Материальная точка как объект классической механики. Классическая физика. Классическая механика

Механика – это часть физики, которая изучает закономерности механического движения и причины, вызывающие или изменяющие это движение.

Механика, в свою очередь, делится на кинематику, динамику и статику.

Механическое движение – это изменение взаимного расположения тел или частей тела с течением времени.

Масса – это скалярная физическая величина, количественно характеризующая инертные и гравитационные свойства материи.

Инертность – это стремление тела сохранять состояние покоя или равномерного прямолинейного движения.

Инертная масса характеризует способность тела сопротивляться изменению своего состояния (покоя или движения), например, во втором законе Ньютона

.

Гравитационная масса характеризует способность тела создавать гравитационное поле, которое характеризуется векторной величиной , называемой напряженностью. Напряженность гравитационного поля точечной массы равна:

,

Гравитационная масса характеризует способность тела взаимодействовать с гравитационным полем:

.

п ринцип эквивалентности гравитационной и инертной масс: каждая масса является одновременно и инертной и гравитационной.

Масса тела зависит от плотности вещества ρ и размеров тела (объема тела V):

.

Понятие массы не тождественно понятиям веса и силы тяжести. Она не зависит от полей тяготения и ускорений.

Момент инерции – тензорная физическая величина, количественно характеризующая инертность твёрдого тела, проявляющуюся во вращательном движении.

п ри описании вращательного движения задать массу недостаточно. Инертность тела во вращательном движении зависит не только от массы, но и от ее распределения относительно оси вращения.

1. Момент инерции материальной точки

,

где m – масса материальной точки; r – расстояние от точки до оси вращения.

2. Момент инерции системы материальных точек

.

3. Момент инерции абсолютно твердого тела

.

Сила – это векторная физическая величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или деформируется (изменяет свою форму или размеры).

Механика использует различные модели для описания механического движения.

Материальная точка (м.т.)– это тело, обладающее массой, размерами которого в данной задаче можно пренебречь.

Абсолютно твердое тело (а.т.т.) – это тело, которое в процессе движения не деформируется, то есть расстояние между любыми двумя точками в процессе движения остается неизменным.
§ 2. Законы движения.


  • Первый закон н ьютона : всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, воздействие со стороны других тел не заставит ее изменить это состояние.
Те системы отсчета, по отношению к которым выполняется первый закон Ньютона, называются инерциальными системами отсчета (ИСО). Следовательно, первый закон Ньютона утверждает существование ИСО.

  • Второй закон Ньютона (основной закон динамики поступательного движения): скорость изменения импульса материальной точки (тела) равна сумме действующих на нее сил


  • Третий закон Ньютона : всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми материальные точки действуют друг на друга, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки

,

здесь – сила, действующая на первую материальную точку со стороны второй; – сила, действующая на вторую материальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и являются силами одной природы.





,

здесь – гравитационная постоянная.
.

Законы сохранения в классической механике.

з аконы сохранения выполняются в замкнутых системах взаимодействующих тел.

Система называется замкнутой, если на систему не действуют внешние силы.

Импульс – векторная физическая величина, количественно характеризующая запас поступательного движения:

.

Закон сохранения импульса системы материальных точек (м.т.): в замкнутых системах м.т. полный импульс сохраняется

,
,

где – скорость i-й материальной точки до взаимодействия; – ее скорость после взаимодействия.

Момент импульса – физическая векторная величина, количественно характеризующая запас вращательного движения.

,

– импульс материальной точки, – радиус-вектор материальной точки.
Закон сохранения момента импульса : в замкнутой системе суммарный момент импульса сохраняется:

.

Физическая величина, характеризующая способность тела или системы тел совершать работу, называется энергией.

Энергия – скалярная физическая величина, являющаяся наиболее общей характеристикой состояния системы.

Состояние системы определяется ее движением и конфигурацией, т. е. взаимным расположением ее частей. Движение системы характеризуется кинетической энергией K, а конфигурация (нахождение тела в потенциальном поле сил) – потенциальной энергией U.

Полная энергия определяется как сумма:

E = K + U + E внутр,

где E внутр – внутренняя энергия тела.

Кинетическая и потенциальная энергии в сумме составляют механическую энергию .

Формула Эйнштейна (взаимосвязь энергии и массы):

В системе отсчета, связанной с центром масс системы м.т., m = m 0 – масса покоя, а Е = Е 0 = m 0 . c 2 – энергия покоя.

Внутренняя энергия определяется в системе отсчета, связанной с самим телом, то есть внутренняя энергия является одновременно и энергией покоя.

Кинетическая энергия – это энергия механического движения тела или системы тел. Релятивистская кинетическая энергия определяется по формуле

При малых скоростях v

.

Потенциальная энергия – скалярная физическая величина, характеризующая взаимодействие тел с другими телами или с полями.

Примеры:


    потенциальная энергия упругого взаимодействия

;

  • потенциальная энергия гравитационного взаимодействия точечных масс

;

Закон сохранения энергии : полная энергия замкнутой системы материальных точек сохраняется

.

При отсутствии диссипации (рассеяния) энергии сохраняются и полная и механическая энергии. В диссипативных системах полная энергия сохраняется, а механическая энергия не сохраняется.


§ 2. Основные понятия классической электродинамики.

Источником электромагнитного поля является электрический заряд.

Электрический заряд – это свойство некоторых элементарных частиц вступать в электромагнитное взаимодействие.

Свойства электрического заряда :

1. Электрический заряд может быть положительным и отрицательным (принято считать, что протон заряжен положительно, а электрон – отрицательно).

2. Электрический заряд квантован. Квант электрического заряда – элементарный электрический заряд (е = 1,610 –19 Кл). В свободном состоянии все заряды кратны целому числу элементарных электрических зарядов:

3. Закон сохранения заряда: суммарный электрический заряд замкнутой системы сохраняется во всех процессах, происходящих с участием заряженных частиц:

q 1 + q 2 +...+ q N = q 1 * + q 2 * +...+ q N * .

4. р елятивистская инвариантность: величина полного заряда системы не зависит от движения носителей заряда (заряд движущейся и покоящейся частиц одинаков). Иными словами – во всех ИСО величина заряда любой частицы или тела одинакова.

Описание электромагнитного поля.

Заряды взаимодействуют друг с другом (рис.1). Величина силы, с которой заряды одного знака отталкиваются друг от друга, а заряды разного знака притягиваются друг к другу, определяется с помощью эмпирически установленного закона Кулона:

.

Здесь
,
– электрическая постоянная.





Рис.1

А каков механизм взаимодействия заряженных тел? Можно выдвинуть такую гипотезу: тела, обладающие электрическим зарядом, порождают электромагнитное поле. В свою очередь, электромагнитное поле воздействует на другие заряженные тела, находящиеся в этом поле. Возник новый материальный объект – электромагнитное поле.

Опыт показывает, что в любом электромагнитном поле на неподвижный заряд действует сила, величина которой зависит только от величины заряда (величина силы пропорциональна величине заряда
) и его положения в поле. Можно каждой точке поля поставить в соответствие некоторый вектор , который является коэффициентом пропорциональности между силой, действующей на неподвижный заряд в поле, и зарядом . Тогда силу, с которой поле действует на неподвижный заряд можно определить по формуле:

.

Сила, действующая со стороны электромагнитного поля на неподвижный заряд, называется электрической силой . Векторная величина , характеризующая то состояние поля, которое обуславливает действие , называется электрической напряженностью электромагнитного поля.

