Как проводится дозиметрический контроль потребительских товаров. Дозиметрический и радиометрический контроль. Методы применения Дозиметрический контроль проводится

Дозиметрический контроль включает контроль облучения личного состава служб ЧС, радиоактивного и химического загрязнения людей, техники, материальных средств, продовольствия, воды и объектов внешней среды.

Задачи дозиметрического контроля определяются особенностями и масштабами практической деятельности и, в первую очередь, направлены на достижение следующих целей:

· подтверждения соответствия требованиям санитарного законодательства радиационно-гигиенических условий и выявление радиационной опасности;

· расчет текущих и прогнозируемых уровней облучения населения, а также техники, материальных средств, продовольствия, воды и объектов внешней среды

· обеспечение исходной информации для расчета доз и принятия решений в случае аварийного облучения, подтверждения качества и эффективности радиационной защиты людей

Данные дозиметрического контроля могут быть использованы также для:

· совершенствования применяемых и разработки новых технологии,

· предоставление населению информации, которая позволяет им понять как, где и когда они были облучены, что в свою очередь, поможет им в дальнейшем избегать дополнительного облучения,

· сопровождения обязательного медицинского обследования населения;

· эпидемиологического наблюдения за облученными контингентами

Принцип обнаружения ионизирующих (радиоактивных) излучений (нейтронов, гамма-лучей, бета - и альфа-частиц) основан на способности этих излучений ионизировать вещество среды, в которой они распространяются. Ионизация, в свою очередь, является причиной физических и химических изменений в веществе, которые могут быть обнаружены и измерены. К таким изменениям среды относятся: изменения электропроводности веществ (газов, жидкостей, твердых материалов); люминесценция (свечение) некоторых веществ; засвечивание фотопленок; изменение цвета, окраски, прозрачности, сопротивления электрическому току некоторых химических растворов и др.

Для обнаружения и измерения ионизирующих излучений используют следующие методы: фотографический, сцинтилляционный, химический и ионизационный.

Фотографический метод основан на степени почернения фотоэмульсии. Под воздействием ионизирующих излучений молекулы бромистого серебра, содержащегося в фотоэмульсии, распадаются на серебро и бром. При этом образуются мельчайшие кристаллики серебра, которые и вызывают почернение фотопленки при её проявлении. Плотность почернения пропорциональна поглощенной энергии излучения. Сравнивая плотность почернения с эталоном, определяют дозу излучения (экспозиционную или поглощенную), полученную пленкой. На этом принципе основаны индивидуальные фотодозиметры.

Сцинтилляционный метод . Некоторые вещества (сернистый цинк, йодистый натрий) под воздействием ионизирующих излучений светятся. Количество вспышек пропорционально мощности дозы излучения и регистрируется с помощью специальных приборов - фотоэлектронных умножителей.

Химический метод . Некоторые химические вещества под воздействием ионизирующих излучений меняют свою структуру. Так, хлороформ в воде при облучении разлагается с образованием соляной кислоты, которая дает цветную реакцию с красителем, добавленным к хлороформу. Двухвалентное железо в кислой среде окисляется в трехвалентное под воздействием свободных радикалов HO 2 и ОН, образующихся в воде при её облучении. Трехвалентное железо с красителем дает цветную реакцию. По плотности окраски судят о дозе излучения (поглощенной энергии). На этом принципе основаны химические дозиметры ДП-70 и ДП-70М.

В современных дозиметрических приборах широкое распространение получил ионизационный метод обнаружения и измерения ионизирующих излучений.

Ионизационный метод. Под воздействием излучений в изолированном объеме происходит ионизация газа: электрически нейтральные атомы (молекулы) газа разделяются на положительные и отрицательные ионы. Если в этот объем поместить два электрода, к которым приложено постоянное напряжение, то между электродами создается электрическое поле. При наличии электрического поля в ионизированном газе возникает направленное движение заряженных частиц, т.е. через газ проходит электрический ток, называемый ионизационном. Измеряя ионизационный ток, можно судить об интенсивности ионизирующих излучений.

Газоразрядный счетчик используется для измерения радиоактивных излучений малой интенсивности. Высокая чувствительность счетчика позволяет измерять интенсивность излучения в десятки тысяч раз меньше той, которую удается измерить ионизационной камерой.

Газоразрядный счетчик представляет собой полый герметичный металлический или стеклянный цилиндр, заполненный разряженной смесью инертных газов (аргон, неон) с некоторыми добавками, улучшающими работу счетчика (пары спирта). Внутри цилиндра, вдоль его оси, натянута тонкая металлическая нить (анод), изолированная от цилиндра. Катодом служит металлический корпус или тонкий слой металла, нанесенный на внутреннюю поверхность стеклянного корпуса счетчика. К металлической нити и токопроводящему слою (катоду) подают напряжение электрического тока.

