Определение численности выборки. Средние ошибки повторной и бесповторной выборки Предельная ошибка исследования

Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки, которые свойственны только выборочным наблюдениям. Данные показа­тели отражают разность между выборочными и соответствую­щими генеральными показателями.

Средняя ошибкавыборки определяется прежде всего объе­мом выборки и зависит от структуры и степени варьирования изучаемого признака.

Смысл средней ошибки выборки заключается в следующем. Рассчитанные значения выборочной доли (w) и выборочной средней ()по своей природе случайные величины. Они могут принимать различные значения в зависимости от того, какие кон­кретные единицы генеральной совокупности попадут в выборку. Например, если при определении среднего возраста работников предприятия в одну выборку включить больше молодежи, а в другую - работников старшего возраста, то выборочные средние и ошибки выборки будут разными. Средняя ошибка выборки определяется по формуле:

(27) или - повторная выборка. (28)

Где: μ – средняя ошибка выборки;

σ – среднее квадратическое отклонение признака в генеральной совокупности;

n – объем выборки.

Величина ошибки μ показывает, насколько среднее значение признака, установленное по выборке, отличается от истинного значения признака в генеральной совокупности.

Из формулы следует, что ошибка выборки прямо пропорциональна среднему квадратическому отклонению и обратно пропорциональна корню квадратному из числа единиц, попавших в выборку. Это означает, например, что чем больше разброс значений признака в генеральной совокупности, то есть чем больше дисперсия, тем больше должен быть объем выборки, если мы хотим доверять результатам выборочного обследования. И, наоборот, при малой дисперсии можно ограничиться небольшим числом выборочной совокупности. Ошибка выборки при этом будет находиться в приемлемых пределах.

Поскольку при бесповторном отборе численность генеральной совокупности N в ходе выборки сокращается, то в формулу для расчета средней ошибки выборки включают дополнительный множитель

(1- ). Формула средней ошибки выборки принимает следующий вид:

Средняя ошибка меньше у бесповторной выборки, что и обусловливает ее более широкое применение.

Для практических выводов нужна характеристика генеральной совокупности на основе выборочных результатов. Выборочные средние и доли распространяются на генеральную совокупность с учетом предела их возможной ошибки, причем с гарантирующим ее уровнем вероятности. Задавшись конкретным уровнем вероятности, выбирают величину нормированного отклонения и определяют предельную ошибку выборки.

Надежностью (доверительной вероятностью) оценки Х по Х* называют вероятность γ , с которой осуществляется неравенство


׀Х-Х*׀< δ, (30)

где δ – предельная ошибка выборки, характеризующая ширину интервала, в котором с вероятностью γ находится значение исследуемого параметра генеральной совокупности.

Доверительным называют интервал (Х* - δ; Х* + δ), который покрывает исследуемый параметр Х (то есть значение параметра Х находится внутри этого интервала) с заданной надежностью γ.

Обычно надежность оценки задается наперед, причем в качестве γ берут число, близкое к единице: 0,95; 0,99 или 0,999.

Предельная ошибка δ связана со средней ошибкой μ следующим соотношением: , (31)

где: t – коэффициент доверия, зависящий от вероятности P, с которой можно утверждать, что предельная ошибка δ не превысит t-кратную среднюю ошибку μ (его еще называют критическими точками или квантилями распределения Стьюдента).

Как следует из соотношения , предельная ошибка прямо пропорциональна средней ошибке выборки и коэффициенту доверия, зависящему от заданного уровня надежности оценки.

Из формулы средней ошибки выборки и соотношения предельной и средней ошибок получаем:

С учетом доверительной вероятности эта формула примет вид.

Ошибки систематические и случайные

Модульная единица 2 Ошибки выборки

Поскольку выборка охватывает, как правило, весьма незначительную часть генеральной совокупности, то следует предполагать, что будут иметь место различия между оценкой и характеристикой генеральной совокупности, которую эта оценка отображает. Эти различия получили название ошибок отображения или ошибок репрезентативности. Ошибки репрезентативности подразделяются на два типа: систематические и случайные.

Систематические ошибки - это постоянное завышение или занижение значения оценки по сравнению с характеристикой генеральной совокупности. Причиной появления систематической ошибки является несоблюдение принципа равновероятности попадания каждой единицы генеральной совокупности в выборку, то есть выборка формируется из преимущественно «худших» (или « лучших») представителей генеральной совокупности. Соблюдение принципа равновозможности попадания каждой единицы в выборку позволяет полностью исключить этот тип ошибок.

