Генеральная и выборочная совокупности. Метод выборки. Генеральная совокупность и выборочный метод Что меньше генеральная совокупность или выборочная

Итак, закономерности, которым подчиняется исследуемая случайная величина, физически полностью обусловливаются реальным комплексом условий ее наблюдения (или эксперимента), а математически задаются соответствующим вероятностным пространством или, что то же, соответствующим законом распределения вероятностей. Однако при проведении статистических исследований несколько более удобной оказывается другая терминология, связанная с понятием генеральной совокупности.

Генеральной совокупностью называют совокупность всех мыслимых наблюдений (или всех мысленно возможных объектов интересующего нас типа, с которых «снимаются» наблюдения), которые могли бы быть произведены при данном реальном комплексе условий. Поскольку в определении речь идет о всех мысленно возможных наблюдениях (или объектах), то понятие генеральной совокупности есть понятие условно-математическое, абстрактное и его не следует смешивать с реальными совокупностями, подлежащими статистическому исследованию. Так, обследовав даже все предприятия подотрасли с точки зрения регистрации значений характеризующих их технико-экономических показателей, мы можем рассматривать обследованную совокупность лишь как представителя гипотетически возможной более широкой совокупности предприятий, которые могли бы функционировать в рамках того же самого реального комплекса условий

В практической работе удобнее выбор связывать с объектами наблюдения, чем с характеристиками этих объектов. Мы отбираем для изучения машины, геологические пробы, людей, но не значения характеристик машин, проб, людей. С другой стороны, в математической теории объекты и совокупность их характеристик не различаются и двойственность введенного определения исчезает.

Как видим, математическое понятие «генеральная совокупность» физически полностью обусловливается, так же как и понятия «вероятностное пространство», «случайная величина» и «закон распределения вероятностей», соответствующим реальным комплексом условий, а потому все эти четыре математических понятия можно считать в определенном смысле синонимами. Генеральная совокупность называется конечной или бесконечной в зависимости от того, конечна или бесконечна совокупность всех мыслимых наблюдений.

Из определения следует, что непрерывные генеральные совокупности (состоящие из наблюдений признаков непрерывной природы) всегда бесконечны. Дискретные же генеральные совокупности могут быть как бесконечными, так и конечными. Скажем, если анализируется партия из N изделий на сортность (см. пример в п. 4.1.3), когда каждое изделие может быть отнесено к одному из четырех сортов, исследуемой случайной величиной является номер сорта случайно извлеченного из партии изделия, а множество возможных значений случайной величины состоит соответственно из четырех точек (1, 2, 3 и 4) то, очевидно, генеральная совокупность будет конечной (всего N мыслимых наблюдений).

Понятие бесконечной генеральной совокупности есть математическая абстракция, как и представление о том, что измерение случайной величины можно повторить бесконечное число раз. Приближенно бесконечную генеральную совокупность можно истолковывать как предельный случай конечной, когда число объектов, порождаемых данным реальным комплексом условий, неограниченно возрастает. Так, если в только что приведенном примере вместо партий изделий рассматривать непрерывное массовое производство тех же изделий, то мы и придем к понятию бесконечной генеральной совокупности. Практически же такое видоизменение равносильно требованию

Выборка из данной генеральной совокупности - это результаты ограниченного ряда наблюдений случайной величины . Выборку можно рассматривать как некий эмпирический аналог генеральной совокупности, то, с чем мы чаще всего на практике имеем дело, поскольку обследование всей генеральной совокупности бывает либо слишком трудоемко (в случае больших N), либо принципиально невозможно (в случае бесконечных генеральных совокупностей).

Число наблюдений, образующих выборку, называют объемом выборки.