В газоразрядных счетчиках используют принцип усиления газового разряда. В отсутствие радиоактивного излучения свободных ионов в объеме счетчика нет. Следовательно, в цепи счетчика электрического тока также нет. При воздействии радиоактивных излучений в рабочем объеме счетчика образуются заряженные частицы. Электроны, двигаясь в электрическом поле к аноду счетчика, площадь которого значительно меньше площади катода, приобретают кинетическую энергию, достаточную для дополнительной ионизации атомов газовой среды. Выбитые при этом электроны также производят ионизацию. Таким образом, одна частица радиоактивного излучения, попавшая в объем смеси газового счетчика, вызывает образование лавины свободных электронов. На нити счетчика собирается большое количество электронов. В результате этого положительный потенциал резко уменьшается и возникает электрический импульс. Регистрируя количество импульсов тока, возникающих в единицу времени, можно судить об интенсивности радиоактивных излучений.

Дозиметрический и радиометрический контроль его организация и практическое осуществление одна из важных составных частей общей проблемы обеспечения радиационной безопасности.

Основной задачей дозиметрии в гражданской обороне является выявления и оценка степени опасности ионизирующих излучений для населения, войск и невоенизированных формирований ГО в целях обеспечения их действия в различных условиях радиационной обстановки.

С её помощью осуществляются:

Обнаружение и измерение мощности экспозиционной поглощенной дозы излучения для обеспечения жизнеспособности населения и успешного проведения неотложных аварийно-спасательных работ в очагах поражения;

Измерение активности радиоактивных веществ, плотности, потока ИИ, удельной объёмной, поверхностной активности различных объектов для определение необходимости

Как известно, фактическое состояние радиационной безопасности можно оценить в результате изучения радиационной обстановки в рабочих и смежных помещения, на рабочих и смежных помещениях, путём анализа уровней облучения персонала и загрязнённости окружающей среды. Эти материалы позволяют контролировать выполнение установленных нормативов, выявлять и устранять дефекты в системе радиационной безопасности, учитывать различные факторы разового воздействия на персонала и принимать необходимые меры по уменьшению указанного облучения персонала до минимально возможных значений.

Согласно действующим нормативным актам и документам контроль за условиями труда на пунктах захоронения радиационных отходов, оценку доз внутреннего и внешнего облучения, уровней загрязненности окружающей среды осуществляет служба радиационной безопасности.

Повседневный контроль проводится в соответствии с заранее разработанным графиком, утвержденным администрацией учреждения и согласовано с органами Госсаннадзора. Графики радиационного контроля для зоны строго режима, санаторно-защитной зоны и зоны наблюдения составляется отдельно.

Организация дозиметрического контроля в ОВД заключается в обеспечение личного состава дозиметрами, в своевременном снятии показании дозиметров и их перезарядке, поддержании технической исправности приборов и систематическом учете доз радиоактивного облучения, полученным личным составом. Контроль облучения в подразделениях ОВД осуществляется групповым и индивидуальным способом.

Групповой метод контроля применяется в отделениях, личный состав которых находится в примерно одинаковых условиях радиоактивного облучения. При этом виде контроля доза излучения измеряется одним или двумя индивидуальными дозиметрами и записывается каждому сотруднику в карточку учёта доз. Снятие показаний дозиметров должно быть снято не позже, чем через пять суток. После снятия показаний перезаряжаются и возвращаются в подразделение.

Дозы облучения, полученные личным составом учитываются в индивидуальных карточках учета доз облучения. Учет доз облучения ведется командирами подразделений. Значение доз записываются нарастающим итогом за каждый день.

Индивидуальный метод контроля облучения применяется офицерским составом и лицом, которое по условиям обстановки не включается в состав групп.

Применяемые радиометрические и дозиметрические приборы позволяют получать определенную информацию о состоянии радиационной обстановки её изменениях, а также о возникновении различного типа аварийных ситуациях. В зависимости от характера проводимых работ устанавливается следующая номенклатура радиационного контроля

  • - мощность поглощенной дозы -излучения, мощность поглощенной дозы нейтронного излучения
  • - объёмная активность газов, аэрозолей воздуха производственных помещений и атмосферного воздуха, плотность радиоактивных выпадений;
  • - объёмная активность сточных вод;
  • - удельная, -активность отходов, мощность поглощенной дозы - и нейтронного излучения от поверхности твердых и отвержденных радиоактивных отходов;
  • - загрязнения -, - активными веществами поверхности помещений, оборудования, оснастки, дорог;
  • - загрязнение, -активными веществами средств индивидуальной защиты персонала
  • - индивидуальная доза внешнего облучения персонала, содержание радиоактивных веществ в организме человека.

