Формула расчета скорости химической реакции. Скорость химических реакций и факторы от которых она зависит: природа реагирующих веществ, их концентрация, температура протекания химических реакций, поверхность соприкосновения реагирующих веществ, катализато

Скорость химических реакций, ее зависимость от различных факторов

Гомогенные и гетерогенные химические реакции

Химические реакции протекают с различными скоростями: с малой скоростью — при образовании сталактитов и сталагмитов, со средней скоростью — при варке пищи, мгновенно — при взрыве. Очень быстро проходят реакции в водных растворах, практически мгновенно. Смешаем растворы хлорида бария и сульфата натрия — сульфат бария в виде осадка образуется немедленно. Быстро, но не мгновенно, горит сера, магний растворяется в соляной кислоте, этилен обесцвечивает бромную воду. Медленно образуется ржавчина на железных предметах, налет на медных и бронзовых изделиях, медленно гниет листва, разрушаются зубы.

Предсказание скорости химической реакции, а также выяснение ее зависимости от условий проведения процесса — задача химической кинетики — науки о закономерностях протекания химических реакций во времени.

Если химические реакции происходят в однородной среде, например, в растворе или в газовой фазе, то взаимодействие реагирующих веществ происходит во всем объеме. Такие реакции, как вы знаете, называют гомогенными .

Скорость гомогенной реакции ($v_{гомог.}$) определяется как изменение количества вещества в единицу времени в единице объема:

$υ_{гомог.}={∆n}/{∆t·V},$

где $∆n$ — изменение числа молей одного вещества (чаще всего исходного, но может быть и продукта реакции); $∆t$ — интервал времени (с, мин.); $V$ — объем газа или раствора (л).

Поскольку отношение количества вещества к объему представляет собой молярную концентрацию $С$, то

${∆n}/{V}=∆C.$

Таким образом, скорость гомогенной реакции определяется как изменение концентрации одного из веществ в единицу времени:

$υ_{гомог.}={∆C}/{∆t}[{моль}/{л·с}]$

если объем системы не меняется. Если реакция идет между веществами, находящимися в разных агрегатных состояниях (например, между твердым веществом и газом или жидкостью), или между веществами, неспособными образовывать гомогенную среду (например, между несмешивающимися жидкостями), то она проходит только на поверхности соприкосновения веществ. Такие реакции называют гетерогенными .

Скорость гетерогенной реакции определяется как изменение количества вещества в единицу времени на единице поверхности:

$υ_{гомог.}={∆C}/{∆t·S}[{моль}/{c·м^2}]$

где $S$ — площадь поверхности соприкосновения веществ ($м^2, см^2$).

Если при какой-либо протекающей реакции экспериментально измерять концентрацию исходного вещества в разные моменты времени, то графически можно отобразить ее изменение с помощью кинетической кривой для этого реагента.

Скорость реакции не является постоянной величиной. Мы указывали лишь некоторую среднюю скорость данной реакции в определенном интервале времени.

Представьте себе, что мы определяем скорость реакции

$H_2+Cl_2→2HCl$

а) по изменению концентрации $Н_2$;

б) по изменению концентрации $HCl$.

Одинаковые ли мы получим значения? Ведь из $1$ моль $Н_2$ образуется $2$ моль $HCl$, поэтому и скорость в случае б) окажется больше в два раза. Следовательно, значение скорости реакции зависит и от того, по какому веществу ее определяют.

Изменение количества вещества, по которому определяют скорость реакции, — это внешний фактор, наблюдаемый исследователем. По сути, все процессы осуществляются на микроуровне. Очевидно, для того, чтобы какие-то частицы прореагировали, они прежде всего должны столкнуться, причем столкнуться эффективно: не разлететься, как мячики, в разные стороны, а так, чтобы в частицах разрушились или ослабли старые связи и смогли образоваться новые, а для этого частицы должны обладать достаточной энергией.

Расчетные данные показывают, что, например, в газах столкновения молекул при атмосферном давлении исчисляются миллиардами за $1$ секунду, т.е. все реакции должны были бы идти мгновенно. Но это не так. Оказывается, что лишь очень небольшая доля молекул обладает необходимой энергией, приводящей к эффективному соударению.

Минимальный избыток энергии, который должна иметь частица (или пара частиц), чтобы произошло эффективное соударение, называют энергией активации $E_a$.

Таким образом, на пути всех частиц, вступающих в реакцию, имеется энергетический барьер, равный энергии активации $E_a$. Когда он мал, то находится много частиц, которые могут его преодолеть, и скорость реакции велика. В противном случае требуется толчок. Когда вы подносите спичку, чтобы зажечь спиртовку, вы сообщаете дополнительную энергию $E_a$, необходимую для эффективного соударения молекул спирта с молекулами кислорода (преодоление барьера).

В заключение сделаем вывод: многие возможные реакции практически не идут, т.к. высока энергия активации.

Это имеет огромное значение для нашей жизни. Представьте, что бы случилось, если бы все термодинамически разрешенные реакции могли идти, не имея никакого энергетического барьера (энергии активации). Кислород воздуха прореагировал бы со всем, что может гореть или просто окисляться. Пострадали бы все органические вещества, они превратились бы в углекислый газ $CO_2$ и воду $H_2O$.

Скорость химической реакции зависит от многих факторов. Основными из них являются: природа и концентрация реагирующих веществ, давление (в реакциях с участием газов), температура, действие катализаторов и поверхность реагирующих веществ в случае гетерогенных реакций. Рассмотрим влияние каждого из этих факторов на скорость химической реакции.

Температура

Вам известно, что при повышении температуры в большинстве случаев скорость химической реакции значительно возрастает. В XIX в. голландский химик Я. Х. Вант-Гофф сформулировал правило:

Повышение температуры на каждые $10°С$ приводит к увеличению скорости реакции в 2-4 раза (эту величину называют температурным коэффициентом реакции).

