Меры защиты от вредного воздействия рентгеновских лучей. Пособие к практическому занятию "основные способы защиты от вредностей в рентгеновских кабинетах". Передвижные средства радиационной защиты

Коми филиал Кировской государственной медицинской академии

Дисциплина Гигиена

РЕФЕРАТ

Рентгеновское излучение в медицине и меры защиты
персонала и пациентов

Исполнитель: Репин К. В. 304 гр.

Преподаватель: Зеленов В. А.

Сыктывкар, 2007

История открытия рентгеновских лучей. 3

Средства индивидуальной и коллективной защиты в рентгенодиагностике. 6

Дозовые нагрузки на население и персонал при проведении медицинских рентгенологических исследований и основные пути их оптимизации.. 11

История открытия рентгеновских лучей.

На пороге XX столетия были сделаны два важных открытия, заново перестроивших наши знания во многих отраслях науки и техники - это открытие лучей Рентгена 8 ноября 1895 г. и последовавшее за ним в 1896 г. открытие Беккерелем радиоактивности.

О том впечатлении, которое произвело на мировую общественность открытие Рентгена, свидетельствует следующее высказывание московского физика П. Н. Лебедева, который в мае 1896 г. писал: "Еще никогда ни одно открытие в области физики не встречало такого всеобщего интереса и не было так обстоятельно обсуждаемо в периодической печати, как открытие Рентгеном нового, до той поры неизвестного рода лучей”.

Вильгельм-Конрад Рентген родился 27 марта 1845 г. в Лениепе, маленьком городке в Германии. Будучи уже в одном из старших классов гимназии, он был исключен из нее за то, что отказался выдать товарища, нарисовавшего на доске карикатуру на нелюбимого педагога. Не имея аттестата зрелости, Рентген не мог попасть в университет и поступил сначала в машиностроительное училище, а затем в Цюрихский политехнический институт.

Получив в 1868 г. диплом инженера машиностроения, Рентген принимает предложение физика Кундта и становится его ассистентом, посвятив всю свою жизнь научно-педагогической деятельности. В 1869 г. он получает ученую степень доктора наук, а в 1875г., в возрасте тридцати лет, избирается профессором физики и математики в Сельскохозяйственную академию в Хохенхейме. В 1888г. по приглашению старейшего университета Германии в Вюрцбурге Рентген занимает должность ординарного профессора физики и заведующего физическим институтом.

В течение более чем пятидесятилетней научной деятельности Рентген напечатал около 50 работ, посвященных различным разделам физики. Будучи уже ученым с мировым именем, он не оставляет педагогической деятельности и продолжает читать лекции по экспериментальной физике. Только в возрасте 70 лет Рентген оставляет кафедру, продолжая научную деятельность почти до последних дней жизни в должности заведующего Институтом физики и метрологии в Мюнхене.

Характерными чертами Рентгена как человека были его исключительная скромность, сдержанность и замкнутость. Так, в своей лаборатории он до самой смерти запрещал называть открытые им лучи рентгеновыми лучами, а только "Х-лучами" (X-Rays), несмотря на состоявшееся в 1906 г. решение Первого международного съезда по рентгенологии о присвоении им наименования лучей Рентгена.

Требовательный и строго принципиальный в научно-исследовательской работе, он был прямолинеен и принципиален также и в жизни, независимо от того, с кем ему приходилось встречаться. Вместе с тем простота и скромность не покидали его и тогда, когда он стал одним из величайших людей в истории человечества. Исключительным было отношение Рентгена к студенческой молодежи.

Рентген тяжело переживал первую империалистическую войну и отношение всего мира к немцам, признавая неправоту официальных германских кругов. Противники Германии в начале войны вычеркнули и его имя из списка мировых ученых. Сам же Рентген находил себе утешение в том, что его открытие в большой мере способствовало смягчению страданий множества раненых, а многим спасло жизнь, что в еще большей степени выявилось в период второй мировой войны.

Рентген скончался 10 февраля 1923 г., на 78 году жизни. Свыше ста наград и почетных званий во всех странах мира было присуждено ему за его открытие, в том числе от Общества русских врачей в Санкт-Петербурге, Общества врачей в Смоленске, от Новороссийского университета в Одессе. Во многих городах его именем были названы улицы. Советское правительство, признавая великие заслуги Рентгена перед наукой и человечеством, воздвигло ему еще при жизни памятник перед зданием Рентгенологического института в Ленинграде; его именем была названа улица, на которой находится этот институт.

Свое открытие Рентген совершил в процессе исследования особого рода лучей, известных под названием катодных, которые возникают при электрическом разряде в трубках с сильно разреженным газом.

Наблюдая в затемненной комнате свечение флуоресцирующего экрана - картона, покрытого платиносинеродистым барием, - вызываемое потоком катодных лучей, выходящих из трубки через окошечко, Рентген вдруг заметил, что при прохождении тока через трубку расположенные поодаль на столе кристаллы платиносинеродистого бария также светятся. Естественно, он предположил, что свечение кристаллов вызывается видимым светом, который испускала трубка. Чтобы проверить это, Рентген обернул трубку черной бумагой; однако свечение кристаллов продолжалось. Чтобы решить другой вопрос - катодные ли лучи вызывают свечение экрана или другие, еще дотоле неизвестные лучи, Рентген отодвинул экран на значительное расстояние; свечение не прекращалось. Так как было известно, что катодные лучи могут проходить в воздухе лишь несколько миллиметров, а в своих опытах Рентген далеко превзошел пределы этой толщины слоя воздуха, то он заключил, что либо полученные им катодные лучи обладают такой проникающей способностью, какую до него никто еще не получал, либо это должны были быть какие-то другие, еще неизвестные лучи.

В процессе исследования Рентген поставил по ходу лучей книгу; свечение экрана стало несколько менее ярким, но все же продолжалось. Пропуская таким же образом лучи сквозь дерево и различные металлы, он заметил, что интенсивность свечения экрана была то более сильная, то ослабевала. Когда же на пути прохождения лучей были поставлены платиновая и свинцовая пластинки, то свечение экрана не наблюдалось совсем. Тогда у него мелькнула мысль поставить на пути лучей свою кисть, и на экране он увидел четкое изображение костей на фоне менее четкого изображения мягких тканей. Чтобы зафиксировать все то, что он видел, Рентген заменил флуоресцирующий картон фотографической пластинкой и получил на ней теневое изображение тех предметов, которые ставились между трубкой и фотопластинкой; в частности, после 20-минутного облучения своей кисти он получил также и ее изображение на фотографической пластинке.

Рентген понял, что перед ним новое, дотоле неизвестное явление природы; оставив все другие занятия, он после двух месяцев работы сумел дать ему столь исчерпывающее объяснение, подтвержденное рядом собранных им фактов, что в течение последующих 17 лет в тысячах работ, посвященных его открытию, не было сказано ничего принципиально нового. Почти все свойства открытых им лучей Рентген сформулировал в трех работах, относящихся к 1895, 1896 и 1897 гг. Он же разработал и технику получения этих новых лучей.

Академик А. Ф. Иоффе, работавший с Рентгеном в течение многих лет, пишет: "с тех пор, как открыты рентгеновы лучи, прошло 50 лет. Но из того, что Рентген опубликовал в первых трех сообщениях, не может быть изменено ни одно слово. Многие тысячи исследований не могли прибавить ни йоты к тому, что сделал сам Рентген в самых элементарных условиях с помощью самых элементарных приборов".

Первое сообщение Рентгена появилось в научной печати в начале января 1896 г. В короткое время оно было переведено на многие иностранные языки, в том числе и на русский. Уже 5 января 1896 г. сведения об открытии Рентгена проникли в общую печать. Весь мир был ошеломлен и взволнован известием об этом открытии. Сообщениями об "Х-лучах" были полны как научные журналы, так и общие журналы и газеты.

В России открытие Рентгена было воспринято с энтузиазмом не только специалистами-учеными, но и всей общественностью. А.М.Горький в 1896 г. писал, что рентгеновы лучи это "величайшее создание человеческого гения".