Служба радиационной безопасности предприятия по согласованию с местными органами Госсаннадзора устанавливает оптимальный объём радиационного контроля, необходимой для получения достаточной информации об уровнях радиационного воздействия на персонал, о состоянии радиационной обстановки в учреждении, о состоянии загрязненности окружающей среды.

Классификация и общие принципы устройства дозиметрических приборов

Дозиметрические приборы можно классифицировать по назначению, типу датчиков, измерению вида излучения, характеру электрических- сигналов, преобразуемых схемой прибора.

По назначению все приборы разделяются на следующие группы.

Индикаторы- простейшие приборы радиационной разведки; при помощи их решается задача обнаружения излучения и ориентировочной оценки мощности дозы главным образом бета и гамма излучений. Эти приборы имеют простейшие электрические схемы со звуковой или световой сигнализацией. При помощи индикаторов можно установить, возрастает мощность дозы или уменьшается. Датчиком служат газоразрядные счетчики. К этой группе относят индикаторы ДП-63, ДП-63А, дп-64.

Рентгенметры- предназначены для измерений мощности дозы рентгеновского или гамма излучений.

Они имеют диапазон измерения от сотых долей рентгена до нескольких сот рентген в час.

В качестве датчиков в этих приборах применяют ионизационные камеры или газоразрядные счетчики. Такими приборами являются общевойсковой рентгенметр ДП-2, ДП-3 и др.

Радиометры- применяются для обнаружения и определения степени радиоактивного заражения поверхностей, оборудования, оружия, обмундирования, оружия главным образом альфа и бета частицами.

Датчиками радиометров являются газоразрядные и сцинтилляционные счетчики.

Эти приборы являются наиболее распространенными и имеют широкое применение.

Таким приборами являются ДП-2 базовые универсальные, бета-гамма-радиометр «Луч-А», радиометр «Тисс», радиометрические установки ДП-100М, ДП-100АДМ и др.

Дозиметры предназначены для определения суммарной дозы облучения, получаемой личным составом за время прохождения в районе действия, главным образом гамма-излучения.

Индивидуальные дозиметры представляют собой малогабаритные ионизационные камеры или же фотокассеты с пленкой.

Дозиметрические устройства могут быть разделены на две группы.

К первой группе относятся приборы, в которых частицы или фотоны контролируемого излучения преобразуются детекторами в последовательные короткие электрические сигналы. В этой группе электрические схема выполняет функцию преобразования и усиления импульсов.

Ко второй группе относятся дозиметрические приборы, в которых детектор преобразует воздействующее на него излучения в непрерывной постоянный ток. В этом случае электрическая схема служит для усиления и преобразования постоянного тока.

Измерения

Производственный контроль при работе с техногенными источниками излучения осуществляется за всеми основными радиационными показателями, определяющими уровни облучения персонала и населения. В соответствии с НРБ-99 в каждой организации система радиационного контроля должна предусматривать конкретный перечень видов контроля, типов радиометрической и дозиметрической аппаратуры, точек измерения и периодичности контроля.

Контроль за радиационной обстановкой в зависимости от характера проводимых работ включает:

Измерение мощности дозы рентгеновского, гамма- и нейтронного излучений, плотности потоков частиц ионизирующего излучения на рабочих местах, в смежных помещениях, на территории организации, в санитарно-защитной зоне и зоне наблюдения;

Измерение уровней загрязнения радиоактивными веществами рабочих поверхностей, оборудования, транспортных средств, средств индивидуальной защиты, кожных покровов и одежды персонала;

Определение объемной активности газов и аэрозолей в воздухе рабочих помещений;

Измерение или оценку активности выбросов и сбросов радиоактивных веществ;

Определение уровней радиоактивного загрязнения объектов окружающей среды в санитарно-защитной зоне и зоне наблюдения.

Выделяют три основных вида дозиметрического контроля внешнего профессионального облучения:

Текущий контроль;

Оперативный контроль;

Аварийный контроль.

Задача текущего контроля заключается в определении индивидуальной дозы профессионального облучения работника в нормальных условиях эксплуатации источников ионизирующих излучений.

Задача оперативного контроля заключается в определении индивидуальной дозы профессионального облучения работника при выполнении запланированных работ, связанных с возможным повышенным внешним облучением. К ним относятся операции по ремонту и техническому обслуживанию оборудования, когда повышенное облучение не планируется, а также работы в условиях планируемого повышенного облучения, включая работы по ликвидации последствий радиационных аварий.



Задача аварийного контроля заключается в определении больших доз облучения работника в случае выхода источника из-под контроля.

Приборы для дозиметрического контроля как внешнего, так и внутреннего облучения делятся на приборы группового контроля и индивидуального контроля.

Групповой дозиметрический контроль(ГДК) – это контроль облучения персонала, заключающийся в определении индивидуальных доз облучения работников на основании результатов измерений характеристик радиационной обстановки в рабочем помещении (на рабочих местах) с учетом времени пребывания там персонала.