При повышении температуры средняя скорость молекул, их энергия, число столкновений увеличиваются незначительно, зато резко повышается доля активных молекул, участвующих в эффективных соударениях, преодолевающих энергетический барьер реакции.

Математически эта зависимость выражается соотношением:

$υ_{t_2}=υ_{t_1}γ^{{t_2-t_1}/{10}},$

где $υ_{t_1}$ и $υ_{t_2}$ — скорости реакции соответственно при конечной $t_2$ и начальной $t_1$ температурах, а $γ$ — температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции с повышением температуры на каждые $10°С$.

Однако для увеличения скорости реакции повышение температуры не всегда применимо, т.к. исходные вещества могут начать разлагаться, могут испаряться растворители или сами вещества.

Концентрация реагирующих веществ

Изменение давления при участии в реакции газообразных веществ также приводит к изменению концентрации этих веществ.

Чтобы осуществилось химическое взаимодействие между частицами, они должны эффективно столкнуться. Чем больше концентрация реагирующих веществ, тем больше столкновений и, соответственно, выше скорость реакции. Например, в чистом кислороде ацетилен сгорает очень быстро. При этом развивается температура, достаточная для плавления металла. На основе большого экспериментального материала в 1867 г. норвежцами К. Гульденбергом и П. Вааге и независимо от них в 1865 г. русским ученым Н. И. Бекетовым был сформулирован основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ.

Скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных их коэффициентам в уравнении реакции.

Этот закон называют также законом действующих масс.

Для реакции $А+В=D$ этот закон выражается так:

$υ_1=k_1·C_A·C_B$

Для реакции $2А+В=D$ этот закон выражается так:

$υ_2=k_2·C_A^2·C_B$

Здесь $С_А, С_В$ — концентрации веществ $А$ и $В$ (моль/л); $k_1$ и $k_2$ — коэффициенты пропорциональности, называемые константами скорости реакции.

Физический смысл константы скорости реакции нетрудно установить — она численно равна скорости реакции, в которой концентрации реагирующих веществ равны $1$ моль/л или их произведение равно единице. В таком случае ясно, что константа скорости реакции зависит только от температуры и не зависит от концентрации веществ.

Закон действующих масс не учитывает концентрации реагирующих веществ, находящихся в твердом состоянии, т.к. они реагируют на поверхности, и их концентрации обычно являются постоянными.

Например, для реакции горения угля

выражение скорости реакции должно быть записано так:

$υ=k·C_{O_2}$,

т. е. скорость реакции пропорциональна только концентрации кислорода.

Если же уравнение реакции описывает лишь суммарную химическую реакцию, проходящую в несколько стадий, то скорость такой реакции может сложным образом зависеть от концентраций исходных веществ. Эта зависимость определяется экспериментально или теоретически на основании предполагаемого механизма реакции.

Действие катализаторов

Можно увеличить скорость реакции, используя специальные вещества, которые изменяют механизм реакции и направляют ее по энергетически более выгодному пути с меньшей энергией активации. Их называют катализаторами (от лат. katalysis — разрушение).

Катализатор действует как опытный проводник, направляющий группу туристов не через высокий перевал в горах (его преодоление требует много сил и времени и не всем доступно), а по известным ему обходным тропам, по которым можно преодолеть гору значительно легче и быстрее. Правда, по обходному пути можно попасть не совсем туда, куда ведет главный перевал. Но иногда именно это и требуется! Именно так действуют катализаторы, которые называют селективными . Ясно, что нет необходимости сжигать аммиак и азот, зато оксид азота (II) находит применение в производстве азотной кислоты.

Катализаторы — это вещества, участвующие в химической реакции и изменяющие ее скорость или направление, но по окончании реакции остающиеся неизменными количественно и качественно.

Изменение скорости химической реакции или ее направления с помощью катализатора называют катализом . Катализаторы широко используют в различных отраслях промышленности и на транспорте (каталитические преобразователи, превращающие оксиды азота выхлопных газов автомобиля в безвредный азот).

Различают два вида катализа.

Гомогенный катализ , при котором и катализатор, и реагирующие вещества находятся в одном агрегатном состоянии (фазе).

Гетерогенный катализ , при котором катализатор и реагирующие вещества находятся в разных фазах. Например, разложение пероксида водорода в присутствии твердого катализатора оксида марганца (IV):

$2H_2O_2{→}↖{MnO_2(I)}2H_2O_{(ж)}+O_2(г)$

Сам катализатор не расходуется в результате реакции, но если на его поверхности адсорбируются другие вещества (их называют каталитическими ядами ), то поверхность становится неработоспособной, требуется регенерация катализатора. Поэтому перед проведением каталитической реакции тщательно очищают исходные вещества.

Например, при производстве серной кислоты контактным способом используют твердый катализатор — оксид ванадия (V) $V_2O_5$:

$2SO_2+O_2⇄2SO_3$

При производстве метанола используют твердый цинкохромовый катализатор ($8ZnO·Cr_2O_3×CrO_3$):

$CO_{(г)}+2H_{2(г)}⇄CH_3OH_{(г)}$

Очень эффективно работают биологические катализаторы — ферменты . По химической природе это белки. Благодаря им в живых организмах при невысокой температуре с большой скоростью протекают сложные химические реакции. Ферменты отличаются особой специфичностью, каждый из них ускоряет только свою реакцию, идущую в нужное время и в нужном месте с выходом, близким к $100%$. Создание аналогичных ферментам искусственных катализаторов — мечта химиков!