Если объем выборки велик и при этом мы имеем дело с одномерной непрерывной величиной (или с одномерной дискретной, число возможных значений которой достаточно велико, скажем больше 10), то часто удобнее, с точки зрения упрощения дальнейшей статистической обработки результатов наблюдений, перейти к так называемым «группированным» выборочным данным. Этот переход осуществляется обычно следующим образом:

а) отмечаются наименьшее и наибольшее значения в выборке;

б) весь обследованный диапазон разбивается на определенное число 5 равных интервалов группирования; при этом количество интервалов s не должно быть меньше 8-10 и больше 20-25: выбор количества интервалов существенно зависит от объема выборки для примерной ориентации в выборе 5 можно пользоваться приближенной формулой

которую следует воспринимать скорее как оценку снизу для s (особенно при больших

в) отмечаются крайние точки каждого из интервалов в порядке возрастания, а также их середины

г) подсчитываются числа выборочных данных, попавших в каждый из интервалов: (очевидно, ); выборочные данные, попавшие на границы интервалов, либо равномерно распределяются по двум соседним интервалам, либо условливаются относить их только к какому-либо одному из них, например к левому.

В зависимости от конкретного содержания задачи в данную схему группирования могут быть внесены некоторые видоизменения (например, в некоторых случаях целесообразно отказаться от требования равной длины интервалов группирования).

Во всех дальнейших рассуждениях, использующих выборочные данные, будем исходить из только что описанной системы обозначений.

Напомним, что сущность статистических методов состоит в том, чтобы по некоторой части генеральной совокупности (т.е. по выборке) выносить суждения о ее свойствах в целом.

Один из важнейших вопросов, от успешного решения которого зависит достоверность получаемых в результате статистической обработки данных выводов, является вопрос репрезентативности выборки, т.е. вопрос полноты и адекватности представления ею интересующих нас свойств анализируемой генеральной совокупности. В практической работе одна и та же группа объектов, взятых для изучения, может рассматриваться как выборка из разных генеральных совокупностей. Так, группу семей, наудачу отобранных из кооперативных домов одной из жилищноэксплуатационных контор (ЖЭК) одного из районов города для подробного социологического обследования, можно рассматривать и как выборку из генеральной совокупности семей (с кооперативной формой жилья) данной ЖЭК, и как выборку из генеральной совокупности семей данного района, и как выборку из генеральной совокупности всех семей города, и, наконец, как выборку из генеральной совокупности всех семей города, проживающих в кооперативных домах. Содержательная интерпретация результатов апробации существенно зависит от того, представителем какой генеральной совокупности мы рассматриваем отобранную группу семей, для какой генеральной совокупности эту выборку можно считать представительной (репрезентативной). Ответ на этот вопрос зависит от многих факторов. В приведенном выше примере, в частности, от наличия или отсутствия специального (быть может, скрытого) фактора, определяющего принадлежность семьи к данной ЖЭК или району в целом (таким фактором может быть, например, среднедушевой доход семьи, географическое расположение района в городе, «возраст» района и т. п.).


Раздел 2. Выборочная и генеральная совокупность

Генеральная и выборочная совокупности.

Статистическая совокупность

Генеральная (включает все единицы наблюдения, которые могут быть к ней отнесены в соответствии с целью исследования.) Генеральная совокупность может рассматриваться не только в пределах конкретных производств или территориальных границ, но также и ограничиваться другими признаками (пол, возраст) и их сочетанием.

Таким образом, в зависимости от цели исследования и его задач изменяются границы генеральной совокупности, для этого используют основные признаки, ее ограничивающие.

Выборочная (часть генеральной совокупности, которая должна быть репрезентативной по отношению к генеральной и наиболее полно отражать ее свойства). На основе анализа выборочной совокупности можно получить достаточно полное представление о закономерностях, присущих всей генеральной совокупности.

Выборочная совокупность должна быть репрезентативной, т. е. в отобранной части должны быть представлены все элементы и в таком же соотношении, как в генеральной совокупности. Иными словами, выборочная совокупность должна отражать свойства генеральной совокупности, т. е. правильно ее представлять. Репрезентативность должна быть количественной и качественной.

Количественная - основана на законе больших чисел и означает достаточную численность элементов выборочной совокупности, расчитываемую по специальным формулам и таблицам.