Рентген отлично понимал, какие материальные выгоды сулило ему его открытие. Однако он отказался от извлечения из него каких-либо материальных выгод для себя и отклонил ряд весьма выгодных предложении американских и германских фирм, ответив им, что его открытие принадлежит всему человечеству.

Не будет преувеличением сказать, что рентгенология в медицине за сравнительно короткий период своего развития сделала столько, сколько не сделала ни одна другая отрасль нашего знания. То, что раньше было доступно лишь одиночкам, блестящим мастерам и знатокам своего дела, благодаря рентгеновым лучам стало доступно рядовым врачам. Во многих разделах медицинского знания наши представления были в корне изменены под влиянием того нового, что дало рентгенологическое исследование, и не только в области распознавания болезней, но и в области их лечения. В минувшую войну рентгенология в немалой степени способствовала быстрейшему восстановлению здоровья раненых бойцов и командиров нашей армии и флота, а также разработке и внедрению в практику таких операций, которые были бы немыслимы без нее.

Биологическое действие рентгеновых лучей не было известно Рентгену. К сожалению, оно стало известно позднее ценой многих жизней врачей, инженеров и рентгенолаборантов, которые, не предполагая повреждающего действия рентгеновых лучей, не могли принимать своевременно предохранительных мер. На почве хронического и длительного раздражения рентгеновыми лучами развивались рентгеновские ожоги кожи и хронические воспаления в ней, переходившие позднее в рак, а также тяжелое малокровие.

Так у нас в стране погибли от профессионального рентгеновского рака врачи С. В. Гольдберг, С. П. Григорьев, Н.Н. Исаченко, Я.М. Розенблат, рентгенолаборант И. И. Ланцевич и др., за рубежом - Альберс-Шенбер г, Леви-Дорн (Германия), Гольцкнехт (Австрия), Бергонье (Франция) и многие другие пионеры рентгенологии.

Сам Рентген счастливо избежал этого потому, что при экспериментах с открытыми им лучами он, для предотвращения почернения фотографических пластинок, помещался в специальном шкафу, обитом цинком, одна сторона которого, обращенная к находившейся вне ящика трубке, была к тому же еще обита свинцом.

Открытие рентгеновых лучей означало также новую эпоху в развитии физики и всего естествознания. Оно оказало глубокое влияние и на последующее развитие техники. По выражению А. В. Луначарского, "открытие Рентгена дало изумительной тонкости ключ, позволяющий проникнуть в тайны природы и строение материи".

Средства индивидуальной и коллективной защиты в рентгенодиагностике.

В настоящее время для защиты от рентгеновского излучения при использовании его в целях медицинской диагностики сформировался комплекс защитных средств, которые можно разделить на следующие группы:

· средства защиты от прямого неиспользуемого излучения;

· средства индивидуальной защиты персонала;

· средства индивидуальной защиты пациента;

· средства коллективной защиты, которые, в свою очередь, делятся на стационарные и передвижные.

Наличие большинства из этих средств в рентгенодиагностическом кабинете и основные их защитные свойства нормируются "Санитарными правилами и нормами СанПиН 2.6.1.1192-03", введенными в действие 18 февраля 2003 г., а также ОСПОРБ-99 и НРБ-99. Данные правила распространяются на проектирование, строительство, реконструкцию и эксплуатацию рентгеновских кабинетов независимо от их ведомственной принадлежности и формы собственности, а также на разработку и производство рентгеновского медицинского оборудования и защитных средств.

В РФ разработкой и производством средств радиационной защиты для рентгенодиагностики занято около десятка фирм, преимущественно новых, которые были созданы в период перестройки, что связано, прежде всего, с достаточно простой технологической оснасткой и стабильными потребностями рынка. Традиционные производства защитных материалов, являющихся сырьем для производства рентгенозащитных средств, сконцентрированы на специализированных химических предприятиях. Так, например, Ярославский завод резинотехнических изделий практически является монополистом по производству рентгенозащитной резины целого спектра свинцовых эквивалентов, применяемой в производстве защитных изделий стационарной (отделка стен небольших рентгенокабинетов) и индивидуальной защиты (рентгенозащитная одежда). Листовой свинец, применяемый для изготовления средств коллективной защиты (защита стен, пола, потолка рентгенокабинетов, а также жесткие защитные ширмы и экраны), производится согласно ГОСТам на специализированных заводах по переработке цветных металлов. Концентрат баритовый КБ-3, применяемый при стационарной защите (защитная штукатурка рентгенокабинетов), производится в основном на Салаирском горно-обогатительном комбинате. Производством рентгенозащитного стекла ТФ-5 (защитные смотровые окна), практически монопольно владеет Лыткаринский завод оптического стекла. Изначально все работы по созданию рентгенозащитных средств в нашей стране велись во Всероссийском научно-исследовательском институте медицинской техники. Следует отметить, что практически все современные отечественные производители рентгенозащитных средств и по сей день используют эти разработки. Так, например, в конце восьмидесятых годов ВНИИМТ впервые разработал полную номенклатуру бессвинцовых защитных средств для пациентов и персонала на основе смесей концентратов оксидов редкоземельных элементов, которые в 5 качестве отходов скопились в достаточных количествах на предприятиях Минатома СССР. Эти модели явились основой для разработок) многочисленных новых производителей, таких как "Рентген-Комплект", "Гаммамед", "Фомос", "Гелпик", "Защита Чернобыля".

Основные требования к передвижным средствам радиационной защиты сформулированы в санитарных правилах и нормах СанПиН 2003.

Защита от используемого прямого излучения предусматривается в конструкции самого рентгеновского аппарата и отдельно, как правило, не выпускается (исключение могут составлять фартуки для экранно-снимочных устройств, приходящие в негодность при эксплуатации и подлежащие замене). Стационарная защита кабинетов выполняется на этапе строительно-отделочных работ и не является изделием медицинской техники. Однако в СанПиН предусмотрены нормативы по составу площади применяемых помещений (табл. 1,2) .

Таблица 1 . Площадь процедурной с разными рентгеновскими аппаратами

Рентгеновский аппарат Площадь, кв. м (не менее)
Предусматривается
использование
каталки
Не предусматривается
использование
каталки
Рентгенодиагностический комплекс (РДК) с полным набором штативов (ПСШ, стол снимков, стойка снимков, штатив снимков) 45 40
РДК с ПСШ, стойкой снимков, штативом снимков 34 26
РДК с ПСШ и универсальной стойкой-штативом, рентгенодиагностический аппарат с цифровой обработкой изображения 34 26
РДК с ПСШ, имеющим дистанционное управление 24 16
Аппарат для рентгенодиагностики методом рентгенографии (стол снимков, стойка для снимков, штатив снимков) 16 16
Аппарат для рентгенодиагностики с универсальной стойкой-штативом 24 14
Аппарат для близкодистанционной рентгенотерапии 24 16
Аппарат для дальнедистанционной рентгенотерапии 24 20
Аппарат для маммографии 6
Аппарат для остеоденситометрии 8

Таблица 2. Состав и площади помещений для рентгеностоматологических исследований

Наименование помещений Площадь кв. м (не менее)
1. Кабинет рентгенодиагностики заболеваний зубов методом рентгенографии с дентальным аппаратом, работающим с обычной пленкой без усиливающего экрана:
- процедурная 8
- фотолаборатория 6
2. Кабинет рентгенодиагностики заболеваний зубов методом рентгенографии с дентальным аппаратом, работающим с высокочувствительным пленочным и/или цифровым приемником изображения, в том числе с визиографом (без фотолаборатории):
- процедурная 6
3. Кабинет рентгенодиагностики методом панорамной рентгенографии или панорамной томографии:
- процедурная 8
- комната управления 6
- фотолаборатория 8

На этапе чистовой отделки рентгенокабинета, исходя из СанПиН, рассчитывается уровень дополнительной защиты стен, потолка и пола процедурной. И производится дополнительная штукатурка расчетной толщины радиационно-защитным баритобетоном. Дверные проемы защищаются с помощью специальных рентгенозащитных дверей требуемого свинцового эквивалента. Смотровое окно между процедурной и пультовой изготавливается из рентгенозащитного стекла марки ТФ-5, в ряде случаев применяются рентгенозащитные ставни, защищающие оконные проемы.