Индивидуальный дозиметрический контроль(ИДК) – это контроль облучения персонала, заключающийся в определении индивидуальных доз облучения работника на основании результатов индивидуальных измерений характеристик облучения тела или отдельных органов каждого работника.

Индивидуальная доза облучения должна регистрироваться в журнале с последующим внесением в индивидуальную карточку, а также в машинный носитель для создания базы данных в организациях. Копия индивидуальной карточки работника в случае его перехода в другую организацию, где проводится работа с источниками излучения, должна передаваться на новое место работы; оригинал должен храниться на прежнем месте работы. Результаты индивидуального контроля доз облучения персонала должны храниться в течение 50 лет. При проведении индивидуального контроля необходимо вести учет годовых эффективной и эквивалентных доз, эффективной дозы за 5 последовательных лет, а также суммарной накопленной дозы за весь период профессиональной работы.

Для ГДК используются стационарные и переносные, так называемые инспекционные, дозиметрические приборы. Для ИДК применяются индивидуальные дозиметры.

По виду и назначению дозиметры могут быть условно разделены на следующие группы:

1) дозиметры – приборы, измеряющие экспозиционную или поглощенную дозу ионизирующих излучений;

2) радиометры – приборы, измеряющие плотность потоков ионизирующих излучений (интенсивность внешних потоков бета-частиц, нейтронов и др.);

3) спектрометры – приборы, измеряющие энергию частиц ионизирующих излучений.

В комбинированных приборах могут объединяться функции указанных средств измерений.

Для обнаружения изменения радиационной обстановки по параметрам активности радона и торона и дочерних продуктов их распада применяют радиометры РРА-01М-01, РРА-01М-03, РРА-10, ПОУ-4; по рентгеновскому излучению, гамма-излучению и бета-излучению и измерению эквивалентной дозы применяют дозиметры-радиометры ДРГ-01 «ЭКО» МКГ-01 (подробные сведения приведены в приложении 1).

Поверхностную загрязненность можно установить путем измерения активности мазков, снимаемых с контролируемых поверхностей, или непосредственным измерением с помощью радиометров для определения удельной поверхности активности.

Чаще всего для этой цели используют переносные приборы для контроля поверхностей пола, стен и оборудования, а также устанавливаемые у выходов из помещений стационарные приборы для контроля загрязненности кожных покровов, обуви и одежды персонала.

Метод индивидуальной дозиметрии выбирают в зависимости от вида ионизирующего излучения, особенностей приборов, нужных диапазонов измерений, точности показаний, объема работ.

Дозиметры размещают на участках тела, которые подвергаются наибольшему облучению. Длительность ношения прибора выбирают такой, чтобы показания, по крайней мере, в 2-3 раза превосходили нижний порог показаний прибора (но не больше длительности установленного промежутка регистрации измерений).

Контрольные вопросы к разделу 10:

1. Какие виды ионизирующего излучения существуют, как они характеризуются?

2. Какие излучения обладают наибольшей проникающей способностью?

3. Что является источником ионизирующего излучения?

4. Где и с какой целью применяются ионизирующие излучения?

5. Что такое – активностьрадиоактивного вещества, в каких единицах измеряется?

6. Что такое – активность минимально значимая удельная?

7. Что такое – поглощенная доза, в каких единицах измеряется?

8. Что такое – экспозиционная доза, в каких единицах измеряется?

9. Что такое – эквивалентная доза, в каких единицах измеряется?

10. Что такое – взвешивающие коэффициенты для отдельных видов излучения?

11. Что такое – эффективная доза излучения, в каких единицах измеряется?

12. Что такое – предел дозы ионизирующего облучения?

13. Что такое – предел годового поступления ионизирующего облучения?

14. Какие классы работ с источниками ионизирующего излучения существуют и чем они характеризуются?

15. Каковы могут быть последствия при воздействии на человека ионизирующего излучения?

16. Чем оценивается опасность хронического облучения?

17. Какое излучение наиболее опасно при внешнем облучении человека?

18. Какое излучение наиболее опасно при внутреннем облучении человека?

19. Как зависят нормируемые пределы доз (ПД) ионизирующего облучения от категории облучаемых лиц?

21. В чем заключаются дополнительные ограничения для женщин в возрасте до 45 лет, работающих с источниками излучения?

22. В каких случаях нормы радиационной безопасности допускают облучение персонала выше установленных пределов доз?

23. Какой уровень обучения эффективной дозой в течение года рассматривается для персонала группы А как потенциально опасный?

24. Требуется ли лицензирование деятельности организаций, связанной с использованием источников излучения?

25. В течение какого срока действительно санитарно-эпидемиологическое заключение о соответствии санитарным правилам условий работы с источниками физических факторов воздействия на человека?

26. Кто в организации обеспечивает условия сохранности источников излучения?