Качественная - основана на законе вероятности и означает соотвестиве (однотипность) призщнаков, характеризующих элементы выборочной совокупности по отношению к генеральной.

Методы формирования выборки:

-случайная выборка - отбор единиц наблюдния наугад.

-Механическая выборка - арифметический подход к отбору едниц наблдения типологическая выборка - при формировании генеральная совокупность предварительно делится на типы с послед. отбором единиц наблюдения из каждой типичесской группы. При этом число единиц можно отобрать пропорционально численности типической группы и непропорционально- Серийная выборка (гнездовой выбор) - формируется с помощью отбора не отдельных единиц наблюдения, а целых групп, серий, или гнезд, в состав которых входят организованные отдельным образом единицы наблюдения

Метод многоступенчатого отбора - по количеству этапов различают отдноступенчатый, двуступенчатый, терхступенчатый и т.д. метод направленного выбора - позволяет выявить влияние неизвестных факторов при устанавлении влияния известных

Алгоритмы параметрических критериев.

Параметрические критерии применяются для выборок с нормальным законом распределения. Формула расчета этих критериев содержат параметры выборки: среднее, дисперсии и др. Поэтому они называются параметрическими. Нормальность закона распределения должна быть статистически доказана с помощью одного из критериев согласия: критерий Пирсона, F-критерия Фишера, -критерия Колмогорова и др.


В ряде случаев параметрические критерии мощнее непараметрических критериев. У последних выше вероятность возникновения ошибки второго рода – принятия ложной нулевой гипотезы.


К параметрическим методам относятся следующие:

– Критерий Стьюдента

– Критерий Фишера

– Методы однофакторного анализа

– Методы двухфакторного анализа

Критерий Стьюдента


Назначение.
Критерий позволяет оценивать различия средних значений выборок, имеющих нормальное распределение.

Описание критерия.

Критерий применим для сравнения средних значений двух выборок полученных до и после воздействия некоторого фактора.

Данный критерий был разработан Уильямом Госсеттом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны (а руководство Гиннесса считало таковой использование статистического аппарата в своей работе), статья Госсетта вышла в журнале «Биометрика» под псевдонимом «Student» (Студент).

Зависимые(связанные) и независимые (несвязанные) выборки

При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установитьгомоморфную пару (то есть, когда одному случаю из выборки X соответствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называютсязависимыми . Примеры зависимых выборок:

  • пары близнецов,
  • два измерения какого-либо признака до и после экспериментального воздействия,
  • мужья и жёны
  • и т. п.

В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаютсянезависимыми , например:

  • мужчины иженщины ,
  • психологи иматематики .

Соответственно, зависимые выборки всегда имеют одинаковый объём, а объём независимых может отличаться.

Двухвыборочный t-критерий для независимых выборок


Для двух несвязанных выборок(наблюдения не относятся к одной и той же группе объектов) возможны два варианта расчета:

    • когда дисперсии известны
    • когда дисперсии неизвестны, но равны друг другу.

Где

квадратичного отклонения. Здесь и – оценки дисперсий.


Рассмотрим сначала равночисленные выборки. В этом случае

В случае наравночисленных выборок , выражение

В обоих случаев подсчет числа степеней свободы осуществляется по формулам

Понятно, что при численном равенстве выборок

Эмпирическое значениекритерия Стьюдента сравнивается с критическим значением(по таблице 1 приложения) для данного числа степеней свободы.


Нулевая гипотеза .

Пример рассчитаем на лабораторной работе.


Пример.

Психолог измерял время сложной сенсомоторной реакции выбора (в мс) в контрольной и экспериментальных группах. В экспериментальную группу (Х) входило 9 спортсменов высокой квалификации. Контрольной группой (Y) являлись 8 человек, активно не занимающиеся спортом. Психолог приверяет гипотезу о том, что средняя скорость сложной сенсомоторной реакции выбора у спортсменов выше, чем та же величина у людей, не занимающихся спортом.



