливают 15 мл 1%-ного раствора хлорида калия, встряхивают в течение 3-5 мин., дают отстояться и фильтруют. В чистую пробирку наливают фильтрат, добавляют 2-3 капли реактива Несслера. Появление желтого окрашивания указывает на наличие аммиака в почве. Количество аммиака определяют колориметрически.

Определение наличия нитритов. В пробирку помещают навеску исследуемой почвы (5-10 г) и наливают 15-20 мл дистиллированной воды, встряхивают содержимое в течение 3-5 мин., дают отстояться и фильтруют. В чистую пробирку наливают 10 мл фильтрата добавляют 1 мл реактива Грисса, помещают на 15 мин. в водяную баню при температуре 70 °С. При наличии азотистой кислоты или ее соединений в зависимости от ее количества вытяжка окрасится в розовый или красный цвет. Количество нитритов определяют колориметрически по той же методике, которую используют для определения нитритов в воде.

Определение нитратов основано на взаимодействии дефиниламина с солями азотной кислоты (в присутствии серной кислоты образуется дифенилнитрозамин). В фарфоровую чашку наливают 1-2 мл водной вытяжки почвы, добавляют несколько кристалликов дифениламина и несколько капель концентрированной серной кислоты. О наличии нитратов свидетельствует темно-синее окрашивание. Количество нитратов определяют с помощью сульфофенолового раствора калориметрически.

Определение хлоридов. В пробирку наливают 10 мл водной вытяжки почвы и несколько капель раствора азотнокислого серебра. Появление белого хлопъевидного осадка указывает на наличие хлоридов.

В настоящее время нет строго принятых и установленных химических показателей для санитарной оценки загрязнения почвы. И в каждом отдельном случае необходимо подходить с большой осторожностью к оценке результатов исследования.

Почвы различных местностей будут различаться по своему составу. Например, незагрязненные черноземные почвы содержат такое количество органического азота и углерода, которое для других почв, например, подзолистой зоны, являются показателями загрязнения. Во всех случаях при анализе почвы на загрязнение органическими веществами для контроля необходимо параллельное исследование подобных же почв, но заведомо чистых незагрязненных.

Химическими показателями хода процесса разложения (минерализации) органических веществ, а следовательно, способности почвы к самоочищению, является аммиак (поглощенный аммоний) и отчасти нитраты. Последние – менее надежный показатель, чем аммиак, т.к. нитраты, с одной стороны, потребляются растениями, а с другой – быстро вымываются из почвы. Соли аммония напротив: хорошо поглощаются почвой, прочно и надолго удерживаются в верхних слоях ее (до 60-80 см глубины). В холодное время года процессы аммонификации и нитрификации в почве могут задерживаться или полностью приостанавливаться вследствие прекращения деятельности микробов под влиянием низкой температуры. В этих условиях в почвенной вытяжке может не оказаться аммиака и нитратов, несмотря на загрязнение почвы.

При исследовании почвы на содержание в ней аммиака и нитратов необходимо учитывать происхождение этих веществ, т.к. они часто вносятся в почву в виде минеральных удобрений. Санитарно-гигиеническое значение имеет только содержание в почве аммиака и нитратов из органических веществ в виде навоза, фекалий, трупов, сточных вод и пр.

О характере химических процессов в почве и ее санитарном состоянии можно судить и по содержанию кислорода и углекислоты в почвенном воздухе. Наличие в последнем метана, водорода, аммиака, сероводорода указывает на «пресыщение» почвы органическими веществами и продуктами их распада и в связи с этим – на существование в ней анаэробных условий.

Давность загрязнения почвы органическими веществами, степень и активность их разложения можно оценить по данным анализа этих процессов:

аммиак - загрязнение свежее;

аммиак, хлориды - загрязнение произошло недавно;

аммиак, хлориды, нитриты - процесс разложения органических веществ в разгаре;

аммиак, хлориды, нитриты, - с момента загрязнения прошел некоторый срок, но имеется и свежее загрязнение;

хлориды, нитриты, нитраты - свежего загрязнения нет, идет минерализация органических веществ

нитриты, нитраты - с момента загрязнения прошел большой срок;

нитраты - полная минерализация органических веществ.

Присутствие в почве нитратов свидетельствует о бывшем загрязнении ее органическими веществами. Хлориды также служат показателем давности загрязнения почвы по той причине, что они слабо удерживаются в ней и постепенно вымываются из верхних слоев в нижние. Таким образом, исследуя почву послойно, через каждые 20 см на глубину 1 м можно по количеству хлоридов в этих слоях (от 0-20 см, 20-40 см и т.д.) судить о давности ее загрязнения: в первые 3-4 месяца после загрязнения максимальное количество хлоридов находится в слое 0-20 см, позже максимум ее перемещается в нижележащие слои почвы.