Таким образом, самостоятельными изделиями для защиты от рентгеновского излучения (главным образом, рассеиваемого пациентом и элементами оснащения кабинета) являются носимые и передвижные средства защиты пациентов и персонала, обеспечивающие безопасность при проведении рентгенологических исследований. В таблице приведена номенклатура передвижных и индивидуальных средств защиты и регламентируется их защитная эффективность в диапазоне анодного напряжения 70-150 кВ.

Рентгеновские кабинеты различного назначения должны быть оснащены средствами защиты в соответствии с проводимыми видами рентгеновских процедур (табл. 3) .

Таблица 3. Номенклатура обязательных средств радиационной защиты

Средства радиационной защиты Назначение рентгеновского кабинета защиты
флюорография рентгеноскопия рентгенография урография маммография денситометрия ангинография
Большая защитная ширма (при отсутствии комнаты управления или др. средств) 1 1 1 1 1 1
Малая защитная ширма 1 1 1
Фартук защитный односторонний 1 1 1 1 1 1
Фартук защитный двусторонний 1 1
Воротник защитный 1 1 1 1 1 1
Жилет защитный с юбкой защитной 1 1 1
Передник для защиты гонад или юбка защитная 1 1 1 1 1 1
Шапочка защитная 1 1 1
Очки защитные 1 1 1
Перчатки защитные 1 1 1
Набор защитных пластин 1 1 1

В зависимости от принятой медицинской технологии допускается корректировка номенклатуры. При рентгенологическом исследовании детей используют защитные средства меньших размеров и расширенный их ассортимент.

К передвижным средствам радиационной защиты относятся:

· большая защитная ширма персонала (одно-, двух-, трехстворчатая) - предназначена для защиты от излучения всего тела человека;

· малая защитная ширма персонала - предназначена для защиты нижней части тела человека;

· малая защитная ширма пациента - предназначена для защиты нижней части тела пациента;

· экран защитный поворотный - предназначен для защиты отдельных частей тела человека в положении стоя, сидя или лежа;

· защитная штора - предназначена для защиты всего тела, может применяться взамен большой защитной ширмы.

К индивидуальным средствам радиационной защиты относятся:

· шапочка защитная - предназначена для защиты области головы;

· очки защитные - предназначены для защиты глаз;

· воротник защитный - предназначен для защиты щитовидной железы и области шеи, должен применяться также совместно с фартуками и жилетами, имеющими вырез в области шеи;

· накидка защитная, пелерина - предназначена для защиты плечевого пояса и верхней части грудной клетки;

· фартук защитный односторонний тяжелый и легкий - предназначен для защиты тела спереди от горла до голеней (на 10 см ниже колен);

· фартук защитный двусторонний - предназначен для защиты тела спереди от горла до голеней (на 10 см ниже колен), включая плечи и ключицы, а сзади от лопаток, включая кости таза, ягодицы, и сбоку до бедер (не менее чем на 10 см ниже пояса);

· фартук защитный стоматологический - предназначен для защиты передней части тела, включая гонады, кости таза и щитовидную железу, при дентальных исследованиях или исследовании черепа;

· жилет защитный - предназначен для защиты спереди и сзади органов грудной клетки от плеч до поясницы;

· передник для защиты гонад и костей таза - предназначен для защиты половых органов со стороны пучка излучения;

· юбка защитная (тяжелая и легкая) - предназначена для защиты со всех сторон области гонад и костей таза, должна иметь длину не менее 35 см (для взрослых);

· перчатки защитные - предназначены для защиты кистей рук и запястий, нижней половины предплечья;

· защитные пластины (в виде наборов различной формы) - предназначены для защиты отдельных участков тела;

· средства защиты мужских и женских гонад предназначены для защиты половой сферы пациентов.

Для исследования детей предусматриваются наборы защитной одежды для различных возрастных групп.

Эффективность передвижных и индивидуальных средств радиационной защиты персонала и пациентов, выраженная в значении свинцового эквивалента, не должна быть меньше значений, указанных в табл. 4,5.

Таблица 4. Защитная эффективность передвижных средств радиационной защиты

Таблица 5. Защитная эффективность индивидуальных средств радиационной защиты

Наименование Минимальное значение свинцового эквивалента, mm Pb
Фартук защитный односторонний тяжелый 0,35
Фартук защитный односторонний легкий 0,25
Фартук защитный двусторонний
- передняя поверхность
- вся остальная поверхность
Фартук защитный стоматологический 0,25
Накидка защитная (пелерина) 0,35
Воротник защитный
- тяжелый
- легкий
Жилет защитный
передняя поверхность
- тяжелый
- легкий
остальная поверхность
- тяжелый
- легкий
Юбка защитная
- тяжелая
- легкая
Передник для защиты гонад
- тяжелый
- легкий
Шапочка защитная (вся поверхность) 0,25
Очки защитные 0,25
Перчатки защитные
- тяжелые
- легкие
Защитные пластины (в виде наборов различной формы) 1,0 - 0,5
Подгузник, пеленка, пеленка с отверстием 0,35

Дозовые нагрузки на население и персонал при проведении медицинских рентгенологических исследований и основные пути их оптимизации

Облучение в медицинских целях по данным НКАДАР ООН занимает второе (после естественного радиационного фона) место по вкладу в облучение населения на Земном шаре. В последние годы радиационные нагрузки от медицинского использования излучения обнаруживают тенденцию к возрастанию, что отражает все большую распространенность и доступность рентгено-радиологических методов диагностики во всем мире. При этом медицинское использование ИИИ вносит самый большой вклад в антропогенное облучение. Усредненные данные облучения, обусловленные медицинским использованием излучений в развитых странах, приблизительно, эквивалентны 50% глобального среднего уровня облучения от естественных источников. Это связано, в основном, с широким применением в этих странах компьютерном томографии.

Диагностическое облучение характеризуется довольно низкими дозами, получаемыми каждым из пациентов (типичные эффективные дозы находятся в диапазоне 1 - 10 мЗв), что в принципе вполне достаточно для получения требуемой клинической информации. Терапевтическое облучение, напротив, сопряжено с гораздо большими дозами, точно подводимыми к объему опухоли (типичные назначаемые дозы в диапазоне 20-60 Гр).

В годовой коллективной дозе облучения населения Российской Федерации на долю медицинского облучения приходится около 30%.

Принятие Федеральных Законов Российской Федерации: "О радиационной безопасности населения" и "Санитарно-эпидемиологическом благополучии населения" принципиально изменило правовые основы организации Госсанэпиднадзора за использованием медицинских источников ионизирующего излучения (ИИИ) и потребовало полного пересмотра санитарных правил и норм, регламентирующих ограничение облучения населения и пациентов от этих источников. Кроме того, возникла необходимость в разработке на Федеральном уровне новых организационных и методических подходов к определению и учету дозовых нагрузок, получаемых населением от медицинских процедур с использованием ИИИ.

В России вклад медицинского облучения в интегральную дозу облучения населения особенно велик. Если по данным НКДАР ООН средняя доза, получаемая жителем планеты, составляет 2,8 мЗв и доля медицинского облучения в ней 14%, то облучение россиян составляет 3,3 мЗв и 31,2% соответственно.

В Российской Федерации 2/3 медицинского облучения приходится на рентгенодиагностические исследования и почти треть на профилактическую флюорографию, около 4% - на высокоинформативные радионуклидные исследования. Стоматологические исследования добавляют в общую дозу облучения лишь малые доли процента.

Население Российской Федерации по вкладу медицинского облучения по-прежнему является одним из самых облучаемых и, к сожалению, эта ситуация пока не имеет тенденции к снижению. Если в 1999 году популяционная доза медицинского облучения населения России составляла 140 тысяч чел.-Зв, а предшествующие годы еще меньше, то в 2001 году она возросла до 150 тысяч чел.-Зв. При этом численность населения страны сократилась. В России на каждого жителя в год проводится в среднем 1,3 рентгенологических исследования в год. Основной вклад в популяционную дозу вносят рентгеноскопические исследования - 34% и профилактические флюорографические исследования с использованием пленочных флюорографов - 39%.