Группы


Отклонения от среднего


Квадраты отклонений

X

Y

1

504

580

-22

-58

484

3368

2

560

692

34

54

1156

2916

3

420

700

-106

62

11236

3844

4

600

621

74

-17

5476

289

5

580

640

54

-2

2916

4

6

530

561

4

-77

16

5929

7

490

680

-36

42

1296

1764

8

580

630

54

-8

2916

64

9

470

-

-56

-

3136

-

Сумма

4734

5104

0

0

28632

18174

Среднее

526

638

Cредне арифметические значенияXи У:, в контрольной группе.

Тогда

^ Число степеней свободы k=9+8-2=15

По таблице приложения для данного числа степеней находим

Строим ось значимости






Т.о. обнаруженные психологом различия между экспериментальной и контрольной группами значимы более чем на 0,1% уровне или иначе говоря средняя скорость сложной сенсомоторной реакции выбора в группе спортсменов существенно выше чем в группе людей активно не занимающихся спортом.

В терминах статистических гипотез это утверждение звучит так: гипотеза Н0 о сходстве отклоняется и на 0,1% уровне значимости принимается альтернативная гипотеза Н1 – о различии между экспериментальной и контрольной группой.

Двухвыборочный t-критерий для зависимых(связанных) выборок

Под связанными выборками понимаются наблюдения для одной группы объектов, причем все наблюдения попарно связаны с каждый объектом исследования и характеризуют его состояние до воздействия и после воздействия некоторого фактора.

Гипотезы

: среднее значение в выборке не отличается от нуля.

: среднее значение в выборке отличается от нуля.

1. Предварительно проверяется нормальность закона распределения по одному из критериев согласия.

2. Рассчитывается(i=1..n) – попарные разности вариант,ирезультаты измерений дляi- го объекта до и после воздействия некоторого фактора. Величинубудем считать независимой для разных объектов и нормально распределенной

3. Рассчитываются (лучше в табличной форме): сумма попарных разностейи вспомогательные параметрыи.

4. Рассчитывается- эмпирическое значение критериястепенями свободы по формуле

Где n – численность выборки.

5.Найденное эмпирическое значение критерия Стьюдента сравнивается с критическим значением (по таблице 1 приложения) для данного числа степеней свободы.
Нулевая гипотеза при заданном уровне значимости принимается, если эмпирическое значение .

Критическое значение для выбранной вероятности и заданного числа степеней свободы можно найти по встроенной в Excel функции СТЬЮДРАСПОБР.


Пример.

Психолог предположил, что в результате тренировки, время решения эквивалентных задач (т.е. имеющих один и тот же алгоритм решения) будет значительно уменьшаться. Для проверки гипотезы у восьми испытуемых сравнивалось время решения (в минутах) первой и третьей задачи.


Решение задачи представим в таблице.


Номер испытуемого


1 задача


3 задача

Генеральная совокупность – совокупность элементов, удовлетворяющих неким заданным условиям; именуется также изучаемой совокупностью. Генеральная совокупность (Universe) - все множество объектов (субъектов) исследования, из которого выбираются (могут выбираться) объекты (субъекты) для обследования (опроса).

ВЫБОРКА или выборочная совокупность (Sample) - это множество объектов (субъектов), отобранных специальным образом для обследования (опроса). Любые данные, полученные на основании выборочного обследования (опроса), имеют вероятностный характер. На практике это означает, что в ходе исследования определяется не конкретное значение, а интервал, в котором определяемое значение находится.

Характеристики выборки:

Качественная характеристика выборки – что именно мы выбираем и какие способы построения выборки мы для этого используем.

Количественная характеристика выборки – сколько случаев выбираем, другими словами объём выборки.

Необходимость выборки:

Объект исследования очень обширный. Например, потребители продукции глобальной компании – огромное количество территориально разбросанных рынков.

Существует необходимость в сборе первичной информации.

Объём выборки - число случаев, включённых в выборочную совокупность.