27. Какие мероприятия необходимо провести в эксплуатирующей организации к моменту получения источника излучения?

28. С какого возраста допускают людей к работе с источниками излучения в качестве персонала группы А?

29. Какие существуют средства защиты работников от ионизирующего облучения?

30. Какие существуют методы защиты работников от ионизирующего облучения?

31. На какие группы по назначению подразделяются защитные экраны?

32. Какие материалы используют для устройства защитных экранов?

33. Можно ли системы вентиляции для помещений, где ведутся работы с радиоактивными веществами, объединять с системами вентиляции помещений, не связанных с применением этих веществ?

34. Какими санитарно-техническими устройствами должны быть оборудованы помещения, в которых ведутся работы с открытыми источниками излучения?

35. В чем заключаются требования к СИЗ для работ с радиоактивными веществами?

36. Какие условия необходимо выполнять при сборе и временном хранении радиоактивных отходов в организациях?

37. Какие требования к местам захоронения радиоактивных отходов следует выполнять?

38. Что включает в себя контроль за радиационной обстановкой в организации?

39. Какие виды дозиметрического контроля внешнего профессионального облучения существуют?

40. В чем заключается групповой дозиметрический контроль?

41. Какие приборы используют для измерения ионизирующего излучения?

42. Как производят захоронение радиоактивных отходов в зависимости от их активности?

43. Как можно охарактеризовать субъективные ощущения при воздействии на организм в производственных условиях ионизирующего излучения?

КОНТРОЛЬНЫЕ ВОПРОСЫ:

1. Виды радиационного дозиметрического контроля.

2. Объекты и задачи радиационного дозиметрического контроля.

3. Методы дозиметрии ионизирующих излучений:

Ионизационные методы;

Сцинтилляционные методы;

Люминесцентные методы.

ОБЪЕМ САМОСТОЯТЕЛЬНОЙ РАБОТЫ:

1. Ознакомиться с устройством и правилами работы приборов СРП-68-01, СРП-88Н, ДБГ-01-Н.

2. Обнаружить источник ионизирующего излучения.

3. Измерить радиационный фон в учебной комнате и на территории, прилегающей к учебному корпусу.

Радиационный дозиметрический контроль охватывает все виды воздействия ионизирующего излучения на человека и является неотъемлемой частью системы радиационной безопасности.

Целью радиационного контроля является получение информации об индивидуальных и коллективных дозах облучения персонала, пациентов и населения, а также сведения о всех регламентируемых величинах, характеризующих радиационную обстановку.

В соответствии с Основными санитарными правилами обеспечения радиационной безопасности (ОСПОРБ-99) объектами радиационного контроля являются:

Персонал групп А и Б при воздействии на них ионизирующего излучения в производственных условиях;

Пациенты при выполнении медицинских рентгенорадиологических процедур;

Население при воздействии на него природных и техногенных источников излучения;

Среда обитания человека.

Контроль за радиационной безопасностью в организации разрабатывается на стадии проектирования. В разделе «Радиационный контроль» определяются виды и объем радиометрического и дозиметрического контроля, перечень необходимых приборов, размещение стационарных приборов и точек постоянного и периодического контроля, состав необходимых помещений, а также штат службы радиационной безопасности. Контроль за радиационной безопасностью, определенной проектом, в ходе эксплуатации уточняется в зависимости от конкретной радиационной обстановки в организации и на прилегающей территории, и согласовывается с органами государственного санитарно-эпидемиологического надзора.

В организации производственный контроль за радиационной безопасностью осуществляется специальной службой или лицом, ответственным за радиационную безопасность, прошедшим специальную подготовку.

При работе с техногенными источниками излучения радиационный контроль должен осуществляться за всеми основными радиационными показателями, определяющими уровни облучения персонала и населения.

Вклад природных источников излучения в облучение персонала в производственных условиях должен контролироваться и учитываться при оценке доз в тех случаях, когда он превышает 1 мЗв в год.

Индивидуальный контроль за облучением персонала в зависимости от характера работ включает:

Радиометрический контроль за загрязненностью кожных покровов и средств индивидуальной защиты;

Контроль за характером, динамикой и уровнями поступления радиоактивных веществ в организм с использованием методов прямой и косвенной радиометрии;

Контроль с использованием индивидуальных дозиметров за дозой внешнего бета-, гамма- и рентгеновского излучений, нейтронов, а также смешанного излучения.

По результатам радиационного контроля должны быть рассчитаны значения эквивалентных и эффективных доз у персонала.

Индивидуальная доза облучения регистрируется в журнале с последующим внесением в индивидуальную карточку, а также в машинный носитель для создания банка данных в организациях. Результаты индивидуального контроля доз облучения персонала должны храниться в течение 50 лет. При проведении индивидуального контроля необходимо вести учет годовой эффективной дозы за 5 последовательных лет, а также суммарной накопленной дозы за весь период профессионального облучения.