Случайные ошибки – это меняющиеся от выборки к выборке по знаку и величине различия между оценкой и оцениваемой характеристикой генеральной совокупности. Причина возникновения случайных ошибок- игра случая при формировании выборки, составляющей лишь часть генеральной совокупности. Этот тип ошибок органически присущ выборочному методу. Исключить их полностью нельзя, задача состоит в том, чтобы предсказать их возможную величину и свести их к минимуму. Порядок связанных в связи с этим действий вытекает из рассмотрения трех видов случайных ошибок: конкретной, средней и предельной.

2.2.1 Конкретная ошибка – это ошибка одной проведенной выборки. Если средняя по этой выборке () является оценкой для генеральной средней (0) и, если предположить, что эта генеральная средняя нам известна, то разница = -0 и будет конкретной ошибкой этой выборки. Если из этой генеральной совокупности выборку повторим многократно, то каждый раз получим новую величину конкретной ошибки: …, и так далее. Относительно этих конкретных ошибок можно сказать следующее: некоторые из них будут совпадать между собой по величине и знаку, то есть имеет место распределение ошибок, часть из них будет равна 0, наблюдается совпадение оценки и параметра генеральной совокупности;

2.2.2 Средняя ошибка – это средняя квадратическая из всех возможных по воле случая конкретных ошибок оценки: , где - величина меняющихся конкретных ошибок; частота (вероятность) встречаемости той или иной конкретной ошибки. Средняя ошибка выборки показывает насколько в среднем можно ошибиться, если на основе оценки делается суждение о параметре генеральной совокупности. Приведенная формула раскрывает содержание средней ошибки, но она не может быть использована для практических расчетов, хотя бы потому, что предполагает знание параметра генеральной совокупности, что само по себе исключает необходимость выборки.



Практические расчеты средней ошибки оценки основываются на той предпосылке, что она (средняя ошибка) по сути является средним квадратическим отклонением всех возможных значений оценки. Эта предпосылка позволяет получить алгоритмы расчета средней ошибки, опирающиеся на данные одной единственной выборки. В частности средняя ошибка выборочной средней может быть установлена на основе следующих рассуждений. Имеется выборка (,… ) состоящая из единиц. По выборке в качестве оценки генеральной средней определена выборочная средняя . Каждое значение(,… ) , стоящее под знаком суммы, следует рассматривать как независимую случайную величину, поскольку при бесконечном повторении выборки первая, вторая и т.д. единицы могут принимать любые значения из присутствующих в генеральной совокупности. Следовательно Поскольку, как известно, дисперсия суммы независимых случайных величин равна сумме дисперсий, то . Отсюда следует, что средняя ошибка для выборочной средней будет равная и находится она в обратной зависимости от численности выборки (через корень квадратный из нее) и в прямой от среднего квадратического отклонения признака в генеральной совокупности. Это логично, поскольку выборочная средняя является состоятельной оценкой для генеральной средней и по мере увеличения численности выборки приближается по своему значению к оцениваемому параметру генеральной совокупности. Прямая зависимость средней ошибки от колеблемости признака обусловлена тем, что чем больше изменчивость признака в генеральной совокупности, тем сложнее на основе выборки построить адекватную модель генеральной совокупности. На практике среднее квадратическое отклонение признака по генеральной совокупности заменяется его оценкой по выборке, и тогда формула для расчета средней ошибки выборочной средней приобретает вид:, при этом учитывая смещенность выборочной дисперсии , выборочное среднее квадратическое отклонение рассчитывается по формуле = . Так как символом n обозначена численность выборки. ,то в знаменателе при расчете среднего квадратического отклонения должна использоваться не численность выборки (n), а так называемое число степеней свободы (n-1). Под числом степеней свободы понимается число единиц в совокупности, которые могут свободно варьировать (изменяться), если по совокупности определена какая-либо характеристика. В нашем случае, поскольку по выборке определена ее средняя, свободно варьировать могут единицы.