Определение потребности почвы в извести

Признаками недостатка в почве солей кальция может в известной степени служить произрастание на ней таких растений, как едкий лютик, щавелек, хвощ, мхи, осоки и отсутствие или плохой рост бобовых – клевера, люцерны и др. На кислую реакцию почвы, а, следовательно, на необходимость ее известкования, часто указывает наличие ржавой окраски и радужных пятен в находящихся на этой почве мелких водоемов (болота, лужи, канавы).

Так как, кальций находится в почве, главным образом в виде карбонатов и бикарбонатов, ориентировочным методом определения последних может служить следующая проба. 5 г почвы смачивают 3-5 каплями 10%-ной соляной кислоты и наблюдают, произойдет ли вскипание (от выделения диоксида углерода). Отсутствие вскипания указывает, что карбонатов в почве нет или их очень мало – не более 1%; при слабом кратковременном вскипании – 3-4% и при сильном продолжительном – выше 5%. Кальция мало в легких песчаных, моховых, торфяных и северных минеральных почвах.

Более точное, хотя и косвенное определение потребности почвы в кальции и в известковании, производится путем установления рН водной (или солевой) вытяжки из почвы. Для получения водной (или солевой) вытяжки к 20 г почвы в колбу нужно добавлять 50 мл дистиллированной воды (или 1,0 н. раствора хлористого калия – 74,56 г КCl на 1 л дистиллированной воды), взбалтывать смесь в течение 3-5 мин. После чего дать ей отстояться или пропустить через плотный бумажный фильтр, чтобы получить прозрачную вытяжку.

Если рН водной (или солевой) вытяжки меньше 5, почва нуждается в известковании (бедна кальцием); рН от 5 до 6 указывает на среднюю степень потребности в известковании; при рН равном 6 и более, можно считать почву достаточно обеспеченной кальцием (нет необходимости в известковании).

Качественное определение мочи и экскрементов

Для определения в почве мочи 100 мл водной вытяжки помещают в фарфоровую чашку и выпаривают досуха. Остаток с небольшим количеством углекислого натрия нагревают, растворяют в воде и отфильтровывают. Фильтрат сгущают в фарфоровой чашке, добавляют несколько капель азотной кислоты и выпаривают досуха. Если в исследуемой почве содержится моча, то сухой остаток приобретает красно-желтую окраску, которая изменяется от добавления аммиака в пурпуровую, а от гидрооксида натрия – в сине-фиолетовую.

Для обнаружения экскрементов в почве к 250 мл водной вытяжки добавляют 0,3 г виннокаменной кислоты и выпаривают досуха. К остатку добавляют винный спирт и полученную спиртовую вытяжку также выпаривают досуха. К полученному сухому остатку добавляют небольшое количество раствора гидроокиси калия и исследуют запах: при фекальном загрязнении почвы обнаруживают присущий экскрементам специфический запах.

Санитарная оценка почвы на основании данных химического анализа иногда бывает затруднительна вследствие большой вариабельности химического состава так называемой чистой (незагрязненной) почвы. Поэтому в практике часто пользуются санитарным числом – показателем степени загрязнения и завершенности процессов самоочищения почвы.

Санитарным числом называется отношение количества почвенного белкового азота (азота гумуса) к количеству органического азота:

где С – санитарное число; В – количество почвенно-белкового азота на 100 г абсолютно сухой почвы (мг); А – количество органического азота на 100 г абсолютно сухой почвы (мг).

Чем ближе к единице санитарное число, тем чище почва (табл.1).

3. Санитарно-биологические методы исследования почвы

Бактериологическое исследование почвы

Пробы почвы для бактериологического анализа отбирают не менее чем с двух участков площадью 25 м 2 , причем один из них должен находиться вблизи источников загрязнения. Для составления средней пробы на каждом участке почву берут в 5 точках по диагонали или в пяти точках, расположенных конвертом, с глубины до 20 см стерильным инструментом (маленькая лопатка или совок).