Вы, конечно, слышали и о других интересных веществах — ингибиторах (от лат. inhibere — задерживать). Они с высокой скоростью реагируют с активными частицами с образованием малоактивных соединений. В результате реакция резко замедляется и затем прекращается. Ингибиторы часто специально добавляют в разные вещества, чтобы предотвратить нежелательные процессы.

Например, с помощью ингибиторов стабилизируют растворы пероксида водорода, мономеры для предотвращения преждевременной полимеризации, соляную кислоту, чтобы была возможность ее транспортировки в стальной таре. Ингибиторы содержатся и в живых организмах, они подавляют различные вредные реакции окисления в клетках тканей, которые могут инициироваться, например, радиоактивным излучением.

Природа реагирующих веществ (их состав, строение)

Значение энергии активации является тем фактором, посредством которого сказывается влияние природы реагирующих веществ на скорость реакции.

Если энергия активации мала ($< 40$ кДж/моль), то это означает, что значительная часть столкновений между частицами реагирующих веществ приводит к их взаимодействию, и скорость такой реакции очень большая. Все реакции ионного обмена протекают практически мгновенно, ибо в этих реакциях участвуют разноименно заряженные ионы, и энергия активации в этих случаях ничтожно мала.

Если энергия активации велика ($> 120$ кДж/моль), то это означает, что лишь ничтожная часть столкновений между взаимодействующими частицами приводит к реакции. Скорость такой реакции поэтому очень мала. Например, протекание реакции синтеза аммиака при обычной температуре заметить практически невозможно.

Если энергии активации имеют промежуточные значения ($40-120$ кДж/моль), то скорости таких реакций будут средними. К таким реакциям можно отнести взаимодействие натрия с водой или этиловым спиртом, обесцвечивание бромной воды этиленом, взаимодействие цинка с соляной кислотой и др.

Поверхность соприкосновения реагирующих веществ

Скорость реакций, идущих на поверхности веществ, т.е. гетерогенных, зависит при прочих равных условиях от свойств этой поверхности. Известно, что растертый в порошок мел гораздо быстрее растворяется в соляной кислоте, чем равный по массе кусочек мела.

Увеличение скорости реакции объясняется, в первую очередь, увеличением поверхности соприкосновения исходных веществ, а также рядом других причин, например, разрушением структуры правильной кристаллической решетки. Это приводит к тому, что частицы на поверхности образующихся микрокристаллов значительно реакционноспособнее, чем те же частицы на гладкой поверхности.

В промышленности для проведения гетерогенных реакций используют кипящий слой, чтобы увеличить поверхность соприкосновения реагирующих веществ, подвод исходных веществ и отвод продуктов. Например, при производстве серной кислоты с помощью кипящего слоя проводят обжиг колчедана; в органической химии с применением кипящего слоя проводят каталитический крекинг нефтепродуктов и регенерацию (восстановление) вышедшего из строя (закоксованного) катализатора.

В жизни мы сталкиваемся с разными химическими реакциями. Одни из них, как ржавление железа, могут идти несколько лет. Другие, например, сбраживание сахара в спирт, - несколько недель. Дрова в печи сгорают за пару часов, а бензин в моторе - за долю секунды.

Чтобы уменьшить затраты на оборудование, на химических заводах повышают скорость реакций. А некоторые процессы, например, порчу пищевых продуктов, коррозию металлов, - нужно замедлить.

Скорость химической реакции можно выразить как изменение количества вещества (n, по модулю) в единицу времени (t) - сравните скорость движущегося тела в физике как изменение координат в единицу времени: υ = Δx/Δt . Чтобы скорость не зависела от объема сосуда, в котором протекает реакция, делим выражение на объем реагирующих веществ (v), т. е. получаем изменение количества вещества в единицу времени в единице объема, или изменение концентрации одного из веществ в единицу времени :


n 2 − n 1 Δn
υ = –––––––––– = –––––––– = Δс/Δt (1)
(t 2 − t 1) v Δt v

где c = n / v - концентрация вещества,

Δ (читается «дельта») - общепринятое обозначение изменения величины.

Если в уравнении у веществ разные коэффициенты, скорость реакции для каждого из них, рассчитанная по этой формуле будет различной. Например, 2 моль серни́стого газа прореагировали полностью с 1 моль кислорода за 10 секунд в 1 литре:

2SO 2 + O 2 = 2SO 3

Скорость по кислороду будет: υ = 1: (10 1) = 0,1 моль/л·с

Скорость по серни́стому газу: υ = 2: (10 1) = 0,2 моль/л·с - это не нужно запоминать и говорить на экзамене, пример приведен для того, чтобы не путаться, если возникнет этот вопрос.

Скорость гетерогенных реакций (с участием твердых веществ) часто выражают на единицу площади соприкасающихся поверхностей:


Δn
υ = –––––– (2)
Δt S

Гетерогенными называются реакции, когда реагирующие вещества находятся в разных фазах:

  • твердое вещество с другим твердым, жидкостью или газом,
  • две несмешивающиеся жидкости,
  • жидкость с газом.

Гомогенные реакции протекают между веществами в одной фазе:

  • между хорошо смешивающимися жидкостями,
  • газами,
  • веществами в растворах.

Условия, влияющие на скорость химических реакций

1) Скорость реакции зависит от природы реагирующих веществ . Проще говоря, разные вещества реагируют с разной скоростью. Например, цинк бурно реагирует с соляной кислотой, а железо довольно медленно.

2) Скорость реакции тем больше, чем выше концентрация веществ. С сильно разбавленной кислотой цинк будет реагировать значительно дольше.

3) Скорость реакции значительно повышается с повышением температуры . Например, для горения топлива необходимо его поджечь, т. е. повысить температуру. Для многих реакций повышение температуры на 10° C сопровождается увеличением скорости в 2–4 раза.