Дальнейшие эксперименты с зарядами показывают, что вектор не характеризует электромагнитное поле полностью. Если заряд начать двигать, то появляется некоторая дополнительная сила, величина и направление которой никак не связаны с величиной и направлением вектора . Добавочную силу, возникающую при движении заряда в электромагнитном поле, называют магнитной силой . Опыт показывает, что магнитная сила зависит от заряда и от величины и направления вектора скорости. Если двигать пробный заряд через какую-либо фиксированную точку поля с одной и той же по величине скоростью, но в разных направлениях, то магнитная сила каждый раз будет разной. Однако всегда
. Дальнейший анализ экспериментальных фактов позволил установить, что для каждой точки электромагнитного поля существует единственное направление MN (рис.2), обладающее следующими свойствами:



Рис.2

Если вдоль направления MN направить некоторый вектор , имеющий смысл коэффициента пропорциональности между магнитной силой и произведением
, то задание , и однозначно характеризует то состояние поля, которое обусловливает появление . Вектор назвали вектором электромагнитной индукции. Так как и
, то

.

В электромагнитном поле на движущийся со скоростью заряд q действует электромагнитная сила Лоренца (рис.3):


.
Векторы и , то есть шестерка чисел
, являются равноправными компонентами единого электромагнитного поля (компоненты тензора электромагнитного поля). В частном случае может оказаться, что все
или все
; тогда электромагнитное поле сводится либо к электрическому, либо к магнитному полям.

Эксперимент подтвердил правильность построенной двухвекторной модели электромагнитного поля. В этой модели каждой точке электромагнитного поля задается пара векторов и . Построенная нами модель – модель непрерывного поля, так как функции
и
, описывающие поле, являются непрерывными функциями координат.

Теория электромагнитных явлений, использующая модель непрерывного поля, называется классической.

В действительности поле, как и вещество, дискретно. Но это начинает сказываться лишь на расстояниях, сравнимых с размерами элементарных частиц. Дискретность электромагнитного поля учитывается в квантовой теории.

Принцип суперпозиции.

Поля принято изображать с помощью силовых линий.

Силовая линия – это линия, касательная к которой в каждой точке совпадает с вектором напряженности поля.

Д
ля точечных неподвижных зарядов картина силовых линий электростатического поля показана на рис. 6.

Вектор напряженности электростатического поля, создаваемого точечным зарядом определяется по формуле (рис.7 а и б)иловая линия магнитного поля строится так, чтобы в каждой точке силовой линии вектор был направлен по касательной к этой линии. Силовые линии магнитного поля замкнуты (рис.8). Это говорит о том, что магнитное поле – вихревое поле.


Рис. 8

А если поле создает не один, а несколько точечных зарядов? Влияют ли заряды друг на друга или каждый из зарядов системы вносит свой вклад в результирующее поле независимо от остальных? Будет ли электромагнитное поле, создаваемое i-м зарядом в отсутствии остальных зарядов таким же, как и поле создаваемое i-м зарядом в присутствии остальных зарядов?

Принцип суперпозиции : электромагнитное поле произвольной системы зарядов есть результат сложения полей, которые создавались бы каждым из элементарных зарядов этой системы в отсутствии остальных:

и
.
Законы электромагнитного поля

Законы электромагнитного поля сформулированы в виде системы уравнений Максвелла.

Первое

.

Из первого уравнения Максвелла следует, что электростатическое поле – потенциальное (сходящееся или расходящееся) и его источником являются неподвижные электрические заряды.

Второе уравнение Максвелла для магнитостатического поля:

.

Из второго уравнения Максвелла следует, что магнитостатическое поле – вихревое не потенциальное и не имеет точечных источников.

Третье уравнение Максвелла для электростатического поля:

.

Из третьего уравнения Максвелла следует, что электростатическое поле не вихревое.

В электродинамике (для переменного электромагнитного поля) третье уравнение Максвелла:

,

т. е. электрическое поле не потенциальное (не кулоновское), а вихревое и создается переменным потоком вектора индукции магнитного поля.

Четвертое уравнение Максвелла для магнитостатического поля

,

Из четвертого уравнения Максвелла в магнитостатике следует, что магнитное поле – вихревое и создается постоянными электрическими токами или движущимися зарядами. Направление закрученности силовых линий магнитного поля определяется по правилу правого винта (рис.9).

Р
ис.9

В электродинамике четвертое уравнение Максвелла:

.

Первое слагаемое в этом уравнении есть ток проводимости I, связанный с движением зарядов и создающий магнитное поле.

Второе слагаемое в этом уравнении есть "ток смещения в вакууме", т. е. переменный поток вектора напряженности электрического поля.

Основные положения и выводы теории Максвелла следующие.

Изменение во времени электрического поля ведет к появлению магнитного поля и наоборот. Следовательно, существуют электромагнитные волны.

Передача электромагнитной энергии происходит с конечной скоростью. Скорость передачи электромагнитных колебаний равна скорости света
. Из этого следовала принципиальная тождественность электромагнитных и оптических явлений.

Определение 1

Механика - обширный раздел физики, исследующий законы изменения положений физических тел в пространстве и времени, а также постулаты, основанные на законах Ньютона.

Рисунок 1. Основной закон динамики. Автор24 - интернет-биржа студенческих работ

Зачастую данное научное направление физики называют «Ньютоновской механикой». Классическая механика на сегодняшний день подразделяется на такие разделы:

  • статику - рассматривает и описывает равновесие тел;
  • кинематику - изучает геометрические особенности движения без рассмотрения его причин;
  • динамику – занимается исследованием движения материальных веществ.

Механическое движение представляет собой одну из простейших и вместе с тем наиболее распространенную форму существования живой материи. Поэтому классическая механика занимает исключительно значимое место в естествознании и считается главным подразделом физики.

Основные законы классической механики

Классическая механика в своих постулатах изучает движение рабочих тел, со скоростями, которые намного меньше скорости света. Согласно специальной гипотезе относительности, для движущихся на огромной скорости элементов не существует абсолютного пространства и времени. В результате характер взаимодействия веществ становится сложнее, в частности, их масса начинает зависеть от скорости движения. Все это стало объектом рассмотрения формул релятивистской механики, для которых константа световой скорости играет фундаментальную роль.

Классическая механика базируется на следующих основных законах.

  1. Принцип относительности Галилея. Согласно данному принципу существует множество систем отсчёта, в которых любое свободное тело находится в состоянии покоя или движется с постоянной по направлению скоростью. Эти концепции в науке называются инерциальными, и осуществляю движение относительно друга прямолинейно и равномерно.
  2. Три закона Ньютона. Первый устанавливает обязательное наличие свойства инертности у физических тел и постулирует наличие таких концепций отсчёта, в которых движение свободного вещества происходит с постоянной скоростью. Второй постулат вводит понятие силы как главной меры взаимодействия активных элементов и на основе теоретических фактов постулирует взаимосвязь между ускорением тела, его величиной и инертностью. Третий ньютоновский закон - для каждой действующей на первое тело силы существует противодействующий фактор, равный по величине и противоположный по направлению.
  3. Закон сохранения внутренней энергии является следствием законов Ньютона для стабильных, замкнутых систем, в которых действуют исключительно консервативные силы. Полная механическая сила замкнутой системы материальных тел, между которыми действуют только тепловая энергия, остается постоянной.

Правила параллелограмма в механике

Из трех фундаментальных теорий движения тела Ньютона вытекают определенные следствия, одно из которых - сложение общего количества элементов по правилу параллелограмма. Согласно данной идее, ускорение любого физического вещества зависит от величин, в основном характеризующих действие иных тел, определяющих особенности самого процесса. Механическое действие на исследуемый объект со стороны внешней среды, которая кардинально изменяет скорость движения сразу нескольких элементов, называют силой. Она может иметь многогранную природу.

