Экологический словарь что такое конденсация, что означает и как правильно пишется. Школьная энциклопедия

Конденсация– это переход вещества из газообразного в жидкое состояние.
Молекулы жидкости, покинувшие ее в процессе испарения, находятся в воздухе в состоянии непрерывного теплового движения. Так как движение молекул хаотичное, то какая-то часть молекул вновь попадает в жидкость.Число таких молекул тем больше, чем больше давление пара над жидкостью. Пар конденсируется.

Процесс превращения пара в жидкость идет с выделением некоторого количества тепла.

Количество теплоты, выделяющееся при конденсации определяется по формуле:

где L - удельная теплота парообразования.
Приведенная выше формула годится одновременнодля расчета количества теплоты необходимого для превращения жидкости в пар (при кипении) и для количества теплоты, выделяющейсяпри конденсации.

Скорость конденсации зависитот: рода жидкости, наличия центров конденсации и от температуры.

Температура вещества в процессе конденсации не изменяется.
Температура конденсации паров вещества равна температуре кипения этого вещества.

КАК ПОЯВЛЯЮТСЯ ТУМАН И РОСА


В воздухе всегдаесть водяные пары, хотя их плотность в сотни раз меньше плотности воздуха. Количество водяных паров в воздухе не может быть бесконечно большим. Существует предельная масса воды, которая при данной температуре может содержаться в 1 куб.м воздуха. Чем выше температура воздуха, тем большее количество водяных паров может содержаться в воздухе.
При понижениитемпературы воздуха водяные пары в какой-то момент становятся насыщенными.
При дальнейшем охлаждении начинают конденсироватьсяи проявляются в виде мельчайших капель на центрахконденсации – пылинках, частицах дыма, ионах газа.
Появившиеся капли в воздухе называются туманом.
А капли на поверхности земли, на листьях и траве называют росой.
Туманы не долговечны. Капли в воздухе могут сливаться, тогда выпадает дождь, или испаряться, тогда туман рассеивается.

ЗНАЕШЬ ЛИ ТЫ

Что, белый след на небе от летящего самолета – туман, образующийся из паров воды, поставщиком которых служит сгорающее топливо. Горячий выхлопной газ, насыщенный водяными парами, попадает в холодную атмосферу и образует туман.

ИНТЕРЕСНО

Если на газовой плите с предельно большим пламенем горелки стоит открытая кастрюля с водой, близкой к кипению, то как только выключить газ, над кастрюлей появляетсяобильный пар. Оказывается, что при работе горелки конденсация пара происходила на большом расстоянии от кастрюли, конденсат уносился конвекционными потоками воздуха, поэтому сконденсированные частицы пара не были видны. Когда горелку выключили, пар стал конденсироваться над кастрюлей и поэтому стал видимым.

Почему холодильник время от времени приходится выключать и размораживать Большинство продуктов содержит воду. Испаряясь, она затем замерзает на самой холодной части холодильника - испарителе, и он покрывается толстой снеговой шубой, обладающей низкой теплопроводностью. Это приводит к уменьшению теплоотвода из камеры, и температура в холодильнике понижается недостаточно.

А НУ-КА

Почему стакан с холодной водой покрывается снаружи каплями воды, когда его приносим в теплую комнату?
Почему эти капли через некоторое время исчезают?

Энциклопедичный YouTube

  • 1 / 5

    Соотношения для разных видов конденсации выведены на основе опытных данных, а также статистической физики и термодинамики .

    Конденсация насыщенных паров

    При наличии жидкой фазы вещества конденсация происходит при сколь угодно малых пересыщениях и очень быстро. В этом случае возникает подвижное равновесие между испаряющейся жидкостью и конденсирующимися парами. Уравнение Клапейрона - Клаузиуса определяет параметры этого равновесия - в частности, выделение тепла при конденсации и охлаждение при испарении.