Зависимые и независимые выборки.

При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X соответствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми .

В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми.

Типы выборки.

Выборки делятся на два типа:

Вероятностные;

Не вероятностные;

Репрезентативная выборка - выборочная совокупность, в которой основные характеристики совпадают с характеристиками генеральной совокупности. Только для этого типа выборки результаты обследования части единиц (объектов) можно распространять на всю генеральную совокупность. Необходимое условие для построения репрезентативной выборки - наличие информации о генеральной совокупности, т.е. либо полный список единиц (субъектов) генеральной совокупности, либо информация о структуре по характеристикам, существенно влияющим на отношение к предмету исследования.

17. Дискретный вариационный ряд, ранжирование, частота, частность.

Вариационным рядом (статистическим рядом) – называется последовательность вариант, записанных в порядке возрастания и соответствующих им весов.

Вариационный ряд может быть дискретным (выборка значений дискретной случайной величины) и непрерывным (интервальным) (выборка значений непрерывной случайной величины).

Дискретный вариационный ряд имеет вид:

Наблюдаемые значения случайной величины х1, х2, …, хk называются вариантами, а изменение этих значений называются варьированием.

Выборка (выборочная совокупность) – совокупность наблюдений, отобранных случайным образом из генеральной совокупности.

Число наблюдений в совокупности называется ее объемом.

N – объем генеральной совокупности.

n – объем выборки(сумма всех частот ряда).

Частотой варианты хi называется число ni (i=1,…,k), показывающее, сколько раз эта варианта встречается в выборке.

Частостью (относительной частотой, долей) варианты хi (i=1,…,k) называется отношение ее частоты ni к объему выборки n.
wi =ni /n

Ранжирование опытных данных - операция, заключающаяся в том, что результаты наблюдений над случайной величиной, т. е. наблюдаемые значения случайной величины, располагают в порядке неубывания.

Дискретным вариационным рядом распределения называется ранжированная совокупность вариантов хi с соответствующими им частотами или частностями.

http://www.hi-edu.ru/e-books/xbook096/01/index.html?part-011.htm – очень полезный сайт!

Выборочный метод исследования является основным статистическим методом. Это естественно, так как объем изучаемых объектов как правило бесконечен (и даже, если конечен, то весьма затруднительно перебрать все объекты, приходится довольствоваться лишь их частью, выборкой).

Генеральная и выборочная совокупности

Генеральной совокупностью называется совокупность всех исследуемых в данном эксперименте элементов.

Выборочной совокупностью (или выборкой) называется конечная совокупность объектов, случайно отобранных из генеральной совокупности.

Объемом совокупности (выборочной или генеральной) называется число объектов этой совокупности.

Пример генеральной и выборочной совокупностей

Допустим, исследуется психологическая предрасположенность человека к делению данного отрезка в отношении золотого сечения. Так как происхождение самого понятия золотого сечения продиктовано антропометрией человеческого тела, то понятно, что в данном случае генеральной совокупностью является любое антропогенное существо достигшее физической зрелости и приобретшее окончательные пропорции, то есть - вся взрослая часть человечества. Объем этой совокупности практически бесконечен.

Если же эта предрасположенность исследуется исключительно в художественной среде, то генеральная совокупность - это люди, имеющие непосредственное отношение к дизайну: художники, архитекторы, дизайнеры. Таких людей тоже очень много, и можно считать, что объем генеральной совокупности в данном случае тоже бесконечен.

И в том, и в другом случае для исследования мы вынуждены ограничиться разумными объемами выборок, выбирая в качестве представителей той и другой совокупностей студентов технических специальностей (как людей, далеких от художественного мира) или студентов специальности дизайн (как людей, имеющих непосредственное отношение к миру художественных образов).

Репрезентативность

Основной проблемой выборочного метода является вопрос о том, насколько точно объекты, отобранные из генеральной совокупности для исследования, представляют изучаемые характеристики генеральной совокупности, то есть - вопрос о репрезентативности выборки.