Контроль за радиационной обстановкой в зависимости от характера проводимых работ включает:

Измерение уровней загрязнения радиоактивными веществами рабочих поверхностей, оборудования, транспортных средств, средств индивидуальной защиты, кожных покровов и одежды персонала;

Измерение мощности дозы рентгеновского и гамма-излучений, плотности потоков бета-частиц, нейтронов и других видов ионизирующего излучения на рабочих местах, в смежных помещениях, на территории организации, в санитарно-защитной зоне и зоне наблюдения;

Измерение уровней загрязнения рабочих поверхностей, оборудования, средств индивидуальной защиты, кожных покровов и одежды персонала;

Определение объемной активности газов и аэрозолей в воздухе рабочих помещений;

Измерение или оценку выбросов и сбросов радиоактивных веществ;

Контроль за уровнями загрязнения радиоактивными веществами транспортных средств;

Определение уровня загрязнения в объектах окружающей среды в контролируемых зонах.

Данные контроля за радиационной безопасностью используются для оценки радиационной обстановки, установления контрольных уровней, разработки мероприятий по снижению доз облучения и оценки их эффективности, ведения радиационно-гигиенических паспортов организаций и территорий.

При установлении администрацией учреждения контрольных уровней перечень и числовые значения их согласовываются с органом государственного санитарно-эпидемиологического надзора.

При установлении контрольных уровней следует исходить из принципа оптимизации с учетом:

Неравномерности радиационного воздействия во времени;

Целесообразности сохранения уже достигнутого уровня облучения на данном объекте ниже допустимого;

Эффективности мероприятий по улучшению радиационной обстановки.

При изменении характера работ контрольные уровни подлежат уточнению.

И в системе мероприятий по обеспечению радиационной безопасности различных групп населения также исключительно важное значение принадлежит инструментальному объективному дозиметрическому контролю. В отличие от многих других физических и химических факторов окружающей среды ионизирующая радиация субъективно не воспринимается органами чувств человека (даже при весьма высоких уровнях). Поэтому объективное суждение о наличии, характере и уровнях радиации достоверно может быть только в результате инструментально-дозиметрического исследования.

Объекты и задачи такого исследования разнообразны. Главными из них являются:

1. Определение фактической дозы внешнего ионизирующего облучения в естественных условиях, а также в различных условиях использования искусственных источников радиации или аварийных ситуациях.

2. Определение эффективности устройств и средств защиты от ионизирующего излучения.

3. Определение наличия и уровней загрязнения объектов окружающей среды радиоактивными нуклидами.

4. Определение содержания радиоактивных нуклидов в воздухе, почве, воде, пищевых продуктах.

При необходимости определения нуклидного состава дозиметрическое исследование сочетается с химическим. В настоящее время для перечисленных выше целей используются различные методы. Все они основаны на непосредственной регистрации ионизирующего излучения ли­бо вторичных эффектов, возникающих при его взаимодействии с облучаемой средой.

МЕТОДЫ КОНТРОЛЯ РАДИАЦИОННОЙ ОБСТАНОВКИ

Если происходят различные ядерные катастрофы, такие как взрыв или авария, то они сопровождаются выделением значительного количества радиоактивных частиц. Последние представляют значительную опасность. Ведь даже будучи расщепленными на атомы, они могут излучать смертельную или просто опасную дозу радиации.

О последствиях

При этом, в зависимости от времени действия и мощности заражение окружающей среды усиливается. Все живые существа, которые попали под вредоносное воздействие, зарабатывают лучевую болезнь. Она очень часто приводит к гибели. Чтобы определить влияние излучения на окружающую среду, используют приборы дозиметрического контроля. Благодаря им можно определять уровень и дозу, проникающую способность. Используются приборы дозиметрического контроля для контроля за состоянием окружающей среды и получения своевременной информации об источниках заражения, а также величине их потенциальной угрозы.

О видах излучения

Приборы радиационной разведки позволяют исследовать местность, объекты, продукты питания, кожу и одежду человека. Они позволяют выявить и степень заражения. Наиболее вредными для человека являются гамма- и бета-лучи. Их специфика заключается в следующем:

  • Бета-лучи. Обладают средним ионизирующим действием. Оно зависит от плотности среды распространения. Высокая их опасность обусловлена значительной проникающей способностью. Так, обычная одежда защитить от них не сможет. Необходимо иметь специальный костюм или использовать укрытие. Относительно безопасная норма для данного вида излучения составляет 0,2 мкЗв/час.
  • Гамма-лучи. Несут существенную угрозу для ведения оптимальной жизнедеятельности. Обладают короткими волнами, из-за чего выделяется очень много разрушающей и проникающей энергии. Что характерно, человек может не ощущать их воздействия до получения смертельной дозы.