    Конденсация перенасыщенного пара

    Наличие перенасыщенного пара возможно в следующих случаях:

    • отсутствие жидкой или твёрдой фазы того же вещества.
    • отсутствие ядер конденсации - взвешенных в атмосфере твёрдых частиц или капелек жидкости, а также ионов (наиболее активные ядра конденсации).
    • конденсация в атмосфере другого газа - в этом случае скорость конденсации ограничена скоростью диффузии паров из газа к поверхности жидкости.

    Конденсация в твёрдую фазу

    Конденсация, минуя жидкую фазу, происходит через образование мелких кристалликов (десублимация). Это возможно в случае давления паров ниже давления в тройной точке при пониженной температуре.

    Конденсат на окнах

    Образование конденсата на стеклах происходит в холодное время года. С точки зрения физики, образование конденсата на окнах происходит из-за понижения температуры поверхности ниже температуры точки росы . Температура точки росы зависит от температуры и влажности воздуха в помещении. Причина образования конденсата на окнах может состоять как в чрезмерном повышении влажности внутри помещения, вызванном нарушением вентиляции, так и в невысоких теплоизолирующих свойствах стеклопакета, металлопластиковой рамы, оконной коробки, в неправильной глубине монтажа окна в однородной стене, неправильной глубине монтажа относительно слоя стенового утеплителя, в полном отсутствии, либо в некачественном утеплении оконных откосов.

    Конденсация пара в трубах

    По мере прохождения по трубе пар постепенно конденсируется и на стенках образуется пленка конденсата. При этом расход пара G" и его скорость в связи с уменьшением массы пара уменьшаются по длине трубы, а расход конденсата G увеличивается. Основной особенностью процесса конденсации в трубах является наличие динамического взаимодействия между паровым потоком и пленкой. На пленку конденсата действует также сила тяжести. В итоге в зависимости от ориентации трубы в пространстве и скорости пара характер движения конденсата может быть различным. В вертикальных трубах при движении пара сверху вниз силы тяжести и динамического воздействия парового потока совпадают по направлению и пленка конденсата стекает вниз. В коротких трубах при небольшой скорости парового потока течение пленки в основном определяется силой тяжести аналогично случаю конденсации неподвижного пара на вертикальной стенке. Такой же оказывается и интенсивность теплоотдачи. При увеличении скорости пара интенсивность теплоотдачи растет. Это объясняется уменьшением толщины конденсатной пленки, которая под воздействием парового потока течёт быстрее. В длинных трубах при больших скоростях движения пара картина процесса усложняется. В этих условиях наблюдаются частичный срыв жидкости с поверхности пленки и образование парожидкостной смеси в ядре потока. При этом влияние силы тяжести постепенно утрачивается, и закономерности процесса перестают зависеть от ориентации трубы в пространстве. В горизонтальных трубах при не очень больших скоростях парового потока взаимодействие сил тяжести и трения пара о пленку приводит к иной картине течения. Под влиянием силы тяжести пленка конденсата стекает по внутренней поверхности трубы вниз. Здесь конденсат накапливается и образует ручей. На это движение накладывается движение конденсата в продольном направлении под воздействием парового потока. В итоге интенсивность теплоотдачи оказывается переменной по окружности трубы: в верхней части более высокая, чем в нижней. Из-за затопления нижней части сечения горизонтальной трубы конденсатом средняя интенсивность теплоотдачи при небольших скоростях пара может оказываться даже более низкой, чем при конденсации неподвижного пара снаружи горизонтальной трубы того же диаметра.

    Конденсация водяного пара в воздухе над чашкой горячей воды

    Конденсация имеет место во многих теплообменных аппаратах (например, в мазутоподогревателях на ТЭС), в опреснительных установках, технологических аппаратах (перегонные аппараты). Важнейшее применение на ТЭС - конденсаторы паровых турбин. В них конденсация происходит на охлаждаемых водой трубах. Для повышения КПД термодинамического цикла ТЭС важно снижать температуру конденсации (за счёт понижения давления), и обычно она близка к температуре охлаждающей воды (до 25÷30°С).