Таблица 1

Показатели санитарного состояния почвы*

Степень опасности Степень загрязнения Показатели эпизоотологической безопасности Показатели загрязнения Показатель самоочищения почвы: титр термофилов, г
Общее число бактерий в 1 г почвы Колититр, г Титр анаэробов, г Число яиц гельминтов в 1 кг почвы Санитарное число Химическими веществами (кратность превышения ПДК) Радиоактивными веществами (кратность превышения естественного фона)
Безопасная Чистая Менее 1000 ≥ 1,0 ≥ 0,1 0 0,98 – 1,0 ≤ 1 ≤ 1 0,01-0,001
Относительно безопасная Слабо загрязненная Десятки тысяч 1,0-0,01 0,1-0,001 До 10 0,86-0,97 До 10 1-1,5 0,001-0,00002
Опасная Загрязненная Сотни тысяч 0,01-0,001 0,001-0,0001 11-100 0,7-0,86 10-100 1,5-3 0,00002-0,00001
Чрезвычайно опасная Сильно загрязненная миллионы <0,001 <0,0001 >100 <0,7 >100 >3 <0,00001

* - при условии отбора проб почвы с глубины 0-20 см.

Пробы почвы из более глубоко залегающих слоев (0,75 – 2 м) следует брать буром. При отсутствии бура выкапывают яму необходимой глубины и стерильным совком отбирают пробы с каждого горизонта, начиная с нижнего.

Для исследования почвы полей орошения и огородов пробы берут на глубине нахождения в ней корнеплодов (30 см). Среднюю пробу составляют из трех отдельно взятых с каждой гряды проб.

При изучении влияния почвы на санитарное состояние подземных вод и водоемов пробы следует брать с глубины 0,75 – 2 м. На кладбищах и скотомогильниках пробы берут с глубины 25 см и ниже глубины захоронения, а на участках для обеззараживания хозяйственно-бытовых отбросов – с глубины 25, 100 и 150 см.

Пробу почвы (200-300 г) помещают в стерильную банку и накрывают слоем ваты. Горлышко банки обертывают бумагой и перевязывают. На банку ставят номер и наклеивают записку, в которой указывают необходимые данные (дату, место отбора пробы). Если проб несколько, банки с почвой укладывают в деревянный ящик с гнездами и отправляют в лабораторию.

В лаборатории почву освобождают от щебня, стекла, корней и т.п., после чего просеивают через стерильные сита с отверстиями диаметром 3 мм. Затем образец почвы перемешивают и из него отбирают 30 г для разведения. Если невозможно, провести бактериологические исследования в день отбора почвы, допускается ее хранение не более 24 ч при температуре 1-2 °С.

При полном санитарно-бактериологическом анализе исследование почвы включает определение следующих показателей:

1. общее число сапрофитных бактерий (микробное число);

2. число бактерий группы кишечной палочки;

3. количество анаэробов (Cl. Perfringens);

4. количество термофильных микроорганизмов, определяющих характер загрязнения (навоз, фекалии, сточные воды).

С санитарной точки зрения имеет значение не только общее количество микробов, в том числе анаэробов, в почве, хотя оно обычно и соответствует содержанию органических веществ в ней, но и качественный (видовой) их состав.

Важную роль в отдельных случаях может играть исследование почвы на присутствие в ней возбудителей сибирской язвы, эмфизематозного карбункула, столбняка, злокачественного отека, паратифозных бактерий и т.д.

Подготовка пробы для анализа

30 г почвы помещают в стерильную колбу, куда добавляют 270 мл стерильного физиологического раствора. После этого содержимое тщательно взбалтывают в течение 10 минут, отстаивают 2-5 минут, а затем из полученной суспензии делают ряд разведений на стерильном физиологическом растворе, начиная от 1:10 до 1:1 000 000 в зависимости от загрязнения почвы.

Определение общего числа микроорганизмов

Исследуемую суспензию почвы в различных разведениях в объеме 0,1 мл стерильной пипеткой вносят в чашку Петри с агаровой питательной средой (Эндо, Плоскирева и др.). Чашки с посевом ставят в термостат при температуре 37 ± 1 °С на 24 часа, после чего выросшие колонии подсчитывают обычным способом и результат выражают на 1 г почвы.

Для характеристики санитарного состояния почвы особую ценность имеет установление коли-титра водной вытяжки почвы, поскольку наиболее частым источником заражения ее служат фекалии животных и людей, с которыми в почву может попадать различная патогенная микрофлора.

Под коли-титром подразумевают наименьшее количество посевного материала, при внесении которого в питательную среду наблюдается развитие бактерий кишечной группы.

Коли-индекс – количество бактерий кишечной палочки, приходящиеся на 1 г почвы.