О назначении аппаратуры

Учитывая все вышесказанное, остается только заключить, что в зависимости от целевого задания и фиксируемого излучения различают такие приборы дозиметрического контроля:

  1. Простейшие индикаторы и рентгенометры. Используются как средства наблюдения за местностью.
  2. Радиометры. Необходимы для определения степени заражения.
  3. Дозиметры. Нужны для а также уточнения величины полученной дозы.

Данные технические средства могут быть предназначены как для профессиональных служб, так и под бытовые нужды. Население, которое проживает в районах с неблагоприятной обстановкой, может использовать самые простые приборы для того, чтобы проверить окружающую среду и продукты питания на радиоактивность. Давайте рассмотрим упомянутую аппаратуру более подробно.

Дозиметры

Эти устройства используются для установления величины суммы всех видов облучения либо для определения мощности дозы, получаемой от гамма-лучей или при рентгене. Их датчики - это внутренние ионизационные камеры, которые заполнены газом. Кроме этого, есть еще сцинтилляционные и газоразрядные счетчики. Эти устройства могут быть как стационарными, так и переносными. Кроме этого, выделяют также индивидуальные и бытовые комплекты.

Если говорить про самых известных представителей, то необходимо вспомнить ДП-5В - дозиметр полевой войсковой. Это переносное устройство, позволяющее работать и с бета-, и с гамма-излучением.

Но популярны и некоторые индивидуальные варианты. Например, комплекс ДП-22В. Он состоит из 50 индивидуальных дозиметров, а также зарядного устройства для них. Используются он на производственных объектах, в которых приходится взаимодействовать с Также их выдают людям, которым приходиться работать на опасной территории. В один выдаваемый урезанный комплект обычно входит 5 дозиметров, а также устройство зарядки. Хотя если речь заходит об учреждениях гражданской обороны и небольших подразделениях, то может выдаваться весь набор из 50 штук. Обычно индивидуальный дозиметр располагают в кармане верхней одежды. Наблюдение текущего значения осуществляется периодически.

Сравнение возможностей

Приборы, предназначенные для дозиметрического контроля, различаются по своим характеристикам. То есть по рабочему диапазону, размерам, условиям транспортировки. Чтобы разобраться в теме более подробно, давайте сравним характеристику двух разных представителей. Первым будет уже упомянутый ДП-5В. Несмотря на то, что это военная модель, она получила широкое распространение и популярность и среди гражданского населения. Например, его любят так называемые «выживальщики». Второй объект сравнения - это ДП-22В. Что ж, приступим:

Как видите, переносной дозиметр - это не всегда абсолютно схожие устройства.

Индикаторы, рентгенометры и радиометры

Основной интерес для нас в рамках статьи представляют дозиметры. Но если уж были затронуты приборы радиационной разведки, то обойти их вниманием не получится:

  1. Индикаторы. Это самый простой вид приборов, позволяющих осуществлять радиационную разведку и контроль. Служат они в основном для того, чтобы обнаруживать повышенный уровень излучения. Их недостатком является тот факт, что они предоставляют только ориентировочные показания. Дабы уточнить величину излучения, приходится использовать дополнительные средства. В роли их детектора выступает газоразрядные счетчик. Самые распространенные варианты - это ИМД-21 и ДП-64.
  2. Рентгенометры. Это уже более сложные устройства. Эти приборы используются для измерения получаемой дозы рентгеновского или гамма-излучения. В качестве датчиков используются газоразрядные элементы или ионизационные камеры. Все зависит от типа устройства. Они могут нормально функционировать при температурном режиме от 0 до +50 градусов тепла. Источник питания позволяет работать рентгенометрам до 2,5 суток. В качестве примера можно привести ДП-3Б. Он позволяет осуществлять радиационную разведку на разных транспортных средствах (водных, наземных, воздушных).
  3. Радиометры. Применяются для определения величины поверхностных загрязнений радиоактивными частицами. Эти устройства позволяют изучать радиационный фон в самых разнообразных условиях и средах, таких как газ, аэрозоль, жидкость. Различают транзисторные, гибкие, миниатюрные и ультратонкие радиометры.

Вот такие приборы радиационной разведки существуют.

Как же с ними работать?

Знать, какие профессиональные и бытовые дозиметрические приборы существуют - это еще полдела. Необходимо еще и уметь их запускать. Чтобы качественно снять показатели, нужно правильно эксплуатировать аппаратуру. Следует помнить, что сильная встряска или удар могут негативно сказаться на получаемых значениях. Также ошибки в их работе возможны после длительного воздействия прямых солнечных лучей, низких температур или попадания на корпус влаги. Поэтому необходимо следить за тем, чтобы прибор был чист. Нужно своевременно очищать его от загрязнения и пыли. Для этого лучше использовать чистый промасленный материал.