    Конденсация - процесс, в определённом смысле обратный к кипению . Но при конденсации важнее проблемы повышения теплоотдачи, чтобы при малых температурных напорах обеспечить быстрый отбор теплоты.

    Виды конденсации

    Конденсация может происходить в объёме (туман, дождь) и на охлаждаемой поверхности. В теплообменных аппаратах – конденсация на охлаждаемой поверхности. Её далее и будем рассматривать. Разумеется, при такой конденсации температура поверхности стенки Tw должна быть меньше температуры насыщения Ts, то есть Tw < Ts. В свою очередь, конденсация на охлаждаемой поверхности может быть двух видов:

    • Плёночная конденсация – имеет место, когда жидкость смачивает поверхность (жидкость – смачивающая, поверхность – смачиваемая, эти свойства изучаются в курсе Физики), тогда конденсат образует сплошную плёнку.
    • Капельная конденсация – когда конденсат – несмачивающая жидкость и собирается на поверхности в капли, которые быстро стекают, оставляя почти всю поверхность чистой.

    При плёночной конденсации теплоотдача намного меньше из-за термического сопротивления плёнки (плёнка мешает отводу тепла от пара к стенке). К сожалению, реализовать капельную конденсацию сложно – несмачиваемые материалы и покрытия (например, типа фторопласта) сами плохо проводят теплоту. А использование добавок – гидрофобизаторов (для воды типа масла, керосина) оказалось неэффективным. Поэтому обычно в теплообменных аппаратах имеет место пленочная конденсация . Гидрофобизатор, гидрофобность – от греческих “hydör” – “вода” и “phóbos” – страх. То есть гидрофобный – то же, что водоотталкивающий, несмачиваемый. Такие добавки для произвольных жидкостей называются лиофобизаторами.

    Термин “неподвижный пар” в данном случае подразумевает отсутствие существенного вынужденного движения (разумеется, свободно-конвективное движение будет иметь место).

    На поверхности стенки образуется плёнка конденсата. Она стекает вниз, при этом её толщина растёт благодаря продолжающейся конденсации (рис. …). Из-за термического сопротивления плёнки температура стенки заметно меньше температуры поверхности плёнки, причём на этой поверхности имеется небольшой скачок температур конденсата и пара (для воды скачок обычно порядка 0,02–0,04 К). Температура пара в объёме несколько выше температуры насыщения.

    Сначала пленка движется стабильно ламинарно – это ламинарный режим . Затем на ней появляются волны (со сравнительно большим шагом, пробегающие по плёнке и собирающие накапливающийся конденсат, так как в более толстом слое в волне скорость движения больше, и такой режим стекания энергетически выгоднее установившегося). Это ламинарно-волновой режим . Далее при большом количестве конденсата режим может стать турбулентным .

    На вертикальных трубах картина аналогична случаю вертикальной стенки.

    На горизонтальной трубе теплоотдача конденсации выше, чем на вертикальной (из-за меньшей в среднем толщины пленки). При движущемся паре теплоотдача растёт, особенно при сдуве плёнки.

    В случае пучков труб (в частности, в конденсаторах) имеют место особенности:

    1) Скорости пара по мере прохождения по пучку уменьшаются вследствие его конденсации.

    2) В горизонтальных пучках конденсат стекает с трубы на трубу, с одной стороны, увеличивая толщину плёнки на нижних трубах, что уменьшает теплоотдачу, с другой стороны, падение капель конденсата возмущает плёнку на нижних трубах, увеличивая теплоотдачу.

    Интенсификация теплообмена в конденсаторах

    Основной путь интенсификации – уменьшать толщину плёнки, удаляя её с поверхности теплообмена. С этой целью на вертикальных трубах устанавливают конденсатоотводные колпачки или закрученные рёбра. Например, колпачки, установленные с шагом 10 см, увеличивают теплообмен в 2÷3 раза. На горизонтальных трубах ставят невысокие рёбра, по которым конденсат быстро стекает. Эффективна подача пара тонкими струйками, разрушающими плёнку (теплообмен увеличивается в 3÷10 раз).