Определение титра анаэробов (Cl. Perfringens) производится путем 9-кратных разведений основной почвенной суспензии. Из каждого разведения берут стерильной пипеткой по 1 мл и заливают в пробирки с молоком, разлитым по 5 мл. Для освобождения от неспороносной микрофлоры все посевы с разведениями почвенной суспензии прогревают на водяной бане при 80°С (лучше при 43°С) в течение 18020 часов. Наличие Cl. Perfringens регистрируется по наступившему характерному свертыванию молока с полным отделением сыворотки и выбрасыванию губчатого сгустка на поверхности благодаря энергичному газообразованию. Предельное разведение почвенной суспензии, которое дает на молочной среде развитие колоний Cl. Perfringens, показывает титр этого анаэроба в почве.

Присутствие Cl. Perfringens подтверждается микроскопически нахождением в мазках из содержимого пробирок.

Сопоставление коли-титра и количества хлоридов в загрязненной фекалиями почве указывает на близкое соответствие этих показателей. Такое же соотношение существует между наличием в почве анаэробов и содержанием в ней аммиака. Следовательно, бактериологические показатели, с одной стороны, и указанные химические показатели фекального загрязнения почвы, с другой, соответствует друг другу.

В почве определяют также титр термофилов. Термофильная сапрофитная микрофлора не свойственна биологически чистым почвам и попадает в них с навозом и компостами.

Гельминтологические исследования почвы

Обнаружение в почве яиц гельминтов свидетельствует о загрязнении этой среды фекалиями человека и животных. Наибольшую эпизоотологическую опасность представляют яйца гельминтов и биогельминтов (аскариды, острицы, власоглавы, членики ленточных гельминтов), развитие которых до личиночной стадии протекает при благоприятном температурно-влажностном режиме в почве.

Для гельминтологического исследования пробы почвы отбирают на участках возможного загрязнения фекалиями с глубины 2-3 см, а на вспаханных почвах – до 25 см в зависимости от выращиваемых культур. На исследуемом участке в 9-10 точках пробы (200 г) берут с поверхности почвы шпателем или лопаточкой, а из глубоких слоев – лопаткой или буром.

Пробы помещают в стеклянные банки или в мешки из целлофана или клеенки. Исследуют почву не позднее чем через 2-3 сут. После взятия пробы. При необходимости пробы можно хранить в холодильнике в течение нескольких месяцев. Для этого их помещают в стеклянные банки, почву в них периодически увлажняют водой и изредка перемешивают (для лучшей аэрации). При хранении в условиях комнатной температуры пробы необходимо залить 3%-ным раствором формалина или 1-2%-ным раствором соляной кислоты.

Исследование на яйца гельминтов

Из образца почвы отбирают примерно 200 г и распределяют на стекле. После перемешивания и разравнивания из разных мест слоя почвы берут в общей сложности около 10 г и помещают в толстостенную колбу. Затем навеску почвы с помощью стеклянных бус тщательно смешивают (в течение часа) с 20 мл 5% раствора гидрооксида натрия.

Полученную смесь в течение 1-2 минут центрифугируют, и избыток щелочи сливают. Осадок тщательно смешивают с насыщенным раствором нитрата натрия (плотность 1,4) и центрифугируют по 2 минуты не менее 5 раз.

После каждого центрифугирования поверхностную пленку снимают и переносят в стаканчик с небольшим количеством воды.

Содержимое стаканчика фильтруют, фильтры исследуют под микроскопом во влажном состоянии, и яйца гельминтов легко обнаруживаются в поле зрения. Для более детального морфологического изучения яиц делают соскоб содержимого фильтра на предметное стекло в каплю 50% глицерина и рассматривают под микроскопом.

Обнаружение ранней весной в почве (на глубине до 25 см) яиц аскарид с развившимися живыми личинками, указывает на загрязнение почвы, имевшее место летом предшествующего года (яйца развиваются в почве до инвазионной стадии лишь летом в течение 1,5-3 месяцев). Наличие в почве яиц с неподвижными, мертвыми личинками свидетельствует о давнем (свыше 10,5 месяцев) загрязнении почвы. Если еще не поступило дробление яиц, но они не утратили способности к развитию в благоприятных условиях температуры и влажности, давность загрязнения почвы меньше года. Нахождение в пробе почвы, взятой летом и осенью, яиц с живыми личинками показывает, что фекальное загрязнение почвы имеет давность, измеряемую не менее чем 1,5-3 месяцами. Суглинистая почва благоприятна для развития яиц гельминтов, чем супесчаная.