Итак, выборка называется репрезентативной (представительной), если она достаточно точно представляет количественные соотношения генеральной совокупности.

Разумеется, трудно сказать, что именно скрывается за расплывчатой формулировкой достаточно точно . Вопросы репрезентативности вообще являются наиболее спорными в любом экспериментальном исследовании. Имеется масса ставших уже классическими примеров, когда недостаточная представительность выборки приводила экспериментаторов к абсурдным результатам.

Как правило, вопросы репрезентативности решаются при помощи экспертной оценки, когда научное сообщество принимает точку зрения группы авторитетных специалистов по поводу корректности проведенного исследования.

Пример репрезентативности

Вернемся к примеру с делением отрезка. Вопросы репрезентативности выборок лежат здесь в самой основе исследования: мы ни в коем случае не должны смешивать группы испытуемых по признаку принадлежности их к художественной среде.

Статистическое распределение наблюдаемого признака

Частота наблюдаемого значения

Пусть в результате испытания в выборке объема наблюдаемый признакпринял значения,, …, причем значениенаблюдалосьраз, значение-раз, и т. д., значениенаблюдалосьраз. Тогда частотой наблюдаемого значенияназывается число, значения- числои т. д.

Относительная частота наблюдаемого значения

Относительной частотой наблюдаемого значенияпризнаканазывается отношение частотык объемувыборки:

Понятно, что сумма частот наблюдаемого признака должна давать объем выборки

а сумма относительных частот должна давать единицу:

Эти соображения можно использовать для контроля при составлении статистических таблиц. Если равенства не соблюдаются, то при протоколировании результатов эксперимента была допущена ошибка.

Статистическое распределение наблюдаемого значения

Статистическим распределением наблюдаемого признака называется соответствие между наблюдаемыми значениями признака и отвечающими им частотами (или относительными частотами).

Как правило, статистическое распределение записывается в виде двухстрочной таблицы, в которой в первой строке указываются наблюдаемые значения признака, а во второй - соответствующие им частоты (или относительные частоты):

Если наблюдаемый признак характеризуется непрерывной случайной величиной , принимающей значения из интервала, то его статистическое распределение описывается частотами попадания в частичные интервалы:

В предыдущем разделе нас интересовала распределение признака в некоторой совокупности элементов. Совокупность, которая объединяет все элементы, имеющая этот признак, называется генеральный. Если признак человеческий (национальность, образование, коэффициент IQ т.п.), то генеральная совокупность -- все население земли. Это очень большая совокупность, то есть число элементов в совокупности n велико. Число элементов называется объемом совокупности. Совокупности могут быть конечными и бесконечными. Генеральная совокупность - все люди хотя и очень большая, но, естественно, конечная. Генеральная совокупность - все звезды, наверное, бесконечно.

Если исследователь проводит измерение некоторой непрерывной случайной величины X, то каждый результат измерения можно считать элементом некоторой гипотетической неограниченной генеральной совокупности. В этой генеральной совокупности бесчисленная количество результатов распределены по вероятности под влиянием погрешностей в приборах, невнимательности экспериментатора, случайных помех в самом явлении и др.

Если мы проведем n повторных измерений случайной величины Х, то есть получим n конкретных различных численных значений, то этот результат эксперимента можно считать выборкой объема n из гипотетической генеральной совокупности результатов единичных измерений.

Естественно считать, что действительным значением измеряемой величины является среднее арифметическое от результатов. Эта функция от n результатов измерений называется статистикой, и она сама является случайной величиной, имеющей некоторое распределение называемая выборочным распределением. Определение выборочного распределения той или иной статистики -- важнейшая задача статистического анализа. Ясно, что это распределение зависит от объема выборки n и от распределения случайной величины Х гипотетической генеральной совокупности. Выборочное распределение статистики представляет собой распределение Х q в бесконечной совокупности всех возможных выборок объема n из исходной генеральной совокупности.