    Влияние примеси газов на конденсацию

    При движении пара это влияние много меньше, но всё равно в промышленных установках воздух приходится откачивать из конденсаторов (иначе он занимает объём аппарата). И стараются вообще исключить его присутствие в паре.

    Так как конденсация – процесс, обратный к кипению, то основная расчётная формула по существу та же, что при кипении:

    G = Q / γ {\displaystyle G=Q/\gamma }

    где G – количество образующегося конденсата (конденсирующегося пара), кг/с;

    Q – отводимый от стенки тепловой поток, Вт;

    γ – теплота фазового перехода, Дж/кг.

    Эта формула не учитывает теплоту охлаждения пара до температуры насыщения t s и последующего охлаждения конденсата. Их нетрудно учесть при известных температурах пара на входе и конденсата на выходе. Но, в отличие от случая кипения, здесь сложно оценить даже приближенно величину Q из-за небольшого температурного напора теплопередачи (от пара к теплоносителю, охлаждающему стенку). Формулы для различных случаев конденсации имеются в учебниках и справочниках.

    Конденсация насыщенных паров

    При наличии жидкой фазы вещества конденсация происходит при сколь угодно малых пересыщениях и очень быстро. В этом случае возникает подвижное равновесие между испаряющейся жидкостью и конденсирующимися парами. Уравнение Клапейрона - Клаузиуса определяет параметры этого равновесия - в частности, выделение тепла при конденсации и охлаждение при испарении.

    Конденсация перенасыщенного пара

    Наличие перенасыщенного пара возможно в следующих случаях:

    • отсутствие жидкой или твёрдой фазы того же вещества.
    • отсутствие ядер конденсации - взвешенных в атмосфере твёрдых частиц или капелек жидкости, а также ионов (наиболее активные ядра конденсации).
    • конденсация в атмосфере другого газа - в этом случае скорость конденсации ограничена скоростью диффузии паров из газа к поверхности жидкости.

    Конденсация в твёрдую фазу

    Конденсация, минуя жидкую фазу, происходит через образование мелких кристалликов (десублимация). Это возможно в случае давления паров ниже давления в тройной точке при пониженной температуре.

    Конденсат на окнах

    Образование конденсата на стеклах происходит в холодное время года. Образование конденсата на окнах происходит из-за понижения температуры поверхности ниже температуры точки росы . Температура точки росы зависит от температуры и влажности воздуха в помещении. Причина образования конденсата на окнах может состоять как в чрезмерном повышении влажности внутри помещения, вызванном нарушением вентиляции, так и в невысоких теплоизолирующих свойствах стеклопакета, металлопластиковой рамы, оконной коробки, в неправильной глубине монтажа окна в однородной стене, неправильной глубине монтажа относительно слоя стенового утеплителя, в полном отсутствии, либо в некачественном утеплении оконных откосов.