Одними из главных причин высоких доз медицинского облучения являются: низкие темпы обновления парка устаревших рентгеновских аппаратов на современные; неудовлетворительное сервисное обслуживание медицинской техники; недостаток материальных средств на приобретение средств индивидуальной защиты пациентов, высокочувствительных пленок и современного вспомогательного оборудования; низкая квалификация специалистов.

Выборочная проверка технического состояния парка рентгеновской техники в ряде территорий субъектов Российской Федерации (г. Москва, г. Санкт-Петербург, Брянская, Кировская Тюменская области) показала, что от 20 до 85% действующих аппаратов работают с отклонениями от режимов, указанных в технических условиях. При этом около 15% аппаратов невозможно отрегулировать, дозы облучения пациентов при этом в 2-3, а нередко и более раз выше, чем при их нормальной эксплуатации и они должны быть списаны.

Стратегия снижения дозовых нагрузок на население при проведении рентгенологических процедур должна предусматривать поэтапный переход в рентгенологии на технологии цифровой обработки информации и, прежде всего, при поведении профилактических процедур, доля которых в общем объеме рентгенологических исследований составляет около 33%. Расчеты показывают, что дозовые нагрузки на население при этом снизятся в 1,3 -1,5 раза.

Важным компонентом снижения дозовых нагрузок на население является правильная организация работы фотолабораторного процесса. Основными элементами его являются: подбор типа пленки в зависимости от локализации области обследования и вида рентгенологической процедуры; наличие современных технических средств обработки пленок. Использование при работе в условиях "темной комнаты" оптимального набора современных технологий позволяет за счет резкого снижения дублирования снимков и оптимизации комбинаций "экран-пленка" снизить дозовые нагрузки на пациентов на 15-25%.

Внедрение радиационно-гигиенических паспортов в практику деятельности ЦГСЭН и учреждений здравоохранения при правильных методических подходах к измерению, регистрации, учету и статистической обработке доз уже сегодня позволяет принимать управленческие решения, дающие максимальный эффект снижения индивидуального и коллективного радиационного риска при сохранении высокого качества оказания медицинской помощи населению. На современном этапе детальный анализ динамики дозовых нагрузок является основой в обосновании необходимости пересмотра медицинских технологий, использующих ИИИ, в пользу альтернативных методов исследования с оптимизацией по принципу "польза-вред". Такой подход, на наш взгляд, должен быть положен в основу разработки стандартов лучевой диагностики.

Большая роль в решении вышеуказанной проблемы отводится персоналу отделений лучевой диагностики. Хорошее знание используемой аппаратуры, правильный выбор режимов исследования, точное соблюдение укладок пациентов и методологии его защиты - все это необходимо для качественной диагностики с минимальным облучением, гарантирующим от брака и вынужденных повторных исследований.

Общепризнанно, что именно рентгенология располагает наибольшими резервами оправданного снижения индивидуальных, коллективных и популяционных доз. Эксперты ООН подсчитали, что уменьшение доз медицинского облучения всего на 10%, что вполне реально, по своему эффекту равносильно полной ликвидации всех других искусственных источников радиационного воздействия на население, включая атомную энергетику. Для России этот потенциал значительно выше, в том числе для большинства административных территорий. Доза медицинского облучения населения страны может быть снижена примерно в 2 раза, то есть до уровня 0,5-0,6 мЗв/год, который имеют большинство индустриально развитых стран. В масштабах России это означало бы снижение коллективной дозы на многие десяти тысяч человеко-Зв ежегодно, что равносильно предотвращению каждый год нескольких тысяч смертельных раковых заболеваний, индуцируемых этим облучением.

При проведении рентгенорадиологических процедур облучению подвергается и сам персонал. Многочисленные опубликованные данные показывают, что в настоящее время рентгенолог получает в год дозу профессионального облучения, в среднем, около 1 мЗв в год, что в 20 раз ниже установленного предела дозы и не влечет за собой сколько-нибудь заметного индивидуального риска. Следует отметить, что наибольшему облучению могут подвергаться даже не работники рентгеновских отделений, а врачи так называемых "смежных" профессий: хирурги, анестезиологи, урологи, участвующие в проведении рентгенохирургических операций под рентгеновским контролем.

В настоящее время правовые отношения, связанные с обеспечением безопасности населения при рентгенорадиологических исследованиях изложены более чем в 40 нормативно-правовых и организационно-распорядительных документах. Поскольку уровни облучения пациентов в медицинской практике не нормируются, соблюдение их радиационной безопасности должно обеспечиваться за счет соблюдения следующих основных требований:

* проведение рентгенорадиологических исследований только по строгим медицинским показаниям с учетом возможности проведения альтернативных исследований;

* осуществление мероприятий по соблюдению действующих норм и правил при проведении исследований;

* проведение комплекса мер по радиационной защите пациентов направленных на получение максимальной диагностической информации при минимальных дозах облучения.

При этом должен в полном объеме осуществляться производственный контроль и государственный санитарно-эпидемиологический надзор.

Реализация в полном объеме предложений госсанэпидслужбы России по оптимизации дозовых нагрузок при проведении рентгенодиагностических процедур по итогам ежегодной радиационно-гигиенической паспортизации медицинских учреждений позволит уже в ближайшие 2-3 года снизить эффективную среднюю годовую дозу облучения на одного человека до 0,6 мЗв. При этом суммарная годовая коллективная эффективная доза облучения населения уменьшится почти на 31 000 чел.-Зв, а число вероятных случаев возникновения злокачественных заболеваний (смертельных и не смертельных) снизится за этот период более чем на 2200.

Действующее законодательство не дает легального определения средств радиационной защиты, в связи с чем в рамках настоящей статьи попытаемся самостоятельного разобраться с данным термином и понять что же такое средства радиационной защиты и каких видов они могут быть.

Радиационная безопасность населения и принципы ее обеспечения

Очевидно то, что средства радиационной защиты связаны с радиационной защитой, которая является необходимым условием обеспечения радиационной безопасности населения.

Статья 3 упомянутого выше закона выделяет 3 основополагающих принципа обеспечения радиационной безопасности:

  • принцип нормирования — непревышение допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующего излучения (см. подробнее ст. 9 ФЗ «О радиационной безопасности»);
  • принцип обоснования — запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному радиационному фону облучением;
  • принцип оптимизации — поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения.

Каждый из признаков, указанных выше, находит то или иное выражение в соответствующих средствах радиационной защиты.

Согласно ст. 4 ФЗ «О радиационной безопасности» радиационная безопасность обеспечивается:

  • проведением комплекса мер правового, организационного, инженерно-технического, санитарно-гигиенического, медико-профилактического, воспитательного и образовательного характера;
  • осуществлением федеральными органами исполнительной власти, органами исполнительной власти субъектов Российской Федерации, органами местного самоуправления, общественными объединениями, другими юридическими лицами и гражданами мероприятий по соблюдению правил, норм и нормативов в области радиационной безопасности;
  • информированием населения о радиационной обстановке и мерах по обеспечению радиационной безопасности;
  • обучением населения в области обеспечения радиационной безопасности.

Можно предложить следующее определение понятия «радиационная зашита населения» — комплекс организационных, инженерно-технических и специальных мероприятий по предупреждению и ослаблению воздействия на жизнь и здоровье людей ионизирующих излучений. Основная цель радиационной защиты, таким образом, предотвращение или максимальное снижение потерь различных категорий населения (рабочих, служащих, неработающего населения, пациентов и т.п.) и обеспечение их жизнедеятельности в условиях радиоактивного заражения.

В зависимости от целей, достижению которых способствуют соответствующие мероприятия радиационной защиты, среди последних можно выделить следующие:

  • Радиационная разведка;
  • Радиационный контроль;
  • Сбор, обработка данных и информации о радиационной обстановке в зонах заражения (загрязнения);
  • Применение (использование) средств радиационной защиты;
  • Выбор и соблюдение режимов защиты людей в условиях радиоактивного заражения;
  • Специальная обработка населения и обеззараживание участков местности, дорог, объектов, зданий и сооружений.