4) Скорость гетерогенных реакций увеличивается с увеличением поверхности реагирующих веществ . Твердые вещества для этого обычно измельчают. Например, чтобы порошки железа и серы при нагревании вступили в реакцию, железо должно быть в виде мелких опилок.

Обратите внимание, что в данном случае подразумевается формула (1) ! Формула (2) выражает скорость на единице площади, следовательно не может зависеть от площади.

5) Скорость реакции зависит от наличия катализаторов или ингибиторов.

Катализаторы - вещества, ускоряющие химические реакции, но сами при этом не расходующиеся. Пример - бурное разложение перекиси водорода при добавлении катализатора - оксида марганца (IV):

2H 2 O 2 = 2H 2 O + O 2

Оксид марганца (IV) остается на дне, его можно использовать повторно.

Ингибиторы - вещества, замедляющие реакцию. Например, для продления срока службы труб и батарей в систему водяного отопления добавляют ингибиторы коррозии. В автомобилях ингибиторы коррозии добавляются в тормозную, охлаждающую жидкость.

Еще несколько примеров.

Понятие «скорость» довольно часто встречается в литературе. Из физики известно, что чем большее расстояние преодолеет материальное тело (человек, поезд, космический корабль) за определённый отрезок времени, тем выше скорость этого тела.

А как измерить скорость химической реакции, которая никуда «не идёт» и никакое расстояние не преодолевает? Для того чтобы ответить на этот вопрос, следует выяснить, а что всегда меняется в любой химической реакции? Поскольку любая химическая реакция - это процесс изменения вещества, то исходное вещество в ней исчезает, превращаясь в продукты реакции. Таким образом, в ходе химической реакции всегда изменяется количество вещества, уменьшается число частиц исходных веществ, а значит, и его концентрация (С) .

Задание ЕГЭ. Скорость химической реакции пропорциональна изменению:

  1. концентрации вещества в единицу времени;
  2. количеству вещества в единице объёма;
  3. массы вещества в единице объёма;
  4. объёму вещества в ходе реакции.

А теперь сравните свой ответ с правильным:

скорость химической реакции равна изменению концентрации реагирующего вещества в единицу времени

где С 1 и С 0 - концентрации реагирующих веществ, конечная и начальная, соответственно; t 1 и t 2 - время эксперимента, конечный и начальный отрезок времени, соответственно.

Вопрос. Как вы считаете, какая величина больше: С 1 или С 0 ? t 1 или t 0 ?

Поскольку реагирующие вещества всегда расходуются в данной реакции, то

Таким образом, отношение этих величин всегда отрицательно, а скорость не может быть величиной отрицательной. Поэтому в формуле появляется знак «минус», который одновременно говорит о том, что скорость любой реакции с течением времени (при неизменных условиях) всегда уменьшается .

Итак, скорость химической реакции равна:

Возникает вопрос, в каких единицах следует измерять концентрацию реагирующих веществ (С) и почему? Для того чтобы ответить на него, нужно понять, какое условие является главным для протекания любой химической реакции.

Для того чтобы частицы прореагировали, необходимо, чтобы они, как минимум, столкнулись. Поэтому чем выше число частиц* (число молей) в единице объёма, тем чаще они сталкиваются, тем выше вероятность химической реакции .

* О том, что такое «моль», читай в уроке 29.1.

Поэтому при измерении скоростей химических процессов используют молярную концентрацию веществ в реагирующих смесях.

Молярная концентрация вещества показывает, сколько молей его содержится в 1 литре раствора

Итак, чем больше молярная концентрация реагирующих веществ, тем больше частиц в единице объёма, тем чаще они сталкиваются, тем выше (при прочих равных условиях) скорость химической реакции. Поэтому основным законом химической кинетики (это наука о скорости химических реакций) является закон действующих масс .

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

Для реакции типа А + В →… математически этот закон можно выразить так:

Если реакция более сложная, например, 2A + B → или, что тоже самое А + А + В → …, то

Таким образом, в уравнении скорости появился показатель степени « два » , который соответствует коэффициенту 2 в уравнении реакции. Для более сложных уравнений большие показатели степеней, как правило, не используют. Это связано с тем, что вероятность одновременного столкновения, скажем, трёх молекул А и двух молекул В крайне мала. Поэтому многие реакции протекают в несколько стадий, в ходе которых сталкивается не более трёх частиц, и каждая стадия процесса протекает с определённой скоростью. Эту скорость и кинетическое уравнение скорости для неё определяют экспериментально.

Вышеприведённые уравнения скорости химической реакции (3) или (4) справедливы только для гомогенных реакций, т. е. для таких реакций, когда реагирующие вещества не разделяет поверхность. Например, реакция происходит в водном растворе, и оба реагирующих вещества хорошо растворимы в воде или для любой смеси газов.

Другое дело, когда происходит гетерогенная реакция. В этом случае между реагирующими веществами имеется поверхность раздела, например, углекислый газ реагирует с водным раствором щёлочи. В этом случае любая молекула газа с равной вероятностью может вступить в реакцию, поскольку эти молекулы быстро и хаотично двигаются. А частицы жидкого раствора? Эти частицы двигаются чрезвычайно медленно, и те частицы щёлочи, которые находятся «на дне», практически не имеют шансов вступить в реакцию с углекислым газом, если раствор не перемешивать постоянно. Реагировать будут только те частицы, которые «лежат на поверхности». Значит, для гетерогенных реакций -

скорость реакции зависит от величины площади поверхности раздела, которая увеличивается при измельчении.

Поэтому очень часто реагирующие вещества измельчают (например, растворяют в воде), пищу тщательно пережёвывают, а в процессе приготовления - растирают, пропускают через мясорубку и т. д. Не измельчённый пищевой продукт практически не усваивается!