В таблице 2.2 приведены формулы для расчета средних ошибок различных выборочных оценок. Как видно из этой таблицы, величина средней ошибки по всем оценкам находится в обратной связи с численностью выборки и в прямой с колеблемостью. Это можно сказать и относительно средней ошибки выборочной доли (частости). Под корнем стоит дисперсия альтернативного признака, установленная по выборке ()

Приведенные в таблице 2.2 формулы относятся к так называемому случайному, повторному отбору единиц в выборку. При других способах отбора, о которых речь пойдет ниже, формулы будут несколько видоизменяться.

Таблица 2.2

Формулы для расчета средних ошибок выборочных оценок

2.2.3 Предельная ошибка выборки Знание оценки и ее средней ошибки в ряде случаев совершенно недостаточно. Например, при использовании гормонов при кормлении животных знать только средний размер неразложившихся их вредных остатков и среднюю ошибку, значит подвергать потребителей продукции серьезной опасности. Здесь настоятельно напрашивается необходимость определения максимальной (предельной ошибки ). При использовании выборочного метода предельная ошибка устанавливается не в виде конкретной величины, а виде равных границ

(интервалов) в ту и другую сторону от значения оценки.

Определение границ предельной ошибки основывается на особенностях распределения конкретных ошибок. Для так называемых больших выборок, численность которых более 30 единиц () , конкретные ошибки распределяются в соответствии с нормальным законом распределения; при малых выборках () конкретные ошибки распределяются в соответствии с законом распределения Госсета

(Стьюдента). Применительно к конкретным ошибкам выборочной средней функция нормального распределения имеет вид: , где - плотность вероятности появления тех или иных значений , при условии, что , где выборочные средние; - генеральная средняя, - средняя ошибка для выборочной средней. Поскольку средняя ошибка () является величиной постоянной, то в соответствии с нормальным законом распределяются конкретные ошибки , выраженные в долях средней ошибки, или так называемых нормированных отклонениях.

Взяв интеграл функции нормального распределения, можно установить вероятность того, что ошибка будет заключена в некотором интервале изменения t и вероятность того, что ошибка выйдет за пределы этого интервала (обратное событие). Например, вероятность того, что ошибка не превысит половину средней ошибки (в ту и другую сторону от генеральной средней) составляет 0,3829, что ошибка будет заключена в пределах одной средней ошибки - 0,6827, 2-х средних ошибок -0,9545 и так далее.

Взаимосвязь между уровнем вероятности и интервалом изменения t (а в конечном счете интервалом изменения ошибки) позволяет подойти к определению интервала (или границ) предельной ошибки, увязав его величину с вероятностью осуществления.. Вероятность осуществления -это вероятность того, что ошибка будет находится в некотором интервале. Вероятность осуществления будет «доверительной» в том случае, если противоположное событие (ошибка будет находится вне интервала) имеет такую вероятность появления, которой можно пренебречь. Поэтому доверительный уровень вероятности устанавливают, как правило, не ниже 0,90 (вероятность противоположного события равна 0,10). Чем больше негативных последствий имеет появление ошибок вне установленного интервала, тем выше должен быть доверительный уровень вероятности (0,95; 0,99 ; 0,999 и так далее).

Выбрав доверительный уровень вероятности по таблице интеграла вероятности нормального распределения, следует найти соответствующее значение t, а затем используя выражение =определить интервал предельной ошибки . Смысл полученной величины в следующем – с принятым доверительным уровнем вероятности предельная ошибка выборочной средней не превысит величину .

Для установления границ предельной ошибки на основе больших выборок для других оценок (дисперсии, среднего квадратического отклонения, доли и так далее) используется выше рассмотренный подход, с учетом того, что для определения средней ошибки для каждой оценки используется свой алгоритм.

Что касается малых выборок () то, как уже говорилось, распределение ошибок оценок соответствует в этом случае распределению t - Стьюдента. Особенность этого распределения состоит в том, что в качестве параметра в нем, наряду с ошибкой, присутствует численность выборки,вернее не численность выборки, а число степеней свободы При увеличении численности выборки распределение t-Стьюдента приближается к нормальному, а при эти распределения практически совпадают. Сопоставляя значения величины t-Стьюдента и t - нормального распределения при одной и той же доверительной вероятности можно сказать, что величина t-Стьюдента всегда больше t - нормального распределения, причем, различия возрастают с уменьшением численности выборки и с повышением доверительного уровня вероятности. Следовательно, при использовании малых выборок имеют место по сравнению с выборками большими, более широкие границы предельной ошибки, причем, эти границы расширяются с уменьшением численности выборки и повышением доверительного уровня вероятности.