В соответствии с п. 2.3.2. Постановления Главного государственного санитарного врача РФ от 26 апреля 2010 года № 40 (ред. от 16.09.2013) «Об утверждении СП 2.6.1.2612-10 «Основные санитарные правила обеспечения радиационной безопасности» (далее по тексту также ОСПОРБ-99/2010) радиационная безопасность персонала обеспечивается:

  • ограничениями допуска к работе с источниками излучения по возрасту, полу, состоянию здоровья, уровню предыдущего облучения и другим показателям;
  • знанием и соблюдением правил работы с источниками излучения;
  • защитными барьерами, экранами и расстоянием от источников излучения, а также ограничением времени работы с источниками излучения; — созданием условий труда, отвечающих требованиям НРБ-99/2009 и настоящих Правил;
  • применением индивидуальных средств защиты;
  • соблюдением установленных контрольных уровней;
  • организацией радиационного контроля;
  • организацией системы информации о радиационной обстановке;
  • проведением эффективных мероприятий по защите персонала при планировании повышенного облучения в случае аварии.

Радиационная безопасность пациентов при медицинском облучении согласно п. 2.3.4. ОСПОРБ-99/2010 обеспечивается:

  • обоснованием целесообразности рентгенорадиологического исследования или лечебной процедуры;
  • оптимизацией радиационной защиты пациента.

Средства радиационной защиты варьируются в зависимости от области их применения. В рамках настоящей статьи рассмотрим основные виды средств радиационной защиты, применяемые при осуществлении медицинской деятельности.


Санитарные правила и нормы «Гигиенические требования к устройству и эксплуатации рентгеновских аппаратов и проведению рентгенологических исследований. СанПиН 2.6.1.1192-03», утв. Главным государственным санитарным врачом Российской Федерации 18 февраля 2003 года (далее по тексту — СанПиН 2.6.1.1192-03) в качестве видов средств радиационной защиты в медицинской области выделяют:

  • (А) стационарные средства радиационной защиты;
  • (Б) передвижные средства радиационной защиты;
  • (В) индивидуальные средства радиационной защиты.

Заметим, что часто в литературе стационарные и передвижные средства радиационной защиты именуются также средствами коллективной радиационной защиты.

Как следует из названия стационарные средства радиационной защиты представляют собой недвижимые строительные конструкции и иное оборудование, призванные обеспечивать ослабление /уменьшение ионизирующего излучения.


Согласно п. 4.6. СанПиН 2.6.1.1192-03 в качестве материалов для изготовления средств стационарной защиты могут быть использованы материалы, обладающие необходимыми конструкционными и защитными характеристиками, отвечающие санитарно-гигиеническим требованиям.

При этом, как закреплено в п. 4.3. стационарные средства защиты должны иметь защитную эффективность не ниже 0,25 мм по свинцовому эквиваленту. Защитные характеристики (свинцовые эквиваленты) основных строительных и специальных защитных материалов приведены в таблицах 3 — 6 Приложения 9 к СанПиН 2.6.1.1192-03. При применении материалов, не перечисленных в таблицах 3 — 6 Приложения 9, необходимо иметь данные по их защитным свойствам или определить защитные характеристики в аккредитованных организациях с использованием контрольных образцов. Заметим, что при использования в качестве стационарных средств защиты специальных строительных и отделочных материалов (например, баритовая штукатурка, установка свинцовых пластин и проч.) необходимо иметь акт на скрытые работы, выданный организацией, которая выполнила данную стационарную защиту. Информация о необходимости использования соответствующих стационарных средств радиационной защиты и их характеристика отражается в проекте рентген-кабинета. Данная часть проекта конечно же рассчитывается проектантами индивидуально в зависимости от исходных данных и иных условий размещения рентген-аппаратов.

В силу п. 4.1. стационарные средства радиационной защиты процедурной рентгеновского кабинета (стены, пол, потолок, защитные двери, смотровые окна, ставни и др.) должны обеспечивать ослабление рентгеновского излучения до уровня, при котором не будет превышен основной предел дозы ПД для соответствующих категорий облучаемых лиц (см. специальный раздел ниже). Тогда как средства защиты, поставляемые в виде готовых изделий (защитные двери, защитные смотровые окна, ширмы, ставни, жалюзи и др.), должны обеспечивать уровень защиты (кратность ослабления), предусмотренные расчетом защиты, содержащимся в технологической части проекта рентгеновского кабинета. Подробная информация по вопросу проектирования рентгеновских кабинетов представлена в статье « ».

Передвижные средства радиационной защиты

Передвижные средства радиационной защиты перечислены в п. 5.2.1. СанПиН 2.6.1.1192-03, тогда как эффективность их представлена в таблице 5.2. Для удобства восприятия систематизируем информацию СанПиН 2.6.1.1192-03 и ниже приведем таблицу 1 «Передвижные средства радиационной защиты, их назначения и защитная эффективность».

Таблица 1

Передвижные средства радиационной защиты, их назначения и защитная эффективность

Санитарные правила и нормы СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)», утв. Постановлением Главного государственного санитарного врача РФ от 7 июля 2099 года № 47, под средствами индивидуальной защиты понимают технические средства, носимые человеком и используемые для предотвращения или уменьшения воздействия на человека вредных и/или опасных факторов, а также для защиты от загрязнения.


Перечень индивидуальных средств радиационной защиты изложен в п. 5.2.2. СанПиН 2.6.1.1192-03, защитная эффективность каждого из которых обозначена в таблице 5.2. На основе данной информации ниже представим систематизированную таблицу 2 «Средства индивидуальной защиты, их назначение и защитная эффективность».

Таблица 2

Средства индивидуальной защиты, их назначение и защитная эффективность

Наименование Минимальное значение свинцового эквивалента, мм Pb Назначение
Фартук защитный односторонний тяжелый 0,35 защита тела спереди от горла до голеней (на 10 см ниже колен)
Фартук защитный односторонний легкий 0,25
Фартук защитный двусторонний
-передняя поверхность
-вся остальная поверхность

0,35
0,25
защита тела спереди от горла до голеней (на 10 см ниже колен), включая плечи и ключицы, а сзади от лопаток, включая кости таза, ягодицы, и сбоку до бедер (не менее, чем на 10 см ниже пояса)
Фартук защитный стоматологический 0,25 защита передней части тела, включая гонады, кости таза и щитовидную железу, при дентальных исследованиях или исследовании черепа
Накидка защитная (пелерина) 0,35 защита плечевого пояса и верхней части грудной клетки
Воротник защитный
-тяжелый
-легкий

0,35
0,25
защита щитовидной железы и области шеи
Жилет защитный
передняя поверхность
-тяжелый
-легкий
остальная поверхность
-тяжелый
-легкий

0,35
0,25

0,25
0,15

защита спереди и сзади органов грудной клетки от плеч до поясницы
Юбка защитная
-тяжелая
-легкая

0,5
0,35
защита со всех сторон области гонад и костей таза; длина не менее 35 см (для взрослых)
Передник для защиты гонад
-тяжелый
-легкий

0,5
0,35
защита половых органов со стороны пучка излучения
Шапочка защитная (вся поверхность) 0,25 защита области головы
Очки защитные 0,25 защита глаз
Перчатки защитные
-тяжелые
-легкие

0,25
0,15
защита кистей рук и запястий, нижней половины предплечья;
Защитные пластины (в виде наборов различной формы) 1,0 — 0,5 защита отдельных участков тела
Подгузник, пеленка, пеленка с отверстием 0,35

В ОСПОРБ-99/2010 в п. 3.14. закреплены основные правила, касающиеся использования индивидуальных средств радиационной защиты. Так, все работающие с источниками излучения или посещающие участки, где производятся такие работы, должны обеспечиваться сертифицированными спецодеждой, спецобувью и другими средствами индивидуальной защиты в соответствии с видом и классом работ. Для каждого вида и класса работ с использованием источников ионизирующего излучения раздел 3.14 ОСПОРБ-99/2010 содержит свои особые правила.

В соответствии с п. 5.4. СанПиН 2.6.1.1192-03 защитная эффективность передвижных и индивидуальных средств радиационной защиты персонала и пациентов, выраженная в значении свинцового эквивалента не должна быть меньше значений, указанных в таблице 1 и таблице 2.