В классической механике, которая имеет дело со скоростями, значительно меньшими скорости света, масса считается одной из основных характеристик самого тела, не зависящей от того, движется оно или находится в состоянии покоя. Масса физического тела находится вне зависимости от взаимодействия вещества с другими частями системы.

Замечание 1

Таким образом, масса стала постепенно пониматься как количество живой материи.

Установление понятий массы и силы, а также метода их измерения позволило Ньютону описать и сформулировать второй закон классической механики . Итак, масса есть одна из ключевых характеристик материи, определяющая ее гравитационные и инертные свойства.

Первое и второе начало механики относятся соответственно к систематическому движению одного тела или материальной точки. При этом учитывается только действие других элементов в определенной концепции. Однако любое физическое действие есть взаимодействие.

Третий закон механики уже фиксирует данное утверждение и гласит: действию всегда соответствует противоположно направленное и равное противодействие. В формулировке Ньютона этот постулат механики справедлив лишь для случая непосредственной взаимосвязи сил или при внезапной передаче действия одного материального тела на другое. В случае перемещения за длительный промежуток времени третий закон применяется тогда, когда временем передачи действия возможно пренебречь.

Вообще все законы классической механики справедливы для функционирования инерциальных систем отсчета. В случае неинерциальных концепций ситуация совершенно иная. При ускоренном движении координат относительно самой инерциальной системы первый закон Ньютона невозможно использовать - свободные тела в ней будут менять свою скорость движения с течением времени и зависеть от скорости движения и энергии других веществ.

Границы применимости законов классической механики

Рисунок 3. Границы применимости законов классической механики. Автор24 - интернет-биржа студенческих работ

В результате достаточно стремительного развития физики в начале XX столетия сформировалась определенная сфера применения классической механики: ее законы и постулаты выполняются для движений физических тел, скорость которых значительно меньше скорости света. Было определено, что с ростом скорости масса любого вещества будет автоматически возрастать.

Несоответствие принципов в классической механике в основном исходило из того, что будущее в известном смысле полностью находится в настоящем – этим и определяется вероятность точного предвидения поведения системы в любой отрезок времени.

Замечание 2

Ньютоновский способ сразу стал главным инструментом познания сущности природы и всего живого на планете. Законы механики и методы математического анализа вскоре показали свою эффективность и значимость. Физический эксперимент, который базировался на измерительной технике, обеспечивал ученым небывалую ранее точность.

Физическое знание все в более значительной степени становилось центральной промышленной технологией, что стимулировало общее развитие других важных естественных наук.

В физике все изолированные ранее электричество, свет, магнетизм и теплота стали целыми и объединенными в электромагнитную гипотезу. И хотя сама природа тяготения оставалась так и неопределенной, ее действия возможно было рассчитать. Утвердилась и реализовалась концепция механистического детерминизма Лапласа, которая исходит из возможности точно определить поведение тел в любой момент времени, если изначально определены исходные условия.

Структура механики как науки казалась достаточно надежной и прочной, а также практически завершенной. В итоге сложилось впечатление, что знание физики и ее законов близко к своему финалу – столь мощную силу показал фундамент классической физики.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Классическая (ньютоновская) механика изучает движение материальных объектов при скоростях, которые значительно меньше скорости света в вакууме.

Начало формирования классической механики связывают с именем итал. ученого Галилео Галилея (1564-1642). Он впервые перешел от натурфилософского рассмотрения природных явлений к научно-теоретическому.

Трудами Галилея, Кеплера, Декарта был заложен фундамент классической физики, а трудами Ньютона было построено здание этой науки.

Галилей

1. установил основополагающий принцип классической механики – принцип инерции

Движение - собственное и основное, естественное состояние тел, тогда как трение и действие других внешних сил может изменить и даже прекратить движение тела.

2. сформулировал еще один основополагающий принцип классической механики – принцип относительности – Равноправие всех ИСО.

Согласно этому принципу внутри движущейся равномерно системы все механические процессы происходят так, как если бы система покоилась.

3. принцип относительности движения задает правила перехода от одной ИСО к другой.

Эти правила получили название галилеевых преобразований и состоят они в проецирование одной ИСО на другую.

Галилеевы преобразования предъявляют определенное требование к формулировке законов механического движения: эти законы должны быть сформулированы так, чтобы остались инвариантными в любой ИСО.

Пусть некоторое тело А отнесено к декартовой системе, координаты которой обозначены х,y,z , а нам нужно определить параметры тела в параллельной координатной системе со штрихами (xl,yl,zl). Для простоты будем определять параметры одной точки тела, и совместим координатную ось x1 с осью x. Примем также, что координатная система со штрихами покоится, а без штрихов – движется равномерно и прямолинейно. Тогда правила галилеевых преобразований имеют вид

4. формулировка закона свободного падения (путь свободного падающего тела пропорционален ускорению, равному 9,81 м/с2.

Развивая и углубляя исследования Галилея, Ньютон сформулировал три закона механики .

1. Всякое тело находится в состоянии покоя или равномерного и прямолинейного движения. Пока воздействие со стороны других тел не заставит его изменить это состояние.

Смысл первого закона состоит в том, что если на тело не действуют внешние силы, то существует система отсчета, в которой оно покоится. Но если в одной системе тело покоится, то существует множество других систем отсчета, в которых тело движется с постоянной скоростью. Эти системы называются инерциальными (ИСО).

Любая система отсчета, движущаяся равномерно и прямолинейно относительно ИСО также является ИСО.

2. Второй закон рассматривает результаты действия на тело других тел. Для этого вводится физическая величина, называемая силой.

Сила – это векторная количественная мера механического действия одного тела на другое.

Масса – мера инертности (инертность – способность тела оказывать сопротивление изменению его состояния).

Чем больше масса, тем меньше ускорение получит тело при прочих равных условиях.

Существует и более общая формулировка второго закона Ньютона для другой физической величины – импульса тела. Импульс – это произведение массы тела на его скорость:

При отсутствии внешних сил импульс тела остается неизменным, иначе говоря, сохраняется. Такая ситуация достигается, если на тело не действуют другие тела, или их действие скомпенсировано.

3. Действия двух материальных тел друг на друга численно равны по величине силы и направлены в противоположные стороны.

Действие сил осуществляется независимо. Сила, с которой несколько тел действуют на какое-либо другое тело, есть векторная сумма сил, с которыми они бы действовали отдельно.

Это утверждение представляет собой принцип суперпозиции .

На законах Ньютона основана динамика материальных точек, в частности, закон сохранения импульса системы.

Сумма импульсов частиц, образующих механическую систему, называется импульсом системы. Внутренние силы, т.е. взаимодействия тел системы друг с другом на изменения полного импульса системы не влияют. Из этого вытекает закон сохранения импульса : при отсутствии внешних сил импульс системы материальных точек остается постоянным.

Другой сохраняющейся величиной является энергия – общая количественная мера движения и взаимодействия всех видов материи. Энергия не возникает из ничего и не исчезает, она может только переходить из одной формы в другую.

Мерой изменения энергии является работа. В классической механике работа определяется как мера действия силы, которая зависит от величины и направления силы, а также от перемещения точки ее приложения.

Закон сохранения энергии: полная механическая энергия остается неизменной (или сохраняется), если работа внешних сил в системе равна нулю.