Исследование на личинки гельминтов

200-400 г почвы тщательно измельчают и размещают равномерно на кусочке марли, который помещают в металлическое сито с отверстиями 1-2 мм в диаметре. Сито вставляют в стеклянную воронку, наполненную водой (45°С) так, чтобы нижняя часть сита была погружена в воду. На нижний конец воронки надевают резиновую трубку с зажимом, над которым собираются личинки в силу термотропности, мигрирующие из почвы в теплую воду. Через 4-20 часов от начала анализа открывают зажим и выпускают 50 мл жидкости, которую центрифугируют, и осадок исследуют под микроскопом.

Санитарно-энтомологическое исследование почвы

Для определения загрязнения почвы исследуют наличие в ней личинок и куколок мух, которые проделывают в почве один из циклов своего развития.

Для исследования пользуются рамой-трафаретом размером 25х25 см 2 , накладываемой на поверхность участка почвы. Внутри трафарета выкапывают почву на глубину 20 см и рассыпают на ровной поверхности. Личинки и куколки вынимают пинцетом и подсчитывают их количество. Результат исследований оценивают по пятибалльной шкале: личинок нет – 1 балл, отдельные экземпляры личинок –2, личинок мало – 3, личинок много – 4 и личинок очень много (кишат) – 5.

Санитарную оценку степени загрязнения почвы по результатам бактериологического и гельминтологического анализов можно проводить по таблице 1.

Нарушение технологий применения удобрений на основе навоза, помета, органогенных отходов городов (осадки сточных вод, твердые бытовые отходы, производственные сточные воды и пр.) нередко ухудшает санитарное состояние почвы и агроценозов. Вследствие усиления физического, химического, биологического загрязнения снижается самоочищающаяся способность почвы, повышается ее токсичность, инфекционный и инвазионный потенциал, негативное влияние на качество продукции растениеводства, окружающей среды, состояние здоровья населения. Оценка санитарного состояния почвы является обязательной при определении и прогнозе степени ее опасности для здоровья и условий проживания населения, разработке мероприятий по рекультивации загрязненных земель, профилактике инфекционной и неинфекционной заболеваемости, при решении очередности санационных мероприятий в рамках комплексных природоохранных программ.

Согласно ГОСТ 17.4.2.01 санитарное состояние почв – это совокупность физико-химических, химических и биологических свойств, которые определяют влияние или потенциальное влияние почвы на здоровье людей. В соответствии с МУ 2.1.7.730-99 санитарное состояние почвы – это совокупность физико-химических и биологических свойств почвы, определяющих качество и степень ее безопасности в эпидемиологическом и гигиеническом отношениях.

Санитарная оценка почв сельскохозяйственных угодий проводится по санитарно-химическим, санитарно-бактериологическим, санитарно-гельминтологическим, санитарно-энтомологическим показателям.

Санитарное обследование земель. Обязательным предварительным этапом оценки санитарного состояния почвы является ее санитарное обследование, включающее составление картосхем, выбор площадок наблюдения.

Пробная площадка должна располагаться на типичном для изучаемой территории месте. При неоднородности рельефа площадки выбирают по элементам рельефа. На территорию, подлежащую контролю, составляют описание с указанием адреса, точки отбора, общего рельефа микрорайона, расположение мест отбора и источников загрязнения, растительного покрова, характера землепользования, уровня грунтовых вод, типа почвы и других данных, необходимых для правильной оценки и трактовки результатов анализов образцов.

При оценке почв сельскохозяйственных территорий пробы почвы отбирают 2 раза в год (весна, осень) с глубины 0-25 см. На каждые 15 га закладывается в среднем не менее одной площадки размером 100-200 м 2 в зависимости от рельефа местности и условий землепользования.

Точечные пробы отбирают в соответствии с ГОСТ 17.4.4.02-84 с соблюдением стерильности для санитарно-микробиологического и гельминтологического анализов на пробной площадке методом конвертов. Методика отбора проб почвы для оценки санитарного состояния почв приведены в табл. 2.75.


Объединенную пробу составляют из равных по объему точечных (не менее 5), отобранных на одной площадке. Объединенные пробы должны быть упакованы в чистые полиэтиленовые пакеты, закрыты, маркированы, зарегистрированы в журнале отбора проб и пронумерованы. На каждую пробу составляется сопроводительный талон, вместе с которым проба вкладывается во второй внешний пакет, что обеспечивает целостность и безопасность их транспортирования. Время от отбора проб до начала их исследований не должно превышать 1 суток.

Подготовка проб к анализу проводится в соответствии с видом анализа. В лаборатории проба освобождается от посторонних примесей, доводится до воздушно-сухого состояния, тщательно перемешивается и делится на части для проведения анализа. Отдельно оставляется контрольная часть от каждой анализируемой пробы (около 200 г) и хранится в холодильнике 2 недели на случай арбитража.