Таким образом, с максимальной скоростью (при прочих равных условиях) протекают гомогенные реакции в растворах и между газами, (если эти газы реагируют при н. у.), причём в растворах, где молекулы располагаются «рядом», а измельчение такое же, как в газах (и даже больше!), - скорость реакции выше.

Задание ЕГЭ. Какая из реакций протекает с наибольшей скоростью при комнатной температуре:

  1. углерода с кислородом;
  2. железа с соляной кислотой;
  3. железа с раствором уксусной кислоты
  4. растворов щёлочи и серной кислоты.

В данном случае нужно найти, какой процесс является гомогенным.

Следует отметить, что скорость химической реакции между газами или гетерогенной реакции, в которой участвует газ, зависит и от давления, поскольку при увеличении давления газы сжимаются, и концентрация частиц увеличивается (см. формулу 2). На скорость реакций, в которых газы не участвуют, изменение давления влияния не оказывает.

Задание ЕГЭ. На скорость химической реакции между раствором кислоты и железом не оказывает влияния

  1. концентрация кислоты;
  2. измельчение железа;
  3. температура реакции;
  4. увеличение давления.

И наконец, скорость реакции зависит и от реакционной способности веществ. Например, если с веществом реагирует кислород, то при прочих равных условиях, скорость реакции будет выше, чем при взаимодействии этого же вещества с азотом. Дело в том, что реакционная способность кислорода заметно выше, чем у азота. Причину этого явления мы рассмотрим в следующей части Самоучителя (урок 14).

Задание ЕГЭ. С большей скоростью идёт химическая реакция между соляной кислотой и

  1. медью;
  2. железом;
  3. магнием;
  4. цинком.

Следует отметить, что далеко не каждое столкновение молекул приводит к их химическому взаимодействию (химической реакции). В газовой смеси водорода и кислорода при обычных условиях происходит несколько миллиардов столкновений в секунду. Но первые признаки реакции (капельки воды) появятся в колбе только через несколько лет. В таких случаях говорят, что реакция практически не идёт . Но она возможна , иначе чем объяснить тот факт, что при нагревании этой смеси до 300 °C колба быстро запотевает, а при температуре 700 °C прогремит страшный взрыв! Недаром смесь водорода и кислорода называют «гремучим газом».

Вопрос. Как вы полагаете, почему скорость реакции так резко возрастает при нагревании?

Скорость реакции возрастает потому, что, во-первых, увеличивается число столкновений частиц, а во-вторых, увеличивается число активных столкновений. Именно активные соударения частиц приводят к их взаимодействию. Для того чтобы произошло такое соударение, частицы должны обладать определённым запасом энергии.

Энергия, которой должны обладать частицы, для того чтобы произошла химическая реакция, называется энергией активации.

Эта энергия расходуется на преодоление сил отталкивания между внешними электронами атомов и молекул и на разрушение «старых» химических связей.

Возникает вопрос: как повысить энергию реагирующих частиц? Ответ простой - повысить температуру, поскольку при повышении температуры возрастает скорость движения частиц, а, следовательно, их кинетическая энергия.

Правило Вант-Гоффа* :

при повышении температуры на каждые 10 градусов скорость реакции возрастает в 2–4 раза.

ВАНТ-ГОФФ Якоб Хендрик (30.08.1852–1.03.1911) - голландский химик. Один из основателей физической химии и стереохимии. Нобелевская премия по химии № 1 (1901).

Следует заметить, что это правило (не закон!) было установлено экспериментально для реакций, «удобных» для измерения, то есть для таких реакций, которые протекали не слишком быстро и не слишком медленно и при температурах, доступных экспериментатору (не слишком высоких и не слишком низких).

Вопрос . Как вы полагаете, как можно быстрее приготовить картофель: отварить его или обжарить в слое масла?

Для того чтобы как следует уяснить себе смысл описываемых явлений, можно сравнить реагирующие молекулы с группой учеников, которым предстоит прыгать в высоту. Если им поставлен барьер высотой 1 м, то ученикам придётся как следует разбежаться (повысить свою «температуру»), чтобы преодолеть барьер. Тем не менее всегда найдутся ученики («неактивные молекулы»), которые взять этот барьер не смогут.

Что делать? Если придерживаться принципа: «Умный в гору не пойдёт, умный гору обойдёт», то следует просто опустить барьер, скажем, до 40 см. Тогда любой ученик сможет преодолеть барьер. На молекулярном уровне это означает: для того чтобы увеличить скорость реакции, нужно уменьшить энергию активации в данной системе .

В реальных химических процессах эту функцию выполняет катализатор.

Катализатор - это вещество, которое изменяет скорость химической реакции, оставаясь при этом неизменным к концу химической реакции.

Катализатор участвует в химической реакции, взаимодействуя с одним или несколькими исходными веществами. При этом образуются промежуточные соединения, и изменяется энергия активации. Если промежуточное соединение более активно (активный комплекс), то энергия активации понижается, а скорость реакции увеличивается.

Например, реакция между SO 2 и О 2 происходит очень медленно, при нормальных условиях практически не идёт . Но в присутствии NO скорость реакции резко возрастает. Сначала NO очень быстро реагирует с O 2:

полученный диоксид азота быстро реагирует с оксидом серы (IV):

Задание 5.1. Покажите на этом примере, какое вещество является катализатором, а какое - активным комплексом.

И наоборот, если образуются более пассивные соединения, то энергия активации может возрасти настолько, что реакция при данных условиях практически происходить не будет. Такие катализаторы называются ингибиторами .