В классической механике считается, что все механические процессы подчиняются принципу строгого детерминизма (детерминизм - это учение о всеобщей причинной обусловленности и закономерности явлений) который состоит в признании возможности точного определения будущего состояния механической системы ее предыдущим состоянием.

Ньютон ввел два абстрактных понятия – «абсолютное пространство» и «абсолютное время».

По Ньютону, пространство – это абсолютное неподвижное однородное изотропное бесконечное вместилище всех тел (то есть пустота). А время- это чистая однородная равномерная и прерывная длительность процессов.

В классической физике считалось, что мир можно разложить на множество независимых элементов экспериментальными методами. Этот метод в принципе неограничен, так как весь мир - это совокупность огромного числа неделимых частиц. Основа мира - атомы, т.е. мельчайшие, неделимые, бесструктурные частицы. Атомы перемещаются в абсолютном пространстве и времени. Время рассматривается как самостоятельная субстанция, свойства которой определяются ею самой. Пространство – это тоже самостоятельная субстанция.

Напомним, что субстанция - это сущность, нечто, лежащее в основе. В истории философии субстанция интерпретировалась по-разному: как субстрат, т.е. основа чего–то; что-то, что способно к самостоятельному существованию; как основание и центр изменения предмета; как логический субъект. Когда говорят, что время - субстанция, то имеют в виду, что оно способно самостоятельно существовать.

Пространство в классической физике абсолютно, что означает, что оно не зависит от материи и времени. Можно убрать из пространства все материальные объекты, а абсолютное пространство остается. Пространство однородно, т.е. все его точки эквивалентны. Пространство - изотропно, т.е. эквивалентны все его направления. Время тоже однородно, т.е. эквивалентны все его моменты.

Пространство описывается геометрией Евклида, согласно которой кратчайшим расстоянием между двумя точками является прямая.

Пространство и время бесконечны. Понимание их бесконечности было позаимствовано из математического анализа.

Бесконечность пространства означает, что какую бы большую систему мы не взяли, всегда можно указать на такую, которая еще больше. Бесконечность времени означает, что как бы долго ни длился данный процесс, всегда в мире можно указать на такой, который будет длиться дольше.

Из разрозненности и абсолютности пространства и времени вытекают правила галилеевых преобразований.

Из оторванности движущихся тел от пространства и времени вытекает правило сложения скоростей в классической механике: оно состоит в простом сложении или вычитании скоростей двух тел, движущихся относительно друг друга.

ux = u"x + υ, uy = u"y, uz = u"z.

Законы классической механики позволили сформулировать первую научную картину мира – механистическую.

Прежде всего, классическая механика выработала научное понятие движения материи. Теперь движение трактуется как вечное и естественное состояние тел, как основное их состояние, что прямо противоположно догалилеевой механике, в которой движение рассматривалось как привнесенное извне. Но вместе с тем в классической физике абсолютизируется механическое движение.

Деле классическая физика выработала своеобразное понимание материи, сведя ее к вещественной, или весовой, массе. При этом масса тел остается неизменной при любых условиях движения и при любых скоростях. Позже в механике утвердилось правило замещения тел идеализированным образом материальных точек.

Развитие механики привело к изменению представлений о физических свойствах объектов.

Классическая физика считала свойства, обнаруживаемые при измерении, присущими объекту и только ему (принцип абсолютности свойств). Напомним, что физические свойства объекта характеризуются качественно и количественно. Качественная характеристика свойства - это его сущность (например, скорость, масса, энергия и т.д.). Классическая физика исходила из того, что средства познания на изучаемые объекты не влияют. Для различных типов механических задач средством познания является система отсчета. Без ее введения нельзя корректно ни сформулировать, ни решить механическую задачу. Если свойства объекта ни по качественной, ни по количественной характеристике не зависят от системы отсчета, то они называются абсолютными. Так, какую бы систему отсчета для решения конкретной механической задачи мы не взяли, в каждой из них будут проявляться качественно и количественно масса объекта, сила, действующая на объект, ускорение, скорость.

Если же свойства объекта зависят от системы отсчета, то их принято считать относительными. Классическая физика знала лишь одну такую величину - скорость объекта по количественной характеристике. Это означало, что бессмысленно говорить, что объект движется с такой-то скоростью, не указывая систему отсчета: в разных системах отсчета количественное значение механической скорости объекта будет различно. Все же остальные свойства объекта были абсолютными и по качественной, и по количественной характеристикам.

Уже теория относительности вскрыла количественную относительность таких свойств, как длина, время жизни, масса. Количественная величина этих свойств зависит не только от самого объекта, но и от системы отсчета. Отсюда следовало, что количественная определенность свойств объекта должна быть отнесена не к самому объекту, а к системе: объект + система отсчета. Но носителем качественной определенности свойств по-прежнему оставался сам объект.

Материал из Википедии - свободной энциклопедии

Класси́ческая меха́ника - видмеханики(разделафизики, изучающего законы изменения положений тел в пространстве со временем и причины, это вызывающие), основанный назаконах Ньютонаипринципе относительности Галилея. Поэтому её часто называют «Ньютоновской механикой ».

Классическая механика подразделяется на:

    статику(которая рассматривает равновесие тел)

    кинематику(которая изучает геометрическое свойство движения без рассмотрения его причин)

    динамику(которая рассматривает движение тел).

Классическая механика даёт очень точные результаты, если её применение ограничено телами, скоростикоторых много меньшескорости света, а размеры значительно превышают размерыатомовимолекул. Обобщением классической механики на тела, двигающиеся с произвольной скоростью, являетсярелятивистская механика, а на тела, размеры которых сравнимы с атомными -квантовая механика.Квантовая теория полярассматривает квантовые релятивистские эффекты.

Тем не менее, классическая механика сохраняет своё значение, поскольку:

    она намного проще в понимании и использовании, чем остальные теории

    в обширном диапазоне она достаточно хорошо описывает реальность.

Классическую механику можно использовать для описания движения таких объектов, как волчок и бейсбольный мяч, многих астрономических объектов (таких, как планетыигалактики), и иногда даже многих микроскопических объектов, таких какмолекулы.

Классическая механика является самосогласованной теорией, то есть в её рамках не существует утверждений, противоречащих друг другу. Однако, её объединение с другими классическими теориями, например классической электродинамикойитермодинамикойприводит к появлению неразрешимых противоречий. В частности, классическая электродинамика предсказывает, чтоскорость светапостоянна для всех наблюдателей, что несовместимо с классической механикой. В началеXX векаэто привело к необходимости созданияспециальной теории относительности. При рассмотрении совместно с термодинамикой, классическая механика приводит кпарадоксу Гиббса, в котором невозможно точно определить величинуэнтропии, и культрафиолетовой катастрофе, в которойабсолютно чёрное телодолжно излучать бесконечное количество энергии. Попытки разрешить эти проблемы привели к возникновению и развитию квантовой механики.

10 билет МЕХАНИЧЕСКАЯ КАРТИНА МИРА.ТЕРМОДИНАМИКА

Термодина́мика (греч.θέρμη- «тепло»,δύναμις- «сила») - разделфизики, изучающий соотношения и превращениятеплотыи других формэнергии. В отдельные дисциплины выделилисьхимическая термодинамика, изучающаяфизико-химическиепревращения, связанные с выделением или поглощением тепла, а такжетеплотехника.

В термодинамике имеют дело не с отдельными молекулами, а с макроскопическими телами, состоящими из огромного числа частиц. Эти тела называются термодинамическими системами. В термодинамике тепловые явления описываются макроскопическими величинами - давление, температура, объём, …, которые не применимы к отдельным молекулам и атомам.