В силу п. 5.7. контроль защитной эффективности и других эксплуатационных параметров средств радиационной защиты проводится аккредитованными организациями с периодичностью не реже одного раза в два года. При этом, заметим, что защитные средства должны иметь маркировку, предусмотренную технической документацией, а в случае возможного использования защитных материалов и средств радиационной защиты в рентгенологических исследованиях они должны иметь и санитарно-эпидемиологические заключения (см. п. 5.6. СанПиН 2.6.1.1192-03).

Подпишитесь на нас

Отправляя заявку, вы соглашаетесь с условиями обработки и использования персональных данных.

Учитывая специфику нашей деятельности и интересов (медицина), считаем необходимым сказать несколько слов о средствах радиационной защиты, которые обязательно должны быть в любом рентгеновском кабинете. Данное правило закреплено в п. 5.5. СанПиН 2.6.1.1192-03 и дословно сформулировано следующим образом: «Рентгеновские кабинеты различного назначения должны иметь обязательный набор передвижных и индивидуальных средств радиационной защиты, приведенных в приложении № 8. Допускается применение других передвижных и индивидуальных средств радиационной защиты персонала и пациентов, обеспечивающих требуемую или дополнительную радиационную защиту со свинцовым эквивалентом, не ниже предусмотренных правилами». Следовательно, основным документом, которым необходимо руководствоваться при решении вопросов радиационной защиты в рентгеновском кабинете, является Приложение № 8 к СанПиН 2.6.1.1192-03. Данное приложение содержит таблицу, которую приводим ниже.

Таблица 3

Номенклатура обязательных средств радиационной защиты

Назначение рентгеновского кабинета
Флюорография Рентгеноскопия Hентгенография Урография Маммография, денситометрия Ангиография
Большая защитная ширма (при отсутствии комнаты управления или других средств) 1 1 1 1 1 1
Малая защитная ширма 1 1 1
Фартук защитный односторонний 1 1 1 1
Фартук защитный двусторонний 1 1
Воротник защитный 1 1 1 1 1 1
Жилет защитный с юбкой защитной 1 1 1
Передник для защиты года или юбка защитная 1 1 1 1 1 1
Шапочка защитная 1 1 1
Очки защитные 1 1 1
Перчатки защитные 1 1 1
Набор защитный пластин 1 1 1

Средства радиационной защиты в стоматологическом кабинете

СанПиН 2.6.1.1192-03 в таблице п. 9.11. приводит перечень передвижных и индивидуальных средств защиты персонала и пациентов в рентгенодиагностическом кабинете для стоматологических исследований.

Таблица 4

* При работе с рентгеностоматологическими аппаратами с высокочувствительными приемниками изображения допускается использование рентгенозащитных штор вместо ширмы.

Говоря о средствах радиационной защиты нельзя не остановиться на предельных дозах облучения, которое допустимо в отношении персонала и населения согласно положениям СанПиН 2.6.1.1192-03.


В соответствии с п. 2.19. дозы облучения установлены отдельно для персонала групп А и Б и населения, и не должны превышать основных пределов доз, установленных НРБ-99, значения которых приведены ниже в таблице 5.

Установление размера доз облучения персонала осуществляется с использованием специального дозиметра, который помещается под соответствующее средство индивидуальной защиты. Одина раз в квартал дозиметр передается на исследование в лабораторию, по результатам которого составляется протокол индивидуальной дозы контроля (протокол ИДК). Данный протокол является основанием для заполнения карточки индивидуальных доз персонала группы А.

Таблица 5

Основные пределы доз облучения персонала и населения

Нормируемые величины Пределы доз
Персонал группы А Персонал группы Б Население
Эффективная доза 20 мЗв в год в среднем за любые последовательные 5 лет, но не более 50 мЗВ в год 5 мЗв в год в среднем за любые последовательные 5 лет, но не более 12,5 мЗВ в год 1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗВ в год
Эквивалентная доза за год
в хрусталике,
коже,
кистях и стопах

150 мЗв
500 мЗв
500 мЗв

38 мЗв
125 мЗв
125 мЗв

15 мЗв
50 мЗв
50 мЗв

С подробной информацией по данному вопросу Вы можете ознакомиться в других наших статьях:

  • «Индивидуальный дозиметрический контроль персонала группы А»;
  • «Стационарные и передвижные средства рентген защиты»;
  • «Контроль эксплуатационных параметров рентген оборудования»;
  • «Максимальные эффективные дозовые нагрузки».

Нормативно-правовые акты:

  1. Федеральный закон от 9 января 1996 года № 3-ФЗ «О радиационной безопасности населения»;
  2. Постановление Главного государственного санитарного врача РФ от 26 апреля 2010 года № 40 (ред. от 16.09.2013) «Об утверждении СП 2.6.1.2612-10 «Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010)» (вместе с «СП 2.6.1.2612-10. ОСПОРБ-99/2010. Санитарные правила и нормативы...»);
  3. Постановление Главного государственного санитарного врача РФ от 7 июля 2099 года № 47 «Об утверждении СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)»;
  4. Постановление Главного государственного санитарного врача Российской Федерации 18 февраля 2003 года № 8 «О введении в действие СанПиН 2.6.1.1192-03».

Подготовлено с использованием методических указаний «Радиационная защита людей в чрезвычайных ситуациях», составитель М.Ф. Мещанинова. Подробнее см.: http://www.kgasu.ru/sved/structure/sf/bgd/umm/radiacionnaja_zashita_chs.pdf

При производстве, особенно просвечивания, рентгеновские лучи направлены не только на исследуемый объект, но и на рентгенолога, так как он вынужден находиться лицом навстречу лучам. Длительное воздействие рентгеновских лучей оказывает вредное действие на организм.

Для того чтобы избежать попадания рентгеновских лучей на рентгенолога и обслуживающий персонал, существуют специальные защитные приспособления. К ним относятся:

1. Фильтр , который устанавливают перед отверстием в рентгеновской трубке для выхода лучей. Фильтр представляет собой металлическую пластинку из алюминия толщиной 0,5–1 мм. Наличие этого фильтра является строго обязательным для каждой трубки. Назначение этого фильтра - поглощать образующиеся в трубке очень мягкие рентгеновские лучи. Задерживать эти лучи необходимо потому, что они являются наиболее вредными для кожи. Имея слишком малую проникающую способность, мягкие рентгеновские лучи целиком поглощаются кожей. В результате длительного воздействия таких лучей (в течение целого ряда лет) может возникнуть сначала дерматит, а затем и образоваться рак кожи. Алюминиевый фильтр все эти лучи по выходе из трубки поглощает, а все остальные более жесткие - пропускает.

2. Металлический тубус , который одет непосредственно на трубку. Назначение тубуса - ограничивать ширину пучка рентгеновских лучей. Широкое металлическое основание тубуса с наличием свинца поглощает лучи, попадающие на него, и проходят только те, которые попадают в окошко, имеющееся у основания тубуса. Этим самым достигается уменьшение количества лишних лучей, направленных к пациенту.

3. Просвинцованное стекло является наиболее важным приспособлением для защиты от лучей. Оно находится с передней стороны экрана для просвечивания и имеет слегка желтоватый цвет, так как содержит большой процент свинца. Это стекло совершенно прозрачное для видимого света и непрозрачное для рентгеновских лучей.

Рентгеновские лучи, проходя через экран, попадают на просвинцованное стекло и поглощаются им. Таким образом, голова и верхняя часть туловища рентгенолога благодаря этому стеклу надежно защищены от попадания рентгеновских лучей.

Кроме того, на экране для просвечивания имеются металлические козырьки, на месте прикрепления ручек. Эти козырьки защищают руки рентгенолога от лучей, прошедших мимо экрана с просвинцованным стеклом.

4. Просвинцованный фартук ; он предназначен для защиты туловища и ног рентгенолога. Основу фартука составляет резина, в которой содержится определенное количество свинца.