На практике применяются оба типа катализаторов. Так особые органические катализаторы - ферменты - участвуют абсолютно во всех биохимических процессах: переваривании пищи, сокращении мышц, дыхании. Без ферментов невозможно существование жизни!

Ингибиторы необходимы для того, чтобы защитить металлические изделия от коррозии, жиросодержащие пищевые продукты от окисления (прогоркания). Некоторые лекарства также содержат ингибиторы, которые угнетают жизненные функции микроорганизмов и тем самым уничтожают их.

Катализ может быть гомогенным и гетерогенным. Примером гомогенного катализа служит действие NO (это катализатор) на процесс окисления диоксида серы. Примером гетерогенного катализа может служить действие нагретой меди на спирт:

Эта реакция идёт в две стадии:

Задание 5.2. Определите, какое вещество в этом случае является катализатором? Почему этот вид катализа называется гетерогенным?

На практике чаще всего используется гетерогенный катализ, где катализаторами служат твёрдые вещества: металлы, их оксиды и др. На поверхности этих веществ имеются особые точки (узлы кристаллической решётки), где, собственно и происходит каталитическая реакция. Если эти точки закрыть посторонними веществом, то катализ прекращается. Это вещество, губительное для катализатора, называется каталитическим ядом . Другие вещества - промоторы - наоборот, усиливают каталитическую активность.

Катализатор может изменить направление химической реакции, то есть, меняя катализатор, можно получать разные продукты реакции. Так, из спирта C 2 H 5 OH в присутствии оксидов цинка и алюминия можно получить бутадиен, а в присутствии концентрированной серной кислоты - этилен.

Таким образом, в ходе химической реакции изменяется энергия системы. Если в ходе реакции энергия выделяется в виде теплоты Q , такой процесс называется экзотермическим :

Для эндо термических процессов теплота поглощается , т. е. тепловой эффект Q < 0 .

Задание 5.3. Определить, какой из предложенных процессов экзотермический, а какой - эндотермический:

Уравнение химической реакции, в котором указан тепловой эффект , называется термохимическим уравнением реакции. Для того чтобы составить такое уравнение, необходимо рассчитать тепловой эффект на 1 моль реагирующего вещества.

Задача. При сжигании 6 г магния выделилось 153,5 кДж теплоты. Составить термохимическое уравнение этой реакции.

Решение. Составим уравнение реакции и укажем НАД формулами, что дано:

Составив пропорцию, найдём искомый тепловой эффект реакции:

Термохимическое уравнение этой реакции:

Такие задачи приведены в заданиях большинства вариантов ЕГЭ! Например.

Задание ЕГЭ. Согласно термохимическому уравнению реакции

количество теплоты, выделившейся при сжигании 8 г метана, равно:

Обратимость химических процессов. Принцип Ле-Шателье

* ЛЕ ШАТЕЛЬЕ Анри Луи (8.10.1850–17.09.1936) - французский физико-химик и металловед. Сформулировал общий закон смещения равновесия (1884).

Реакции бывают обратимыми и необратимыми.

Необратимыми называют такие реакции, для которых не существует условий, при которых возможен обратный процесс.

Примером таких реакций могут служить реакции, которые происходят при скисании молока, или когда сгорела вкусная котлета. Как невозможно пропустить мясной фарш назад через мясорубку (и получить снова кусок мяса), также невозможно «реанимировать» котлету или сделать свежим молоко.

Но зададим себе простой вопрос: является ли необратимым процесс:

Для того чтобы ответить на этот вопрос, попробуем вспомнить, можно ли осуществить обратный процесс? Да! Разложение известняка (мела) с целью получить негашёную известь СаО используется в промышленном масштабе:

Таким образом реакция является обратимой, так как существуют условия, при которых с ощутимой скоростью протекают оба процесса:

Более того, существуют условия, при которых скорость прямой реакции равна скорости обратной реакции .

В этих условиях устанавливается химическое равновесие. В это время реакция не прекращается, но число полученных частиц равно числу разложившихся частиц. Поэтому в состоянии химического равновесия концентрации реагирующих частиц не изменяются . Например, для нашего процесса в момент химического равновесия

знак означает равновесная концентрация.

Возникает вопрос, что произойдёт с равновесием, если повысить или понизить температуру, изменить другие условия? Ответить на подобный вопрос можно, зная принцип Ле-Шателье :

если изменить условия (t, p, c), при которых система находится в состоянии равновесия, то равновесие сместится в сторону того процесса, который противодействует изменению .

Другими словами, равновесная система всегда противится любому воздействию извне, как противится воле родителей капризный ребёнок, который делает «всё наоборот».

Рассмотрим пример. Пусть установилось равновесие в реакции получения аммиака:

Вопросы. Одинаково ли число молей реагирующих газов до и после реакции? Если реакция идёт в замкнутом объёме, когда давление больше: до или после реакции?

Очевидно, что данный процесс происходит с уменьшением числа молекул газов, значит, давление в ходе прямой реакции уменьшается. В обратной реакции - наоборот, давление в смеси увеличивается .

Зададим себе вопрос, что произойдёт, если в этой системе повысить давление? По принципу Ле-Шателье пойдёт та реакция, которая «делает наоборот», т. е. понижает давление. Это - прямая реакция: меньше молекул газа - меньше давление.

Итак, при повышении давления равновесие смещается в сторону прямого процесса, где давление понижается, так как уменьшается число молекул газов.

Задание ЕГЭ. При повышении давления равновесие смещается вправо в системе:

Если в результате реакции число молекул газов не меняется, то изменение давления на положение равновесия не оказывает влияние.

Задание ЕГЭ. Изменение давления оказывает влияние на смещение равновесия в системе:

Положение равновесия этой и любой другой реакции зависит от концентрации реагирующих веществ: увеличивая концентрацию исходных веществ и уменьшая концентрацию полученных веществ, мы всегда смещаем равновесие в сторону прямой реакции (вправо).