Ошибка выборки г - средние , или стандартные ; предельные.
(Статистика туризма)
  • ОПРЕДЕЛЕНИЕ СРЕДНЕЙ ОШИБКИ ВЫБОРКИ
    Ошибка выборки - расхождение между выборочной характеристикой и предполагаемой характеристикой генеральной совокупности. Факторы, влияющие на величину ошибки выборки: 1) степень вариации изучаемого признака; 2) численность выборки; 3) методы отбора единиц в выборочную совокупность; 4) принятый...
    (Общая теория статистики)
  • Нахождение ошибок и объема большой выборки
    Одна из задач, которую позволяет решать выборочный метод, - нахождение ошибки выборки. В теории статистики определяют среднюю (стандартную), предельную и относительную ошибки выборочного наблюдения. В теории вероятностей доказывается, что при случайном и механическом отборах средняя ошибка выборки для...
    (Общая теория статистики)
  • РАСЧЕТ СРЕДНИХ И ПРЕДЕЛЬНЫХ ОШИБОК ВЫБОРКИ ПРИ РАЗЛИЧНЫХ ВИДАХ ОТБОРА
    Ошибка выборки г - расхождение (разность) между характеристиками генеральной и выборочной совокупностей. Все возможные ошибки выборки подразделяют: на средние , или стандартные ; предельные. Ошибка выборки может возникнуть по разным причинам и...
    (Статистика туризма)
  • ПРЕДЕЛЬНАЯ ОШИБКА ВЫБОРКИ. ОПРЕДЕЛЕНИЕ НЕОБХОДИМОГО ОБЪЕМА ВЫБОРКИ
    Предельной ошибкой выборки принято считать максимально возможное расхождение (х-х), т.е. максимум ошибки при заданной вероятности ее появления; х - выборочная средняя, х - генеральная средняя. В математической статистике употребляют коэффициент доверия t и значения функции...
    (Общая теория статистики)
  • СРЕДНЯЯ И ПРЕДЕЛЬНАЯ ОШИБКИ ВЫБОРКИ. ДОВЕРИТЕЛЬНЫЙ ИНТЕРВАЛ И ЕГО ПОСТРОЕНИЕ
    Определение 2.11. Наибольшее возможное отклонение А выборочной средней (или доли) от генеральной средней (или доли) при данной надежности у называется предельной ошибкой. Следующая теорема позволяет просто найти предельную ошибку по средней ошибке выборки. Теорема 2.1. Предельная ошибка равна...
    (Математическая статистика)
  • Средняя ошибка выборки

    Выборочную совокупность можно сформировать по количественному признаку статистических величин, а также по альтернативному или атрибутивному. В первом случае обобщающей характеристикой выборки служит выборочная средняя величина, обозначаемая , а во втором -- выборочная доля величин, обозначаемая w. В генеральной совокупности соответственно: генеральная средняя и генеральная доля р.

    Разности -- и W -- р называются ошибкой выборки, которая делится на ошибку регистрации и ошибку репрезентативности. Первая часть ошибки выборки возникает из-за неправильных или неточных сведений по причинам непонимания существа вопроса, невнимательности регистратора при заполнении анкет, формуляров и т.п. Она достаточно легко обнаруживается и устраняется. Вторая часть ошибки возникает из-за постоянного или спонтанного несоблюдения принципа случайности отбора. Ее трудно обнаружить и устранить, она гораздо больше первой и потому ей уделяется основное внимание.

    Величина ошибки выборки зависит от структуры последней. Например, если при определении среднего балла успеваемости студентов факультета в одну выборку включить больше отличников, а в другую - больше неудачников, то выборочные средние баллы и ошибки выборки будут разными.

    Поэтому в статистике определяется средняя ошибка повторной и бесповторной выборки в виде ее удельного среднего квадратического отклонения по формулам

    = - повторная; (1.35)

    = - бесповторная; (1.36)

    где Дв -- выборочная дисперсия, определяемая при количественном признаке статистических величин по обычным формулам из гл.2.

    При альтернативном или атрибутивном признаке выборочная дисперсия определяется по формуле

    Дв = w(1-w). (1.37)

    Из формул (1.35) и (1.36) видно, что средняя ошибка меньше у бесповторной выборки, что и обусловливает ее более широкое применение.