В теоретической физикенаряду с феноменологической термодинамикой, изучающейфеноменологиютепловых процессов, выделяют термодинамику статистическую, которая была создана для механического обоснования термодинамики и была одним из первых разделовстатистической физики.

Термодинамика может быть применена в широком круге вопросов в области науки и техники, таких, как двигатели, фазовые переходы,химические реакции, явления переноса, и дажечёрные дыры. Термодинамика имеет важное значение для других областей физики и химии, химической технологии, аэрокосмической техники,машиностроения,клеточной биологии,биомедицинской инженерии,материаловедения, и полезно в таких других областях, какэкономика [

11 билет ЭЛЕКТРОДИНАМИКА

Электродина́мика - разделфизики, изучающийэлектромагнитное полев наиболее общем случае (то есть, рассматриваются переменные поля, зависящие от времени) и его взаимодействие с телами, имеющимиэлектрический заряд(электромагнитное взаимодействие). Предмет электродинамики включает связь электрических и магнитных явлений,электромагнитное излучение(в разных условиях, как свободное, так и в разнообразных случаях взаимодействии с веществом),электрический ток(вообще говоря, переменный) и его взаимодействие с электромагнитным полем (электрический ток может быть рассмотрен при этом как совокупность движущихся заряженных частиц). Любое электрическое и магнитное взаимодействие между заряженными телами рассматривается в современной физике как осуществляющееся через посредство электромагнитного поля, и, следовательно, также является предметом электродинамики.

Чаще всего под термином электродинамика по умолчанию понимаетсяклассическая электродинамика, описывающая только непрерывные свойстваэлектромагнитного поляпосредством системыуравнений Максвелла; для обозначения современнойквантовой теорииэлектромагнитного поля и его взаимодействия с заряженными частицами обычно используется устойчивый терминквантовая электродинамика .

12 билет ПОНЯТИЕ СИММЕТРИИ В ЕСТЕСТВОЗНАНИИ

Теоре́ма Эмми Нётер утверждает, что каждой непрерывнойсимметриифизической системы соответствует некоторыйзакон сохранения. Так,закон сохранения энергиисоответствует однородностивремени,закон сохранения импульса- однородностипространства,закон сохранения момента импульса-изотропиипространства,закон сохранения электрического заряда-калибровочной симметриии т. д.

Теорема обычно формулируется для систем, обладающих функционаломдействия, и выражает собойинвариантностьлагранжианапо отношению к некоторойнепрерывной группепреобразований.

Теорема установлена в работах учёных гёттингенскойшколыД. Гильберта,Ф. КлейнаиЭ. Нётер. В наиболее распространенной формулировке была доказана Эмми Нётер в1918 году.

Типы симметрий, встречающиеся в математике и в естественных науках:

    двусторонняя симметрия- симметричность относительнозеркального отражения. (Билатеральная симметрия)

    симметрия n-го порядка- симметричность относительноповоротовна угол 360°/n вокруг какой-либо оси. Описывается группой Z n .

    аксиальная симметрия(радиальная симметрия,лучевая симметрия) - симметричность относительноповоротовна произвольный угол вокруг какой-либо оси. Описывается группойSO(2).

    сферическая симметрия- симметричность относительновращенийв трёхмерном пространстве на произвольные углы. Описывается группой SO(3). Локальная сферическая симметрия пространства или среды называется такжеизотропией.

    вращательная симметрия- обобщение предыдущих двух симметрий.

    трансляционная симметрия- симметричность относительносдвигов пространствав каком-либо направлении на некоторое расстояние.

    лоренц-инвариантность- симметричность относительно произвольных вращений впространстве-времениМинковского.

    калибровочная инвариантность- независимость вида уравнений калибровочных теорий вквантовой теории поля(в частности,теорий Янга - Миллса) при калибровочных преобразованиях.

    суперсимметрия- симметрия теории относительно заменыбозоновнафермионы.

    высшая симметрия- симметрия в групповом анализе.

    кайносимметрия- явлениеэлектронной конфигурации(термин введёнС. А. Щукаревым, открывшим его), которым обусловленавторичная периодичность(открытаЕ. В. Бироном).

13 билет СТО

Специальная теория относительности (СТО ; такжечастная теория относительности ) - теория, описывающая движение, законымеханикии пространственно-временные отношения при произвольныхскоростяхдвижения, меньших скорости света в вакууме, в том числе близких кскорости света. В рамках специальной теории относительностиклассическая механикаНьютонаявляется приближением низких скоростей. Обобщение СТО для гравитационных полей называетсяобщей теорией относительности.

Описываемые специальной теорией относительности отклонения в протекании физических процессов от предсказаний классической механики называют релятивистскими эффектами , а скорости, при которых такие эффекты становятся существенными, -релятивистскими скоростями .

14 билет ОТО

О́бщая тео́рия относи́тельности (ОТО ;нем.allgemeine Relativitätstheorie ) -геометрическаятеориятяготения, развивающаяспециальную теорию относительности(СТО), опубликованнаяАльбертом Эйнштейномв1915-1916 годах. В рамках общей теории относительности, как и в другихметрических теориях, постулируется, что гравитационные эффекты обусловлены несиловым взаимодействиемтел иполей, находящихся впространстве-времени, а деформацией самого́ пространства-времени, которая связана, в частности, с присутствием массы-энергии. Общая теория относительности отличается от других метрическихтеорий тяготенияиспользованиемуравнений Эйнштейнадля связикривизныпространства-времени с присутствующей в нёмматерией.

ОТО в настоящее время - самая успешнаятеория гравитации, хорошо подтверждённая наблюдениями. Первый успех общей теории относительности состоял в объяснении аномальнойпрецессииперигелияМеркурия. Затем, в1919 году,Артур Эддингтонсообщил о наблюдении отклонения света вблизиСолнцав момент полногозатмения, что качественно и количественно подтвердило предсказания общей теории относительности . С тех пор многие другиенаблюдения и экспериментыподтвердили значительное количествопредсказаний теории, включаягравитационное замедление времени,гравитационное красное смещение,задержку сигнала в гравитационном полеи, пока лишь косвенно,гравитационное излучение . Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности - существованиячёрных дыр .

Несмотря на ошеломляющий успех общей теории относительности, в научном сообществе существует дискомфорт, связанный, во-первых, с тем, что её не удаётся переформулировать как классический предел квантовой теории, а во-вторых, с тем, что сама теория указывает границы своей применимости, так как предсказывает появление неустранимых физических расходимостей при рассмотрении чёрных дыр и вообщесингулярностейпространства-времени. Для решения этих проблем был предложен рядальтернативных теорий, некоторые из которых также являютсяквантовыми. Современные экспериментальные данные, однако, указывают, что любого типа отклонения от ОТО должны быть очень малыми, если они вообще существуют.

15 билет РАСШИРЕНИЕ ВСЕЛЕННОЙ.ЗАКОН ХАББЛА

Расширение Вселенной - явление, состоящее в почтиоднородномиизотропномрасширении космического пространства в масштабах всейВселенной. Экспериментально расширение Вселенной наблюдается в виде выполнениязакона Хаббла. Началом расширения Вселенной наука считает так называемыйБольшой взрыв. Теоретически явление было предсказано и обоснованоА. Фридманомна раннем этапе разработкиобщей теорией относительностииз общефилософскихсоображений об однородности иизотропности Вселенной.