Для защиты рентгенолога или обслуживающего персонала при фиксации животного во время просвечивания, когда руки попадают непосредственно в поле прямых рентгеновских лучей, применяют просвинцованные перчатки . Перчатки изготовлены из просвинцовашюй резины. По внешнему виду они несколько больше и грубее химических перчаток.

Кроме вышеперечисленных средств защиты, имеется еще одно - защитная ширма . Она представляет собой деревянный щиток длиной 1,5 ми высотой 1 м. Для удобства перемещения с места на место щиток этот установлен на небольших колесиках. Ширма с одной стороны обита просвинцованной резиной и служит для защиты нижней части туловища и ног.

В результате пользования этими защитными приспособлениями попадание на рентгенолога прямых лучей и вредное действие сведено до минимума (допустимая доза 0,03 рентгена в день).

Кроме того, при просвечивании образуется небольшое количество рассеянных лучей, образующихся в результате преломления их тканями и клетками просвечиваемого участка.

Как прямые, так и рассеянные лучи обладают способностью ионизировать воздух, в результате чего в течение рабочего дня 5–6 часов при полной нагрузке в рентгеновском кабинете накапливаются озон и целый ряд азотистых соединений. Значительное количество этих газов при ежедневном пребывании в такой атмосфере будут оказывать вредное действие на организм через дыхательные пути, поэтому рентгеновский кабинет после работы необходимо всегда хорошо проветривать.

Позволяет обезопасить человека только при использовании аппарата в медицинских учреждениях. На сегодняшний день имеется несколько видов защитных средств, которые делятся на группы:

  • средства коллективной защиты, они имеют два подвида: стационарные и передвижные;
  • средства от попадания прямых неиспользуемых лучей;
  • приспособления для обслуживающего персонала;
  • защитные средства, предназначенные для пациентов.

С 2003 года в силу вступили санитарные нормы, описанные в СанПиН и имеющие пункт 2.6.1.1192-03. Также официальными документами считаются акты ОСПОРБ-99 и НРБ-99. Все описанные правила затрагивают вопрос о проведении работ (от монтажных до реконструктивных) в помещении медицинского учреждения, которое обладает рентгеновским аппаратом. Рассматривается и налаживание производства и разработок средств защиты, и оборудование для нужд медицины.

Разработка оборудования в РФ

Сегодня производством оборудования на основе рентгеновского излучения, а также вспомогательных изделий и компонентов защиты занимается примерно 10 фирм. Большинство из них считается новыми, так как созданы во времена «перестройки». Они обладают необходимыми технологиями и специальным оборудованием. Их производства достаточно для того, чтобы обеспечить потребителя качественными изделиями в необходимом количестве. Компоненты для изготовления средств защиты поставляются от других производителей химической промышленности. Ярким примером становится завод в Ярославле. Он считается единственным главным поставщиком резины, из которой изготавливаются как индивидуальные средства защиты, так и для нужд стационарного кабинета (например, отделка стен).

Основной продукцией считается листовой свинец. Его используют для изготовления средств коллективной защиты. Над созданием трудится персонал завода по обработке цветных металлов. Во время технологического процесса осуществляется постоянный контроль по качеству продукта согласно ГОСТам. Одним из компонентов является баритовый концентрат с маркировкой КБ-3. Главный поставщик — горно-обогатительный комбинат в населенном пункте Лыткарино. Здесь же, но на другом предприятии изготавливают и рентгенозащитное стекло, которое имеет маркировку ТФ-5.

До некоторого времени производством и изучением средств защиты от излучения занимался Всероссийский НИИ медицинской техники. Разработки ученых из этого института до сих пор используются современными изготовителями. Именно персонал ВНИИМТ разрабатывает средства защиты без применения свинца. Главным компонентом становится смесь на основе концентрированных оксидов, добываемых из редкоземельных элементов.

Правила и нормы СанПиН от 2003 описывают и требования, применяемые к передвижным средствам защиты от излучения. В большинстве случаев во время изготовления аппарата в него не монтируется защита. Используется и ряд вспомогательных защитных средств, такие как фартуки, монтирование в экранно-снимочные изделия. Первый защитный слой принято создавать при постройке кабинета. В этом случае его нельзя считать частью медицинского инвентаря.


Допустимая доза облучения

Согласно проведенным исследованиям НКАДАР ООН, облучение, получаемое человеком при медицинском обследовании, занимает второе место в мире . Первая позиция отдана естественному радиационному фону на планете. За последние несколько лет прослеживаются тенденции роста количества получаемого излучения в медицинских целях. В статистических данных фигурирует 50% получаемого рентгеновского воздействия на человека от всей части других очагов. Основной причиной подобного роста является использование компьютерных аппаратов для . При этом страдает по большей части обслуживающий персонал, в то время как пациенты получают допустимую норму радиации.

В Российской Федерации фиксируется 30% радиационного заражения среди медицинского персонала. Большая часть облучения приходится на использование рентгеновских кабинетов и лишь небольшая доля — на флюорографические исследования.


Ситуация с обслуживающим персоналом

Как становится понятным из вышеуказанных фактов, защита от рентгеновского излучения необходима именно персоналу, который обслуживает кабинеты в медицинских учреждениях. При отделении лучевой диагностики большое внимание оказывается аппаратуре, режимам исследовательской деятельности, правильным действиям по укладке пациентов и их методике защиты. Таким способом достигается минимальная доза получаемого облучения и снижение брака в работе, дабы не подвергать пациентов повторной процедуре.

Благодаря выбранной методике персонал медицинских заведений, работающий с рентгеном, получает в 20 раз меньшую дозу, чем допустимый показатель за год. В большинстве случаев страдают от излучения второстепенные работники: хирурги, урологи, анестезиологи.

Безопасность для населения

На данный момент защита от рентгеновского излучения направлена на обеспечение сохранности здоровья пациентов.

Эти правила изложены приблизительно в 40 актах. Так как подсчет получаемой дозы не ведется, приходится соблюдать ряд правил:

  • проводить комплекс защитных методов с целью получения максимального количества информации при минимальном облучении;
  • считать рентген крайней мерой и всегда осуществлять поиск альтернативы;
  • принимать меры по соблюдению существующих норм.

https://youtu.be/AqIHvILCamI

По мнению государственной санитарно-эпидемиологической службы РФ, уже в ближайшие годы одного пациента снизится до 0,6 м 3 в. Это станет возможным только при соблюдении персоналом норм и правил.

Защита от излучения при рентгеновской диагностике

Общие положения. Осуществление «полной» защиты от рентгеновых лучей, т. е. многократное уменьшение получаемой дозы по сравнению с предельно допустимой, связано с серьезными затруднениями, так как для этого необходимы очень массивные защитные устройства, которые, особенно в ветеринарной практике, сделали бы невозможной манипуляцию рентгеновской аппаратурой. Поэтому каждый специалист, работающий с рентгеновским аппаратом, должен знать, что нельзя рассчитывать только на одни защитные устройства этих аппаратов. Необходимо усвоить некоторые приемы, влияющие на уменьшение дозы облучения во время работы. Несмотря на то что внимание рентгенолога во время работы поглощено рентгенологическим исследованием, эти приемы должны выполняться обязательно. Многообразие манипуляций, которые совершает рентгенолог при рентгенологическом исследовании, требует от специалиста знания всех защищенных и незащищенных участков около рентгеновского аппарата.

Обязанностью рентгенолога является также предохранение обслуживающего персонала, больного животного и его владельцев от лучевых поражений.

Основным принципом защиты от излучения является уменьшение мощности дозы посредством удаления от источника и его излучения, ослабления при помощи подходящих защитных устройств до такой степени, чтобы при правильном манипулировании аппаратом получаемая персоналом на рабочих местах доза не превышала максимально допустимой при условии, что аппарат работает с наибольшей мощностью, т. е. при самом высоком анодном напряжении и самой большой силе анодного тока (при которых, согласно заводским данным, аппарат может работать).

Защитные устройства можно делать не только из свинца, но и из любого другого материала без трещин и щелей, который покрывал бы защищающую площадь и задерживал рентгеновские лучи. Защитная способность данного ограждения характеризуется свинцовым эквивалентом, надо понимать толщину свинцового слоя, обеспечивающую, при одинаковых условиях, такую же защиту.