    Предельная ошибка выборки

    Учитывая, что на основе выборочного обследования нельзя точно оценить изучаемый параметр (например, среднее значение) генеральной совокупности, необходимо найти пределы, в которых он находится. В конкретной выборке разность может быть больше, меньше или равна. Каждое из отклонений от имеет определенную вероятность. При выборочном обследовании реальное значение в генеральной совокупности неизвестно. Зная среднюю ошибку выборки, с определенной вероятностью можно оценить отклонение выборочной средней от генеральной и установить пределы, в которых находится изучаемый параметр (в данном случае среднее значение) в генеральной совокупности. Отклонение выборочной характеристики от генеральной называется предельной ошибкой выборки. Она определяется в долях средней ошибки с заданной вероятностью, т.е.

    = t, (1.38)

    где t - коэффициент доверия , зависящий от вероятности, с которой определяется предельная ошибка выборки.

    Вероятность появления определенной ошибки выборки находят с помощью теорем теории вероятностей. Согласно теореме П. Л. Чебышёва, при достаточно большом объеме выборки и ограниченной дисперсии генеральной совокупности вероятность того, что разность между выборочной средней и генеральной средней будет сколь угодно мала, близка к единице :

    А. М. Ляпунов доказал, что независимо от характера распределения генеральной совокупности при увеличении объема выборки распределение вероятностей появления того или иного значения выборочной средней приближается к нормальному распределению . Это так называемая центральная предельная теорема. Следовательно, вероятность отклонения выборочной средней от генеральной средней, т.е. вероятность появления заданной предельной ошибки, также подчиняется указанному закону и может быть найдена как функция от t с помощью интеграла вероятностей Лапласа:

    где - нормированное отклонение выборочной средней от генеральной средней.

    Значения интеграла Лапласа для разных t рассчитаны и имеются в специальных таблицах, из которых в статистике широко применяется сочетание:

    Вероятность

    Задавшись конкретным уровнем вероятности, выбирают величину нормированного отклонения t и определяют предельную ошибку выборки по формуле (1.38)

    При этом чаще всего применяют = 0,95 и t = 1,96, т.е. считают, что с вероятностью 95% предельная ошибка выборки вдвое больше средней. Поэтому в статистике величина t иногда именуется коэффициентом кратности предельной ошибки относительно средней .

    После исчисления предельной ошибки находят доверительный интервал обобщающей характеристики генеральной совокупности. Такой интервал для генеральной средней величины имеет вид

    (-) (+), (1.39)

    а для генеральной доли аналогично

    (w-) p (w +). (1.40)

    Следовательно, при выборочном наблюдении определяется не одно, точное значение обобщающей характеристики генеральной совокупности, а лишь ее доверительный интервал с заданным уровнем вероятности. И это серьезный недостаток выборочного метода статистики.

    Определение численности выборки

    Разрабатывая программу выборочного наблюдения, иногда задаются конкретным значением предельной ошибки с уровнем вероятности. Неизвестной остается минимальная численность выборки, обеспечивающая заданную точность. Ее можно получить из формул средней и предельной ошибок в зависимости от типа выборки. Так, подставляя формулы сначала (1.35) и затем (1.36) в формулу (1.38) и решая ее относительно численности выборки, получим следующие формулы

    для повторной выборки

    для бесповторной выборки

    Кроме того, при статистических величинах с количественными признаками надо знать и выборочную дисперсию, но к началу расчетов и она не известна. Поэтому она принимается приближенно одним из следующих способов:

    берется из предыдущих выборочных наблюдений;

    по правилу, согласно которому в размахе вариации укладывается примерно шесть стандартных отклонений (R/ = 6 или R/ = 6; отсюда Д = R 2 /36);

    По правилу «трех сигм», согласно которому в средней величине укладывается примерно три стандартных отклонения (/ =3; отсюда = /3 или Д = 2 /9).

    При изучении не численных признаков, если даже нет приблизительных сведений о выборочной доле, принимается w = 0,5, что по формуле (1.37) соответствует выборочной дисперсии в размере Дв = 0,5(1-0,5) = 0,25.

    Понятие о выборочном наблюдении.

    При статистическом методе наблюдения возможно применение двух методов наблюдения: сплошного, охватывающего все единицы совокупности, и выборочного (несплошного).