Можно проводить измерения и дискретной случайной величины.

Пусть измерение случайной величины Х представляет собой бросание правильной однородной треугольной пирамиды, на гранях которой написаны числа 1, 2, 3, 4. Дискретная, случайная величина Х имеет простое равномерное распределение:

Эксперимент можно производить неограниченное число раз. Гипотетической теоретической генеральной совокупностью является бесконечная совокупность, в которой имеются одинаковые доли (по 0.25) четырех разных элементов, обозначенных цифрами 1, 2, 3, 4. Серия из n повторных бросаний пирамиды или одновременное бросание n одинаковых пирамид можно рассматривать как выборку объема n из этой генеральной совокупности. В результате эксперимента имеем n чисел. Можно ввести некоторые функции этих величин, которые называются статистиками, они могут быть связаны с определенными параметрами генерального распределения.

Важнейшими числовыми характеристиками распределений являются вероятности Р i , математическое ожидание М, дисперсия D. Статистиками для вероятностей Р i являются относительные частоты, где n i -- частота результата i (i=1,2,3,4) в выборке. Математическому ожиданию М соответствует статистика

которая называется выборочным средним. Выборочная дисперсия

соответствует генеральной дисперсии D.

Относительная частота любого события (i=1,2,3,4) в сериях из n повторных испытаний (или в выборках объема n из генеральной совокупности) будет иметь биномиальное распределение.

У этого распределения математическое ожидание равно 0.25 (не зависит от n), а среднее квадратическое отклонение равно (быстро убывает с ростом n). Распределение является выборочным распределением статистики, относительная частота любого из четырех возможных результатов единичного бросания пирамиды в n повторных испытаниях. Если бы мы выбрали из бесконечной, генеральной совокупности, в которой четыре разных элемента (i=1,2,3,4) имеют равные доли по 0.25, все возможные выборки объемом n (их число также бесконечно), то получили бы так называемую математическую выборку объема n. В этой выборке каждый из элементов (i=1,2,3,4) распределен по биномиальному закону.

Допустим, мы выполнили бросания этой пирамиды, и число двойка выпало 3 раза (). Мы можем найти вероятность этого результата, используя выборочное распределение. Она равна

Наш результат оказался весьма маловероятным; в серии из двадцати четырех кратных бросаний он встречается примерно один раз. В биологии такой результат обычно считается практически невозможным. В этом случае у нас появится сомнение: является пирамида правильной и однородной, справедливо ли при одном бросании равенство, верно ли распределение и, следовательно, выборочное распределение.

Чтобы разрешить сомнение, надо выполнить еще один раз четырехкратное бросание. Если снова появится результат, то вероятность двух результатов с очень мала. Ясно, что мы получили практически совершенно невозможный результат. Поэтому исходное распределение неверное. Очевидно, что, если второй результат окажется еще маловероятней, то имеется еще большее оснований разобраться с этой "правильной" пирамидой. Если же результат повторного эксперимента будет и, тогда можно считать, что пирамида правильная, а первый результат (), тоже верный, но просто маловероятный.

Нам можно было и не заниматься проверкой правильности и однородности пирамиды, а считать априори пирамиду правильной и однородной, и, следовательно, правильным выборочное распределение. Далее следует выяснить, что дает знание выборочного распределения для исследования генеральной совокупности. Но поскольку установление выборочного распределения является основной задачей статистического исследования, подробное описание экспериментов с пирамидой можно считать оправданным.

Будем считать, что выборочное распределение верное. Тогда экспериментальные значения относительной частоты в различных сериях по n бросаний пирамиды будут группироваться около значения 0.25, являющегося центром выборочного распределения и точным значением оцениваемой вероятности. В этом случае говорят, что относительная частота является несмещенной оценкой. Поскольку, выборочная дисперсия стремиться к нулю с ростом n, то экспериментальные значения относительной частоты будут все теснее группироваться около математического ожидания выборочного распределения с ростом объема выборки. Поэтому является состоятельной оценкой вероятности.