Этот эквивалент защитных ограждений, сделанных из материала, не содержащего свинца, в значительной степени зависит от энергии излучения.

Исходными величинами, определяющими толщину защитных ограждений от действия рентгеновского излучения, являются:

1) жесткость излучения, определяемая анодным напряжением;

2) интенсивность излучения, которая при определенном напряжении прямо пропорциональна силе анодного тока и обратно пропорциональна квадрату расстояния (в метрах) от источника излучения (анода);

3) доза, допустимая для исследуемого объекта.

Способность рентгеновых лучей рассеиваться при их попадании на различные тела требует также защиты тех объектов, которые не находятся в конусе первичного излучения (персонала, работающего в рентгенодиагностических кабинетах).

Защита персонала рентгенодиагностических кабинетов обеспечивается путем:

1) использования защитных устройств рентгеновского аппарата, защитных ширм и защитной спецодежды;

2) правильного монтажа рентгеновской установки и планирования рентгеновского кабинета;

3) разработки правильных способов работы на аппаратах.

Защитные устройства рентгеновского аппарата должны обеспечивать достаточную защиту во время большей части исследований, для которых предназначен аппарат. Но так как аппарат должен быть удобен для работы, нельзя сконструировать такие защитные устройства, которые обеспечивали бы полную защиту от лучей при любых условиях работы. Главной частью защиты в рентгеновском аппарате является выложенный изнутри свинцом стальной кожух трубки, предназначеный для ослабления в достаточной степени части неиспользуемого первичного излучения.

Для того чтобы можно было менять охваченное лучами поле, каждый рентгеновский аппарат должен иметь двухщелевую диафрагму такой толщины, которая бы давала тот же защитный эффект, и кожух трубки. Уменьшение поля приводит к уменьшению рассеянного излучения, что, в свою очередь, делает изображение более ясным; последнее косвенно способствует укорачиванию времени экспозиции. Обыкновенные диафрагмы не могут в достаточной степени ограничить излучение, образующееся вследствие рассеивания первичного излучения в различных частях трубки и на внутренней поверхности защитного кожуха. Это вредное излучение приводит к неясности изображения и, что самое главное, увеличивает лучевую нагрузку больного. Во избежание этого эффекта аппараты должны быть оснащены глубокими диафрагмами.

Контроль защиты. Порядок контроля защиты от излучения можно разделить на два этапа.

1. Оценка принятых мер защиты, во время которой проверяется: снабжен ли рентгеновский аппарат всеми необходимыми сооружениями и принадлежностями, отвечают ли они по качеству и конструкции соответствующим нормам, соответствует ли монтаж рентгеновской аппаратуры требованиям защиты, достаточен ли свинцовый эквивалент защитных ширм, имеются ли и в каком состоянии защитные фартуки, перчатки и пр., как ведется работа с рентгеновским аппаратом с точки зрения предохранения рентгенолога и обслуживающего персонала, а также больных от лучевых поражений.

2. Дозиметрический контроль годности защиты. Кроме описанного выше контроля, совершаемого до пуска в эксплуатацию или после перемещения любой рентгеновской аппаратуры, рекомендуется проведение индивидуального контроля доз, получаемых персоналом, так как индивидуальная чувствительность к лучевоу воздействию колеблется в очень широких границах. Необходим периодический медицинский осмотр персонала, работающего в сфере ионизирующего излучения (не менее 1 раза в год). Во время осмотров проводится диагностика ранних симптомов хронической лучевой болезни – изменения картины крови, нарушения нервной системы, кожных изменений, нарушения функций органов и систем. Данные периодического медицинского контроля вписываются в индивидуальную карточку, которая сопровождает врача-рентгенолога при его переходе на работу в другое лечебное заведение или предприятие, где он так же будет работать в сфере ионизирующего излучения.

Из книги Сон - тайны и парадоксы автора Вейн Александр Моисеевич

Психическая защита Признав, что дельта-сон - это этап процесса переработки информации, мы должны будем воздать должное проницательности Фрейда, писавшего о скрытой, бессознательной подготовке материала для сновидений, происходящей непосредственно перед ними.

Из книги Допинги в собаководстве автора Гурман Э Г

8.3.1. Защита и мониторинг щенности Каждому собаководу интересно и полезно как можно скорее убедиться в результативности вязки. Щенность проявляется внешними признаками в телосложении и поведении суки, однако ранняя диагностика щенности по этим показателям ненадежна,

Из книги Болезни собак (незаразные) автора Панышева Лидия Васильевна

Обработка снятой рентгеновской пленки Для обработки снятой рентгеновской пленки или для проявления скрытого изображения надо иметь специально оборудованную комнату. Фотокомната должна хорошо затемняться. Самое минимальное, что требуется иметь для работы в

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Сфинксы XX века автора Петров Рэм Викторович

Из книги Генетика этики и эстетики автора Эфроимсон Владимир Павлович

Ионизирующие излучения И все-таки медицина требует другого. Необходимо у взрослых создавать состояние толерантности. Ведь заболевшим взрослым нужно обеспечить возможность трансплантации органов и тканей. Необходимо во взрослом состоянии создавать сфинксов.Тогда

Из книги Насекомые защищаются автора

5.4. Защита старости Никому, кроме бабушек, не следует ходить за ребенком. Матери умеют только производить детей на свет.Р.Киплинг. КимВозникает вопрос, почему в человеческом обществе существует уважение к старикам и старым женщинам, вовсе неродственным. Не является ли это

Из книги Маленькие труженики леса [Муравьи; иллюстрации В. Гребенникова] автора Мариковский Павел Иустинович

Химическая защита За многие миллионы лет развития органической жизни на Земле в постоянной борьбе за существование у насекомых выработались химические способы защиты: ядовитое тело, ядовитые железы, ядовитые органы и т. д. Они так же многообразны, как и насекомые.Самый

Из книги Путешествие в страну микробов автора Бетина Владимир

Защита от врагов Сто муравьев осилят одного льва. (Суданская пословица.) В единении - сила. Оружие муравья - острые челюсти и муравьиная кислота. Но главная сила муравьев в способности действовать сообща, большой массой. Попробуйте побеспокоить муравейник, и, если только

Из книги Муравей-путешественник автора Мариковский Павел Иустинович

Защита и контратака Что происходит, когда какая-то часть тканей нашего организма становится объектом инвазии (нападения) бактерий, проникших через поврежденную кожу? Начинается серия процессов, объединяемая под названием реакции воспаления. Группы мобилизованных

Из книги Враги наших врагов автора Заянчковский Иван Филиппович

Защита муравейника Как-то в кустах раздался звонкий лай нашей собаки. Молодой спаниель стоял около большого муравейника, громко лаял на него и ожесточенно тряс своими большими ушами. Видимо, собака неосторожно засунула нос в муравейник, намереваясь его понюхать, и сотни

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Пернатая защита Лесной патруль Зеленый океан лесов огромен. В СССР он охватывает более 738 миллионов гектаров. А во всем мире занимает более 1/4 поверхности суши, то есть столько же, сколько сельскохозяйственные угодья.Лес - зеленый друг и помощник человека. Он защищает

Из книги Разведение рыбы, раков и домашней водоплавающей птицы автора Задорожная Людмила Александровна

Что представляют собой вспышки гамма-излучения в космосе и как велика их энергия? Космические вспышки гамма-излучения – это бурные взрывы, ежедневно происходящие в небе. Они в течение нескольких секунд высвобождают огромное количество электромагнитного излучения

Из книги Психопаты. Достоверный рассказ о людях без жалости, без совести, без раскаяния автора Кил Кент А.

Какая часть солнечного излучения попадает на Землю? На Землю попадает немногим менее половины миллиардной части солнечного излучения, но именно его энергия обеспечивает благоприятные условия жизни на нашей планете. Хотя земной шар имеет раскаленное ядро, однако тепло,

Из книги автора

Из книги автора

Психопатия и Руководство по диагностике и статистике психических расстройств (DSM) Хотя практически все понимали важность аффективных черт, названных Хэром и Клекли, некоторые психиатры сомневались в способности обычного практикующего врача успешно распознать такие