    Под выборочным понимается метод исследования, связанный с установлением обобщающих показателей совокупности по некоторой ее части на основе метода случайного отбора.

    При выборочном наблюдении обследованию подвергается сравнительно небольшая часть всей совокупности (5-10%).

    Вся совокупность, подлежащая обследованию, называется генеральной совокупностью .

    Отобранная из генеральной совокупности часть единиц, подвергающаяся обследованию, называется выборочной совокупностью или выборкой.

    Показатели, характеризующие генеральную и выборочную совокупность:

    1) Доля альтернативного признака;

    В генеральной совокупности доля единиц, обладающих каким-либо альтернативным признаком, обозначается буквой «Р».

    В выборочной совокупности доля единиц, обладающих каким-либо альтернативным признаком, обозначается буквой «w».

    2) Средний размер признака;

    В генеральной совокупности средний размер признака обозначается буквой (генеральная средняя).

    В выборочной совокупности средний размер признака обозначается буквой (выборочная средняя).

    Определение ошибки выборки.

    Выборочное наблюдение основано на принципе равной возможности попадания единиц генеральной совокупности в выборочную. Это позволяет избежать систематических ошибок наблюдения. Однако, в связи с тем, что исследуемая совокупность состоит из единиц с варьирующими признаками, состав выборки может отличаться от состава генеральной совокупности, вызывая расхождения между генеральными и выборочными характеристиками.

    Такие расхождения называются ошибками репрезентативности или ошибками выборки.

    Определение ошибки выборки – основная задача, решаемая при выборочном наблюдении.

    В математической статистике доказывается, что средняя ошибка выборки определяется по формуле:

    Где m - ошибка выборки;

    s 2 0 – дисперсия генеральной совокупности;

    n – количество единиц выборочной совокупности.

    На практике для определения средней ошибки выборки используется дисперсия выборочной совокупности s 2 .

    Между генеральной и выборочной дисперсиями существует равенство:

    (2).

    Из формулы (2) видно, что генеральная дисперсия больше выборочной на величину (). Однако при достаточно большой величине выборки это соотношение близко к единице, поэтому можно записать, что

    Однако такая формула для определения средней ошибки выборки применяется только при повторном отборе.

    На практике обычно применяется бесповторный отбор и средняя ошибка выборки рассчитывается несколько иначе, так как численность выборки в ходе исследования сокращается:

    (4)

    где n – численность выборочной совокупности;

    N – численность генеральной совокупности;

    s 2 - выборочная дисперсия.

    Для доли альтернативного признака средняя ошибка выборки при бесповторном отборе определяется по формуле:

    (5), где

    w (1-w) - средняя ошибка выборочной доли альтернативного признака;

    w – доля альтернативного признака выборочной совокупности.

    При повторном отборе средняя ошибка доли альтернативного признака определяется по упрощенной формуле:

    (6)

    Если численность выборки не превышает 5%, средняя ошибка выборочной доли и выборочной средней определяется по упрощенным формулам (3) и (6).

    Определение средней ошибки выборочной средней и выборочной доли необходимо для установления возможных значений генеральной средней (х) и генеральной доли (Р) на основе выборочной средней (х) и выборочной доли (w).

    Одно из возможных значений, в пределах которого находится генеральная средняя, определяется по формуле:

    Для генеральной доли этот интервал можно записать в виде:

    (8)

    Полученные таким образом характеристики доли и средней в генеральной совокупности отличаются от величины выборочной доли и выборочной средней на величину m. Однако гарантировать это можно не с полной уверенностью, а лишь с определенной степенью вероятности.

    В математической статистике доказывается, что пределы значений характеристик генеральной и выборочной средней отличаются на величину m лишь с вероятностью 0,683. Следовательно, только в 683 случаях из 1000 генеральная средняя находится в пределах х= х m х, в остальных случаях она выйдет за эти пределы.

    Вероятность суждений можно повысить, если расширить пределы отклонений, приняв в качестве меры среднюю ошибку выборки, увеличенную в t раз.

    Множитель t называют коэффициентом доверия. Он определяется в зависимости от того, с какой доверительной вероятностью надо гарантировать результаты исследования.

    Математик А.М.Ляпушев рассчитал различные значения t , которые обычно приводятся в готовых таблицах.