Если бы пирамида оказалась направильной и неоднородной, то выборочные распределения для различных (i=1,2,3,4) имели бы отличные математические ожидания (разные) и дисперсии.

Отметим, что полученные здесь биномиальные выборочные распределения при больших n () хорошо апроксимируются нормальным распределением с параметрами и, что значительно упрощает расчеты.

Продолжим случайный эксперимент -- бросание правильной, однородной, треугольной пирамиды. Случайная величина Х, связанная с этим опытом, имеет распределение. Математическое ожидание здесь равно

Проведем n бросаний, что эквивалентно случайной выборке объема n из гипотетической, бесконечной, генеральной совокупности, содержащей равные доли (0.25) четырех разных элементов. Получим n выборочных значений случайной величины Х (). Выберем статистику, которая представляет собой выборочное среднее. Величина сама является случайной величиной, имеющей некоторое распределение, зависящее от объема выборки и распределения исходной, случайной величины Х. Величина является усредненной суммой n одинаковых, случайных величин (то есть с одинаковым распределением). Ясно, что

Поэтому статистика является несмещенной оценкой математического ожидания. Она является также состоятельной оценкой, поскольку

Таким образом, теоретическое выборочное распределение имеет тоже математическое ожидание, что и у исходного распределения, дисперсия уменьшена в n раз.

Напомним, что равна

Математическая, абстрактная бесконечная выборка, связанная с выборкой объема n из генеральной совокупности и с введенной статистикой будет содержать в нашем случае элементов. Например, если, то в математической выборке будут элементы со значениями статистики. Всего элементов будет 13. Доля крайних элементов в математической выборке будет минимальной, так как результаты и имеют вероятности, равные. Среди множества элементарных исходов четырех кратного бросания пирамиды имеются только по одному благоприятному и. При приближении статистик к средним значениям, вероятности будут возрастать. Например, значение будет реализоваться при элементарных исходах, и т. д. Соответственно возрастет и доля элемента 1.5 в математической выборке.

Среднее значение будет иметь максимальную вероятность. С ростом n экспериментальные результаты будут теснее группироваться около среднего значения. То обстоятельство, что среднее выборочного среднего равно среднему исходной совокупности часто используется в статистике.

Если выполнить расчеты вероятностей в выборочном распределении с, то можно убедиться, что уже при таком небольшом значении n выборочное распределение будет выглядеть как нормальное. Оно будет симметричным, в котором значение будет медианой, модой и математическим ожиданием. С ростом n оно хорошо апроксимируется соответствующим нормальным даже, если исходное распределение прямоугольное. Если же исходное распределение нормально, то распределение является распределением Стьюдента при любом n.

Для оценки генеральной дисперсии необходимо выбрать более сложную статистику, которая дает несмещенную и состоятельную оценку. В выборочном распределении для S 2 математическое ожидание равно, а дисперсия. При больших объемах выборок выборочное распределение можно считать нормальным. При малых n и нормальном исходном распределении выборочное распределение для S 2 будет ч 2 _распределение.

Выше мы попытались представить первые шаги исследователя, пытающегося провести простой статистический анализ повторных экспериментов с правильной однородной треугольной призмой (тетраэдром). В этом случае нам известно исходное распределение. Можно в принципе теоретически получить и выборочные распределения относительной частоты, выборочного среднего и выборочной дисперсии в зависимости от числа повторных опытов n. При больших n все эти выборочные распределения будут приближаться к соответствующим нормальным распределениям, так как они представляют собой законы распределения сумм независимых случайных величин (центральная предельная теорема). Таким образом, нам известны ожидаемые результаты.

Повторные эксперименты или выборки дадут оценки параметров выборочных распределений. Мы утверждали, что экспериментальные оценки будут правильными. Мы не выполняли эти эксперименты и даже не приводили результаты опытов, полученные другими исследователями. Можно подчеркнуть, что при определении законов распределений теоретические методы используются чаще, чем прямые эксперименты.