Зако́н Ха́ббла (закон всеобщего разбегания галактик) -эмпирический закон, связывающийкрасное смещениегалактики расстояние до нихлинейным образом :

где z -красное смещениегалактики,D - расстояние до неё,H 0 - коэффициент пропорциональности, называемыйпостоянной Хаббла. При малом значенииz выполняется приближённое равенствоcz=V r , гдеV r - скорость галактики вдоль луча зрения наблюдателя,c -скорость света. В этом случае закон принимает классический вид:

Этот возраст является характерным временем расширения Вселеннойна данный момент и с точностью до множителя 2 соответствует возрасту Вселенной, рассчитываемому постандартной космологической модели Фридмана.

16 билет МОДЕЛЬ ФРИДМАНА.СИНГУЛЯРНОСТЬ

Вселе́нная Фри́дмана (метрика Фридмана - Леметра - Робертсона - Уокера ) - одна из космологических моделей, удовлетворяющих полевым уравнениямобщей теории относительности, первая из нестационарных моделей Вселенной. ПолученаАлександром Фридманомв1922. Модель Фридмана описывает однородную изотропнуюнестационарную Вселенную с веществом, обладающую положительной, нулевой или отрицательной постоянной кривизной. Эта работа учёного стала основным теоретическим развитием ОТО после работ Эйнштейна 1915-1917 гг.

гравитационная сингулярность - областьпространства-времени, через которую нельзя продолжитьгеодезическую линию. Часто в нейкривизнапространственно-временного континуума обращается вбесконечность, либометрикаобладает иными патологическими свойствами, не допускающими физической интерпретации (например,космологическая сингулярность - состояние Вселенной в начальный моментБольшого взрыва, характеризующееся бесконечной плотностью и температурой вещества);

17 билет ТЕОРИЯ БОЛЬШОГО ВЗРЫВА.РЕЛИКТОВОЕ ИЗЛУЧЕНИЕ

Рели́ктовое излуче́ние (иликосмическое микроволновое фоновое излучение отангл.cosmic microwave background radiation ) - космическоеэлектромагнитное излучениес высокой степеньюизотропностии соспектром, характерным дляабсолютно чёрного теластемпературой2,725К.

Существование реликтового излучения было предсказано теоретически в рамках теории Большого взрыва. Хотя в настоящее время многие аспекты первоначальной теории Большого взрыва пересмотрены, основы, позволившие предсказатьтемпературуреликтового излучения, остались неизменны. Считается, что реликтовое излучение сохранилось с начальных этапов существованияВселеннойи равномерно её заполняет. Экспериментально его существование было подтверждено в1965 году. Наряду скосмологическим красным смещением, реликтовое излучение рассматривается как одно из главных подтверждений теории Большого взрыва

Большо́й взрыв (англ.Big Bang ) -космологическая модель, описывающая раннее развитие Вселенной , а именно - началорасширения Вселенной, перед которымВселеннаянаходилась всингулярном состоянии.

Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление охолодной начальной Вселеннойвблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованиемреликтового излучения, и рассматривается далее.

18 билет КОСМИЧЕСКИЙ ВАКУУМ

Ва́куум (отлат.vacuum - пустота) - пространство, свободное от вещества. В технике и прикладной физике под вакуумом понимают среду, содержащуюгазпридавленияхзначительно нижеатмосферного. Вакуум характеризуется соотношением междудлиной свободного пробегамолекул газаλи характерным размером средыd . Подd может приниматься расстояние между стенкамивакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношенияλ/d различают низкий (), средний () и высокий () вакуум.

Следует различать понятия физического вакуума итехнического вакуума .

19 билет КВАНТОВАЯ МЕХАНИКА

Ква́нтовая меха́ника - разделтеоретической физики, описывающий физические явления, в которыхдействиесравнимо по величине спостоянной Планка. Предсказания квантовой механики могут существенно отличаться от предсказанийклассической механики. Поскольку постоянная Планка является чрезвычайно малой величиной по сравнению с действием повседневных объектов, квантовые эффекты в основном проявляются только в микроскопических масштабах. Если физическое действие системы намного больше постоянной Планка, квантовая механика органически переходит в классическую механику. В свою очередь, квантовая механика является нерелятивистским приближением (то есть приближением малых энергий по сравнению сэнергией покоямассивных частиц системы)квантовой теории поля.

Классическая механика, хорошо описывающая системы макроскопических масштабов, не способна описать явления на уровне атомов, молекул, электроновифотонов. Квантовая механика адекватно описывает основные свойства и поведение атомов, ионов, молекул,конденсированных сред, и других систем с электронно-ядерным строением. Квантовая механика также способна описывать поведение электронов, фотонов, а также другихэлементарных частиц, однако более точное релятивистски инвариантное описание превращений элементарных частиц строится в рамках квантовой теории поля. Эксперименты подтверждают результаты, полученные с помощью квантовой механики.

Основными понятиями квантовой кинематики являются понятия наблюдаемойисостояния.

Основные уравнения квантовой динамики - уравнение Шрёдингера,уравнение фон Неймана,уравнение Линдблада,уравнение Гейзенбергаиуравнение Паули.

Уравнения квантовой механики тесно связаны со многими разделами математики, среди которых: теория операторов,теория вероятностей,функциональный анализ,операторные алгебры,теория групп.

Абсолютно чёрное тело - физическая идеализация, применяемая втермодинамике, тело, поглощающее всё падающее на негоэлектромагнитное излучениево всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметьцвет.Спектр излученияабсолютно чёрного тела определяется только еготемпературой.

Важность абсолютно чёрного тела в вопросе о спектре теплового излучения любых (серых и цветных) тел вообще, кроме того, что оно представляет собой наиболее простой нетривиальный случай, состоит ещё и в том, что вопрос о спектре равновесного теплового излучения тел любого цвета и коэффициента отражения сводится методами классической термодинамики к вопросу об излучении абсолютно чёрного (и исторически это было уже сделано к концу XIX века, когда проблема излучения абсолютно чёрного тела вышла на первый план).

Наиболее чёрные реальные вещества, например, сажа, поглощают до 99 % падающего излучения (то есть имеютальбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди телСолнечной системысвойствами абсолютно чёрного тела в наибольшей степени обладаетСолнце.

Термин был введён Густавом Кирхгофомв1862 году.

20 билет ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ

Все задачи современной физики можно разделить на две группы: задачи физики классической и задачи физики квантовой, Изучая свойства обычных макроскопических тел, почти не приходится встречаться с квантовыми задачами, потому что квантовые свойства становятся ощутимыми лишь в микромире. Поэтому физика XIX в., исследовавшая лишь макроскопические тела, совершенно не знала квантовых процессов. Это и есть физика классическая. Для классической физики характерно, что она не учитывает атомистическое строение вещества. Ныне же развитие экспериментальной техники столь широко раздвинуло границы нашего знакомства с природой, что мы теперь знаем, и притом весьма детально, строгние отдельных атомов и молекул. Современная физика изучает атомное строение вещества и, потому принципы старой классической физики XIX в. должны были измениться в соответствии с новыми фактами, причем измениться коренным образом. Это изменение принципов и есть переход к физике квантовой

21 билет КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ

Корпускуля́рно-волново́й дуали́зм -принцип, согласно которому любой объект может проявлять какволновые, так икорпускулярныесвойства. Был введён при разработкеквантовой механикидля интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепцияквантованных полейвквантовой теории поля.

Как классический пример, светможно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойстваэлектромагнитных волн. Свет демонстрирует свойства волны в явленияхдифракциииинтерференциипри масштабах, сравнимых с длиной световой волны. Например, дажеодиночные фотоны, проходящие черездвойную щель, создают на экране интерференционную картину, определяемуюуравнениями Максвелла .

Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году . Корпускулярные свойства света проявляются прифотоэффектеи вэффекте Комптона. Фотон ведет себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например,атомными ядрами), или вообще могут считаться точечными (например,электрон).

В настоящий момент концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как служила только интерпретацией, способом описать поведение квантовых объектов, подбирая ему аналогии из классической физики. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении. Методологически более корректной является формулировка квантовой теории через интегралы по траекториям(пропагаторная), свободная от использования классических понятий.

22 билет ПОНЯТИЕ О СТРОЕНИЕ АТОМА.МОДЕЛИ АТОМА

    Модель атома Томсона (модель «Пудинг с изюмом»,англ.Plum pudding model ).Дж. Дж. Томсонпредложил рассматривать атом как некоторое положительно заряженное тело с заключёнными внутри негоэлектронами. Была окончательно опровергнутаРезерфордомпосле проведённого им знаменитого опыта по рассеиваниюальфа-частиц.

    Ранняя планетарная модель атома Нагаоки . В 1904 году японский физикХантаро Нагаокапредложил модель атома, построенную по аналогии с планетойСатурн. В этой модели вокруг маленького положительного ядра по орбитам вращались электроны, объединённые в кольца. Модель оказалась ошибочной.

    Планетарная модель атома Бора-Резерфорда . В 1911 году Эрнест Резерфорд, проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобиепланетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда»). Однако такое описание атома вошло в противоречие склассической электродинамикой. Дело в том, что, согласно классической электродинамике, электрон при движении сцентростремительным ускорениемдолжен излучатьэлектромагнитные волны, а, следовательно, терятьэнергию. Расчёты показывали, что время, за которое электрон в таком атоме упадёт на ядро, совершенно ничтожно. Для объяснения стабильности атомовНильсу Борупришлось ввестипостулаты, которые сводились к тому, что электрон в атоме, находясь в некоторых специальных энергетических состояниях, не излучает энергию («модель атома Бора-Резерфорда»). Постулаты Бора показали, что для описания атома классическая механика неприменима. Дальнейшее изучение излучения атома привело к созданиюквантовой механики, которая позволила объяснить подавляющее большинство наблюдаемых фактов.

    А́том (отдр.-греч.ἄτομος- неделимый) - наименьшая химически неделимая частьхимического элемента, являющаяся носителем его свойств . Атом состоит изатомного ядраиэлектронов. Ядро атома состоит из положительнозаряженныхпротонови незаряженныхнейтронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называетсяионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов -изотопуэтого элемента.

    Атомы различного вида в разных количествах, связанные межатомными связями, образуютмолекулы.

23 билет ФУНДАМЕНТАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ

Фундамента́льные взаимоде́йствия - качественно различающиеся типы взаимодействияэлементарных частици составленных из них тел.

На сегодня достоверно известно существование четырех фундаментальных взаимодействий:

    гравитационного

    электромагнитного

    сильного

    слабого

При этом электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия .

Ведутся поиски других типов фундаментальных взаимодействий, как в явлениях микромира, так и в космических масштабах, однако пока какого-либо другого типа фундаментального взаимодействия не обнаружено.

В физике механическая энергия делится на два вида - потенциальнуюикинетическую энергию. Причиной изменения движения тел (изменения кинетической энергии) является сила (потенциальная энергия) (см.второй закон Ньютона).Исследуя окружающий нас мир, мы можем заметить множество самых разнообразных сил:сила тяжести,сила натяжения нити,сила сжатия пружины,сила столкновения тел,сила трения,сила сопротивления воздуха,сила взрываи т. д. Однако когда была выясненаатомарнаяструктура вещества, стало понятно, что все разнообразие этих сил есть результат взаимодействия атомов друг с другом. Поскольку основной видмежатомного взаимодействия-электромагнитное, то, как оказалось, большинство этих сил - лишь различные проявленияэлектромагнитного взаимодействия. Одно из исключений составляет, например, сила тяжести, причиной которой являетсягравитационное взаимодействиемежду телами, обладающимимассой.

24 билет ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ИХ СВОЙСТВА

Элемента́рная части́ца - собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части.

Следует иметь в виду, что некоторые элементарные частицы (электрон,фотон,кваркии т. д.) на данный момент считаются бесструктурными и рассматриваются как первичныефундаментальные частицы . Другие элементарные частицы (так называемыесоставные частицы -протон,нейтрони т. д.) имеют сложную внутреннюю структуру, но, тем не менее, по современным представлениям, разделить их на части невозможно (см.Конфайнмент).

Строение и поведение элементарных частиц изучается физикой элементарных частиц.

Основная статья: Кварки

Кварки и антикварки никогда не были обнаружены в свободном состоянии - это объясняется явлением конфайнмента. На основании симметрии между лептонами и кварками, проявляемой вэлектромагнитном взаимодействии, выдвигаются гипотезы о том, что эти частицы состоят из более фундаментальных частиц −преонов.

25 билет ПОНЯТИЕ БИФУРКАЦИИ.ТОЧКА БИФУРКАЦИИ

Бифуркация - это приобретение нового качества в движениях динамической системыпри малом изменении её параметров.

Центральным понятием теории бифуркации является понятие (не)грубой системы (см. ниже). Берётся какая-либо динамическая система и рассматривается такое (много)параметрическое семейство динамических систем, что исходная система получается в качестве частного случая - при каком-либо одном значении параметра (параметров). Если при значении параметров, достаточно близких к данному, сохраняется качественная картина разбиения фазового пространства на траектории, то такая система называется грубой . В противном случае, если такой окрестности не существует, то система называетсянегрубой .

Таким образом в пространстве параметров возникают области грубых систем, которые разделяются поверхностями, состоящими из негрубых систем. Теория бифуркаций изучает зависимость качественной картины при непрерывном изменении параметра вдоль некоторой кривой. Схема, по которой происходит изменение качественной картины называется бифуркационной диаграммой .

Основные методы теории бифуркаций - это методы теории возмущений. В частности, применяется метод малого параметра (Понтрягина).

Точка бифуркации - смена установившегося режима работы системы. Термин изнеравновесной термодинамикиисинергетики.

Точка бифуркации - критическое состояние системы, при котором система становится неустойчивой относительнофлуктуацийи возникает неопределенность: станет ли состояние системы хаотическим или она перейдет на новый, более дифференцированный и высокий уровень упорядоченности. Термин изтеории самоорганизации.

26 билет СИНЕРГЕТИКА – НАУКА ОБ ОТКРЫТЫХ САМООРГАНИЗУЮЩИХСЯ СИСТЕМАХ

Синерге́тика (отдр.-греч.συν-- приставка со значением совместности иἔργον- «деятельность») -междисциплинарноенаправление научных исследований, задачей которого является изучение природных явлений и процессов на основе принциповсамоорганизациисистем(состоящих изподсистем ). «…Наука, занимающаяся изучением процессов самоорганизации и возникновения, поддержания, устойчивости и распада структур самой различной природы…» .

Синергетика изначально заявлялась как междисциплинарный подход, так как принципы, управляющие процессами самоорганизации, представляются одними и теми же (безотносительно природы систем), и для их описания должен быть пригоден общий математический аппарат.

С мировоззренческой точки зрения синергетику иногда позиционируют как «глобальный эволюционизм» или «универсальную теорию эволюции», дающую единую основу для описания механизмов возникновения любых новаций подобно тому, как некогдакибернетикаопределялась, как «универсальная теория управления», одинаково пригодная для описания любых операций регулирования и оптимизации: в природе, в технике, в обществе и т. п. и т. д. Однако время показало, что всеобщий кибернетический подход оправдал далеко не все возлагавшиеся на него надежды. Аналогично - и расширительное толкование применимости методов синергетики также подвергается критике .