Задание ЕГЭ.

сместится влево при:

  1. повышении давления;
  2. понижении температуры;
  3. повышении концентрации СО;
  4. понижении концентрации СО.

Процесс синтеза аммиака экзотермичен, то есть сопровождается выделением теплоты, то есть повышением температуры в смеси.

Вопрос. Как сместится равновесие в этой системе при понижении температуры ?

Рассуждая аналогично, делаем вывод : при понижении температуры равновесие сместится в сторону образования аммиака, так как в этой реакции теплота выделяется, а температура повышается.

Вопрос. Как изменится скорость химической реакции при понижении температуры?

Очевидно, что при понижении температуры резко понизится скорость обеих реакций, т. е. придётся очень долго ждать, когда же установится желаемое равновесие. Что делать? В этом случае необходим катализатор . Он хотя и не влияет на положение равновесия , но ускоряет наступление этого состояния.

Задание ЕГЭ. Химическое равновесие в системе

смещается в сторону образования продукта реакции при:

  1. повышении давления;
  2. повышении температуры;
  3. понижении давления;
  4. применении катализатора.

Выводы

Скорость химической реакции зависит от:

  • природы реагирующих частиц;
  • концентрации или площади поверхности раздела реагирующих веществ;
  • температуры;
  • наличия катализатора.

Равновесие устанавливается, когда скорость прямой реакции равна скорости обратного процесса. В этом случае равновесная концентрация реагирующих веществ не меняется. Состояние химического равновесия зависит от условий и подчиняется принципу Ле-Шателье.

Скорость химической реакции

Скорость химической реакции - изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства. Является ключевым понятием химической кинетики . Скорость химической реакции - величина всегда положительная, поэтому, если она определяется по исходному веществу (концентрация которого убывает в процессе реакции), то полученное значение умножается на −1.

Например для реакции:

выражение для скорости будет выглядеть так:

. Скорость химической реакции в каждый момент времени пропорциональна концентрациям реагентов, возведенным степени, равные их стехиометрическим коэффициентам .

Для элементарных реакций показатель степени при значении концентрации каждого вещества часто равен его стехиометрическому коэффициенту, для сложных реакций это правило не соблюдается. Кроме концентрации на скорость химической реакции оказывают влияние следующие факторы:

  • природа реагирующих веществ,
  • наличие катализатора ,
  • температура (правило Вант-Гоффа),
  • давление,
  • площадь поверхности реагирующих веществ.

Если мы рассмотрим самую простую химическую реакцию A + B → C, то мы заметим, что мгновенная скорость химической реакции величина непостоянная.

Литература

  • Кубасов А. А. Химическая кинетика и катализ .
  • Пригожин И., Дефей Р. Химическая термодинамика. Новосибирск: Наука, 1966. 510 с.
  • Яблонский Г. С., Быков В. И., Горбань А. Н., Кинетические модели каталитических реакций , Новосибирск: Наука (Сиб. отделение), 1983.- 255 c.

Wikimedia Foundation . 2010 .

Смотреть что такое "Скорость химической реакции" в других словарях:

    Основное понятие химической кинетики. Для простых гомогенных реакций скорость химической реакции измеряют по изменению числа молей прореагировавшего вещества (при постоянном объеме системы) или по изменению концентрации любого из исходных веществ … Большой Энциклопедический словарь

    СКОРОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ - основное понятие хим. кинетики, выражающее отношение количества прореагировавшего вещества (в молях) к отрезку времени, за которое произошло взаимодействие. Поскольку при взаимодействии изменяются концентрации реагирующих веществ, скорость обычно … Большая политехническая энциклопедия

    скорость химической реакции - величина, характеризизующая интенсивность химической реакции. Скоростью образования продукта реакции называют количество этого продукта в результате реакции за единицу времени в единице объема (если реакция гомогенна) или на… …

    Основное понятие химической кинетики. Для простых гомогенных реакций скорость химической реакции измеряют по изменению числа молей прореагировавшего вещества (при постоянном объёме системы) или по изменению концентрации любого из исходных веществ … Энциклопедический словарь

    Величина, характеризующая интенсивность реакции химической (См. Реакции химические). Скоростью образования продукта реакции называется количество этого продукта, возникающее в результате реакции за единицу времени в единице объёма (если… …

    Осн. понятие хим. кинетики. Для простых гомогенных реакций С. х. р. измеряют по изменению числа молей прореагировавшего в ва (при пост. объёме системы) или по изменению концентрации любого из исходных в в или продуктов реакции (если объём системы …

    Для сложных реакций, состоящих из неск. стадий (простых, или элементарных реакций), механизм это совокупность стадий, в результате к рых исходные в ва превращаются в продукты. Промежуточными в вами в этих реакциях могут выступать как молекулы,… … Естествознание. Энциклопедический словарь

    - (англ. nucleophilic substitution reaction) реакции замещения, в которых атаку осуществляет нуклеофил реагент, несущий неподеленную электронную пару. Уходящая группа в реакциях нуклеофильного замещения называется нуклеофуг. Все … Википедия

    Превращения одних веществ в другие, отличные от исходных по химическому составу или строению. Общее число атомов каждого данного элемента, а также сами химические элементы, составляющие вещества, остаются в Р. х. неизмененными; этим Р. х … Большая советская энциклопедия

    скорость волочения - линейная скорость движения металла на выходе из волоки, м/с. На современных волочильных машинах скорость волочения достигает 50 80 м/с. Однако даже при волочении проволоки скорость, как правило, не превышает 30 40 м/с. При… … Энциклопедический словарь по металлургии


Под скоростью химической реакции понимают изменение концентрации одного из реагирующих веществ в единицу времени при неизменном объеме системы.