Внимание! После длительной эксплуатации в условиях высокого радиационного излучения, после работы необходимо провести дезактивацию. Для этого экран и корпус устройства протирают влажными тампонами.

Особенности эксплуатации и ухода

В перерывах между деятельностью необходимо выключать устройство. Также не следует прилагать излишнюю физическую силу к вращающимся элементам. Нужно контролировать, достаточно ли смазки в корпусе зонда. Также каждые два года необходимо делать профилактическую настройку приборов. При этом не следует забывать о градуировке шкал. При наличии сильных сбоев можно осуществить внеплановую отправку на проведение метрологической операции. Если прибор транспортируется, то он должен быть помещен в герметичный футляр, позволяющий обеспечить максимальный уровень защиты от ударов и толчков. Также не забывайте следить за уровнем заряда. состояния проводится на свет.

А что выбрать?

Давайте рассмотрим этот вопрос с точки зрения обычного населения. В пользу чего лучше сделать свой выбор? Существуют многочисленные приборы дозиметрического контроля для населения, позволяющие определять радиационный фон. Они предназначаются для использования в походах, при полевых работах гражданских специалистов, да и просто для любителей времяпрепровождения в стиле "постапокалипсиса". Такие персонажи, пожалуй, сделают свой выбор в таком ключе: только войсковой дозиметрический прибор!

Но если просто есть беспокойство по поводу потенциально небезопасного объекта в округе, то подойдет и что-то попроще, например индикатор с возможностью звуковой сигнализации о повышении радиационнного фона. Можно выбрать бытовой как отдельное устройство, так и в комплекте с сопутствующим снаряжением и другими датчиками, которые позволят более точно оценить состояние окружающей среды. В целом это зависит от поставленных целей, доступных финансовых возможностей и ряда иных индивидуальных факторов.

Где они используются?

В первую очередь вспоминается армия и службы чрезвычайных ситуаций. Приборы дозиметрического контроля в некоторых случаях имеют чрезвычайно важное значение. Как правило, они используются для обучения. Но все это делается на случай возникновения опасной ситуации, когда следует держать под контролем радиоактивное заражение людей, материальных средств, техники, воды, продовольствия. При этом они выполняют такие задачи:

  1. Подтверждают соответствие установленным требованиям действующего санитарного законодательства с радиационно-гигиенической позиции, а также выявляют опасности.
  2. Рассчитывают текущие и прогнозируемые уровни облучения для различных объектов.
  3. Обеспечивают исходную информацию для расчета доз, а также принятия соответствующих решений в случае возникновения аварийного облучения. Также подтверждают качество и эффективность существующей радиационной защиты людей.

И это все?

Нет, полученные данные также используются для:

  1. Совершенствования используемых, а также разработки новых технологий.
  2. Предоставления населению информации, позволяющей понять характер и размер облучения.
  3. Эпидемиологического наблюдения за пострадавшими людьми.

Несколько слов про ионизацию и классификацию приборов

Как же, собственно, обнаруживается радиоактивное излучение? Каков принцип работы рассматриваемых приборов? В основе их функциональных возможностей положена способность излучения ионизировать вещество среды, по которой оно распространяется. Это приводит к химическим и физическим изменениям в веществе. Все это идентифицируется и фиксируется. Что же это за изменения? Среди наиболее частых следует выделить:

  1. Изменение электропроводности (твердых материалов, жидкостей, газов).
  2. Люминесценция (свечение) отдельных веществ.
  3. Изменение окраски, цвета, сопротивления электрическому току и прозрачности некоторых химических растворов.
  4. Засвечивание фотопленки.

В соответствии с проверочной схемой, в зависимости от методологического назначения дозиметры делят на рабочие и образцовые. Первые используются для регистрации и исследования ионизирующего излучения. Вторые необходимы для проверки точности рабочих устройств. Также приборы могут быть поделены на группы в зависимости от вида эффекта взаимодействия. Например: сцинтилляционные, фотографические, ионизационные. Также различают стационарные, переносные и носимые устройства. Они могут быть с автономным питанием, подключены к сети, а также вообще не требовать затрат энергии.

Еще можно затронуть вопросы обозначения. На детекторах можно найти до трех цифр. Первая указывает на то, каков тип устройства, вторая обозначает регистрируемое излучение, а третья - область применения.

Заключение

Следует отметить, что приборы дозиметрического контроля - это не такая сложная вещь, как может показаться на первый взгляд. Но чтобы разобраться, как работает конкретное устройство, напрячь мозги все же необходимо. Для этого, как правило, достаточно просто ознакомиться с инструкцией, которая сопровождает прибор. Если она не понята, то следует перечитать еще раз. Не помогло? Тогда необходимо обратиться к опытным людям, чтобы они объяснили, как работает конкретное устройство.