Основное понятие синергетики - определение структурыкаксостояния , возникающего в результате многовариантного и неоднозначного поведения таких многоэлементных структур или многофакторных сред, которые не деградируют к стандартному для замкнутых систем усреднению термодинамического типа, а развиваются вследствие открытости, притока энергии извне, нелинейности внутренних процессов, появления особыхрежимов с обострениеми наличия более одного устойчивого состояния. В обозначенных системах неприменимы нивторое начало термодинамики, нитеорема Пригожинао минимуме скорости производстваэнтропии, что может привести к образованию новых структур и систем, в том числе и более сложных, чем исходные.

Этот феноментрактуется синергетикой как всеобщий механизм повсеместно наблюдаемого в природе направленияэволюции: от элементарного и примитивного - к сложносоставному и более совершенному.

В отдельных случаях образование новых структур имеет регулярный, волновой характер и тогда они называются автоволновыми процессами (по аналогии с автоколебаниями).

27 билет ПОНЯТИЕ ЖИЗНЬ.ПРОБЛЕМА ПРОИСХОЖДЕНИЯ ЖИЗНИ

Жизнь - активная форма существованиясубстанции, в некотором смысле высшая по сравнению с её физической и химической формами существования ; совокупность физических и химических процессов, протекающих вклетке, позволяющих осуществлятьобмен веществиеё деление. Основной атрибут живой материи -генетическая информация, используемая длярепликации. Более или менее точно определить понятие «жизнь» можно только перечислением качеств, отличающих её от нежизни. Вне клетки жизнь не существует,вирусыпроявляют свойства живой материи только после переноса генетического материала в клетку [ источник не указан 268 дней ] . Приспосабливаясь к окружающей среде, живая клетка формирует всё многообразие живых организмов.

Также под словом «жизнь» понимают период существования отдельно взятого организма от момента возникновениядо егосмерти(онтогенез) .

В 1860 годупроблемой происхождения жизни занялся французский химикЛуи Пастер. Своими опытами он доказал, чтобактериивездесущи, и что неживые материалы легко могут быть заражены живыми существами, если их не стерилизовать должным образом. Учёный кипятил в воде различные среды, в которых могли бы образоваться микроорганизмы. При дополнительном кипячении микроорганизмы и их споры погибали. Пастер присоединил к S-образной трубке запаянную колбу со свободным концом. Споры микроорганизмов оседали на изогнутой трубке и не могли проникнуть в питательную среду. Хорошо прокипячённая питательная среда оставалась стерильной, в ней не обнаруживалось зарождения жизни, несмотря на то, что доступ воздуха был обеспечен.

В результате ряда экспериментов Пастер доказал справедливость теории биогенеза и окончательно опроверг теорию спонтанного зарождения .

28 билет КОНЦЕПЦИЯ ПРОИСХОЖДЕНИЯ ЖИЗНИ ОПАРИНА

Взаимодействие этих двух эффектов и является главной темой механики Ньютона .

Другими важными понятиями этого раздела физики является энергия , импульс , момент импульса , которые могут передаваться между объектами в процессе взаимодействия. Энергия механической системы состоит из ее кинетической (энергии движения) и потенциальной (зависимой от положения тела относительно других тел) энергий. По этим физических величин действуют фундаментальные законы сохранения .


1. История

Основы классической механики были заложены Галилеем , а также Коперником и Кеплером при изучении закономерностей движения небесных тел , и долгое время механика и физика рассматривались в контексте описания астрономических событий.

Идеи гелиоцентрической системы далее были формализованы Кеплером в его трех законах движения небесных тел. В частности, второй закон Кеплера утверждает, что все планеты солнечной системы движутся эллиптическими орбитами , имеющие одним из своих фокусов Солнце.

Следующий важный вклад в основание классической механики был осуществлен Галилеем , который, исследуя фундаментальные закономерности механического движения тел , в частности под воздействием сил земного притяжения , сформулировал пять универсальных законов движения.

Но все же лавры основного основателя классической механики относятся Исааку Ньютону , который в своей работе "Математические начала натуральной философии" осуществил синтез тех понятий по физике механического движения, которые были сформулированы его предшественниками. Ньютон сформулировал три фундаментальных законы движения , которые были названы его именем, а также закон всемирного тяготения , который подводил черту под исследованиями Галилеем явления свободного падения тел. Таким образом, была создана новая, на замену устаревшей аристотелевского, картина мира и базовых его законов.


2. Ограничения классической механики

Классическая механика дает точные результаты для систем, которые мы встречаем в повседневной жизни. Но они становятся некорректными для систем, скорость которых приближается к скорости света , где она заменяется релятивистской механикой , или для очень малых систем, где действуют законы квантовой механики . Для систем, которые объединяют оба эти свойства, вместо классической механики применяется релятивистская квантовая теория поля . Для систем с очень большим количеством составляющих, или степеней свободы, классическая механика также может быть адекватной, зато используются методы статистической механики

Классическая механика является широко применяемой, потому что она, во-первых, гораздо проще и легче в применении, чем перечисленные выше теории, и, во-вторых, имеет большие возможности для аппроксимации и применения для очень широкого класса физических объектов, начиная с привычных, таких как волчок или мяч , в великих астрономических объектов (планеты , галактики) и совсем микроскопических (органические молекулы).


3. Математический аппарат

Базовый математический аппарат классической механики - дифференциальное и интегральное исчисление, разработанное специально для этого Ньютоном и Лейбницем . В классическом формулировке механика строится на трех законах Ньютона .

4. Изложение основ теории

Далее дается изложение базовых концепций классической механики. Для простоты будем использовать понятие материальной точки как объекта, размерами которого можно пренебречь. Движение материальной точки определяется небольшим количеством параметров: положением, массой и приложенными к нему силами .

В реальности, размеры каждого объекта, с которым имеет дело классическая механика, является ненулевыми. Материальная точка зато такая как электрон , подчиняется законам квантовой механики. Объекты с ненулевыми размерами имеют гораздо более сложную поведение, ведь их внутреннее состояние может меняться - например, мяч в движении может еще и вращаться. Тем не менее, в таких тел могут быть применены результаты, полученные для материальных точек, если рассматривать их как совокупности из множества взаимодействующих материальных точек. Такие сложные объекты могут вести себя как материальные точки, если их размеры несущественные в масштабах конкретной физической задачи.


4.1. Положение, радиус-вектор и его производные

Положение объекта (материальной точки) определяется относительно фиксированной точки в пространстве, которая называется началом координат . Оно может быть задано координатами этой точки (например, в Декартовой системе координат) или радиус-вектором r, проведенным из начала координат в эту точку. В реальности, материальная точка может двигаться с течением времени, поэтому радиус- вектор в общем случае является функцией времени . В классической механике, в отличие от релятивистской, считается, что течение времени одинаков во всех системах отсчета.


4.1.1. Траектория

Траекторией называется совокупность всех положений материальной точки, движущейся - в общем случае она является кривой линией, вид которой зависит от характера движения точки и выбранной системы отсчета.

4.1.2. Перемещение

.

Если все силы, действующие на частицу, консервативные , а V - полная потенциальная энергия, полученная добавлением потенциальных энергий всех сил, то

.

Т.е. полная энергия E = T + V сохраняется во времени. Это проявление одного из фундаментальных физических законов сохранения . В классической механике он может быть полезным практически, ведь много разновидностей сил в природе являются консервативными.