Обычно концентрацию выражают в моль/л, а время – в секундах или минутах. Если, например, исходная концентрация одного из реагирующих веществ составляла 1 моль/л, а через 4 с от начала реакции она стала 0,6 моль/л, то средняя скорость реакции будет равна (1-0,6)/4=0,1 моль/(л*с).

Средняя скорость реакции вычисляется по формуле:

Скорость химической реакции зависит от:

    Природы реагирующих веществ.

Вещества с полярной связью в растворах взаимодействуют быстрей, это объясняется тем, что такие вещества в растворах образуются ионы, которые легко взаимодействуют друг с другом.

Вещества с неполярной и малополярной ковалентной связью реагируют с различной скоростью, это зависит от их химической активности.

H 2 + F 2 = 2HF (идёт очень быстро со взрывом при комнатной температуре)

H 2 + Br 2 = 2HBr (идет медленно, даже при нагревании)

    Величины поверхностного соприкосновения реагирующих веществ (для гетерогенных)

    Концентрации реагирующих веществ

Скорость реакции прямопропорциональна произведению концентрации реагирующих веществ, возведенных в степень их стехиометрических коэффициентов.

    Температуры

Зависимость скорости реакции от температуры определяется правилом Вант-Гоффа:

при повышении температуры на каждые 10 0 скорость большинства реакций увеличивается в 2-4 раза.

    Присутствия катализатора

Катализаторами называются вещества, изменяющие скорость химической реакций.

Явление изменения скорости реакции в присутствии катализатора называется катализом.

    Давления

При увеличение давления скорость реакции повышается (для гомогенных)

Вопрос№26. Закон действия масс. Константа скорости. Энергия активации.

Закон действия масс.

скорость, с которой вещества реагируют друг с другом, зависит от их концентрации

Константа скорости.

коэффициент пропорциональности в кинетическом уравнении химической реакции, выражающий зависимость скорости реакции от концентрации

Константа скорости зависит от природы реагирующих веществ и от температуры, но не зависит от их концентраций.

Энергия активации.

энергия, которую надо сообщить молекулам (частицам) реагирующих веществ, чтобы превратить их в активные

Энергия активации зависит от природы реагирующих веществ и изменяется в присутствии катализатора.

Повышение концентрации увеличивается общее число молекул, а соответственно активных частиц.

Вопрос№27. Обратимые и необратимые реакции. Химическое равновесие, константа равновесия. Принцип Ле Шателье.

Реакции, которые протекают только в одном направлении и завершаются полным превращением исходных веществ в конечные, называются необратимыми.

Обратимыми называются такие реакции, которые одновременно протекают в двух взаимно противоположных направлениях.

В уравнениях обратимых реакций между левой и правой частью ставят две стрелки, направленные в противоположные стороны. Примером такой реакции может служить синтез аммиака их водорода и азота:

3H 2 + N 2 = 2NH 3

Необратимыми называются такие реакции, при протекании которых:

    Образующиеся продукты выпадают в осадок, или выделяются в виде газа, например:

BaCl 2 + H 2 SO 4 = BaSO 4 + 2HCl

Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O

    Образование воды:

HCl + NaOH = H 2 O + NaCl

Обратимые реакции не доходят до конца и заканчиваются установлением химического равновесия .

Химическое равновесие – это состояние системы реагирующих веществ, при котором скорости прямой и обратной реакции равны между собой.

На состояние химического равновесия оказывает влияние концентрации реагирующих веществ, температура, а для газов – и давление. При изменении одного из этих параметров, химическое равновесия нарушается.

Константа равновесия.

Важнейший параметр, характеризующий обратимую химическую реакцию – константа равновесия К. Если записать для рассмотренной обратимой реакции A + D C + D условие равенства скоростей прямой и обратной реакции в состоянии равновесия – k1[A]равн[B]равн = k2[C]равн[D]равн, откуда [C]равн[D]равн/[A]равн[B]равн = k1/k2 = К, то величина К называется константой равновесия химической реакции.

Итак, при равновесии отношение концентрации продуктов реакции к произведению концентрации реагентов постоянно, если постоянна температура (константы скорости k1 и k2 и, следовательно, константа равновесия К зависят от температуры, но не зависят от концентрации реагентов). Если в реакции участвуют несколько молекул исходных веществ и образуется несколько молекул продукта (или продуктов), концентрации веществ в выражении для константы равновесия возводятся в степени, соответствующие их стехиометрическим коэффициентам. Так для реакции 3H2 + N2 2NH3 выражение для константы равновесия записывается в виде K = 2 равн/3равнравн. Описанный способ вывода константы равновесия, основанный на скоростях прямой и обратной реакций, в общем случае использовать нельзя, так как для сложных реакций зависимость скорости от концентрации обычно не выражается простым уравнением или вообще неизвестна. Тем не менее, в термодинамике доказывается, что конечная формула для константы равновесия оказывается верной.

Для газообразных соединений вместо концентраций при записи константы равновесия можно использовать давление; очевидно, численное значение константы при этом может измениться, если число газообразных молекул в правой и левой частях уравнения не одинаковы.

Пинцип Ле Шателье.

если на систему, находящуюся в равновесии, производится какое-либо внешнее воздействие, то равновесие смещается в сторону той реакции, которая противодействует этому воздействию.

На химическое равновесие влияет:

    Изменение температуры. При повышении температуры равновесие смещается в сторону эндотермической реакции. При понижении температуры равновесие смещается в сторону экзотермической реакции.

    Изменение давления. При повышении давления равновесие смещается в сторону уменьшения числа молекул. При понижении давления равновесие смещается в сторону увеличения числа молекул.