    Конденсация пара в трубах

    По мере прохождения по трубе пар постепенно конденсируется и на стенках образуется пленка конденсата. При этом расход пара G" и его скорость в связи с уменьшением массы пара уменьшаются по длине трубы, а расход конденсата G увеличивается. Основной особенностью процесса конденсации в трубах является наличие динамического взаимодействия между паровым потоком и пленкой. На пленку конденсата действует также сила тяжести. В итоге в зависимости от ориентации трубы в пространстве и скорости пара характер движения конденсата может быть различным. В вертикальных трубах при движении пара сверху вниз силы тяжести и динамического воздействия парового потока совпадают по направлению и пленка конденсата стекает вниз. В коротких трубах при небольшой скорости парового потока течение пленки в основном определяется силой тяжести аналогично случаю конденсации неподвижного пара на вертикальной стенке. Такой же оказывается и интенсивность теплоотдачи. При увеличении скорости пара интенсивность теплоотдачи растет. Это объясняется уменьшением толщины конденсатной пленки, которая под воздействием парового потока течёт быстрее. В длинных трубах при больших скоростях движения пара картина процесса усложняется. В этих условиях наблюдаются частичный срыв жидкости с поверхности пленки и образование парожидкостной смеси в ядре потока. При этом влияние силы тяжести постепенно утрачивается, и закономерности процесса перестают зависеть от ориентации трубы в пространстве. В горизонтальных трубах при не очень больших скоростях парового потока взаимодействие сил тяжести и трения пара о пленку приводит к иной картине течения. Под влиянием силы тяжести пленка конденсата стекает по внутренней поверхности трубы вниз. Здесь конденсат накапливается и образует ручей. На это движение накладывается движение конденсата в продольном направлении под воздействием парового потока. В итоге интенсивность теплоотдачи оказывается переменной по окружности трубы: в верхней части более высокая, чем в нижней. Из-за затопления нижней части сечения горизонтальной трубы конденсатом средняя интенсивность теплоотдачи при небольших скоростях пара может оказываться даже более низкой, чем при конденсации неподвижного пара снаружи горизонтальной трубы того же диаметра.

    Конденсация

    Лекция № 21

    Теплообменные процессы

    Литература:

    1. Процессы и аппараты пищевых производств. Учебник для вузов в 2 книгах/ [А.Н. Острикова и др.]; под ред. А.Н. Острикова.

    План лекции:

    1. Общая характеристика процесса конденсации.

    2. Теплоотдача при конденсации пара.

    3. Теплообмен при пленочной конденсации движущегося пара внутри труб.

    4. Основные типы конденсаторов.

    Контрольные вопросы:

    1. Что называется конденсацией? При каких условиях происходит конденсация паров и газов?

    2. Какие виды конденсации Вы знаете? Дайте им краткую характеристику.

    3. Как рассчитывается термическое сопротивление передаче теплоты от пара к стенке при пленочной конденсации?

    4. В каких аппаратах осуществляется поверхностная конденсация? От чего зависит расход охлаждающей воды?

    5. Чем различаются мокрые и сухие конденсаторы?

    6. Какие теплообменники по принципу действия относятся к смесительным?

    7. Как устроен и работает мокрый прямоточный конденсатор? От чего зависят расход охлаждающей воды и объем воздуха, отсасываемого из конденсатора?

    Конденсация - переход вещества из паро- или газообразного состоя­ния в жидкое путем отвода от него теплоты. Конденсация пара (газа) мо­жет быть осуществлена либо путем охлаждения пара (газа), либо посредс­твом охлаждения и сжатия одновременно. Далее рассмотрены только процессы конденсации, проводимые путем охлаждения паров водой и хо­лодным воздухом.

    Данный процесс часто встречается на практике - в конденсаторах вы­парных аппаратов, в теплообменниках холодильных и других установок. Конденсацию паров часто используют при выпаривании, вакуум-сушке и др., для создания разрежения. Пары, подлежащие конденсации, обычно отводят из аппарата, где они образуются, в отдельный закрытый аппарат - конденсатор, охлаждаемый водой или воздухом.

    Объем получаемого конденсата в тысячу и более раз меньше объема пара, из которого он образовался. В результате в конденсаторе создается разре­женное пространство, причем разрежение увеличивается с уменьшением температуры конденсации. Последняя, в свою очередь, тем ниже, чем боль­ше (при прочих равных условиях) расход охлаждающего агента и ниже его конечная температура. Одновременно с процессом конденсации в рабочем пространстве конденсатора происходит накопление воздуха и других некон­денсирующихся газов, которые выделяются из жидкости, а также проника­ют через неплотности аппаратуры из окружающего воздуха. По мере накоп­ления неконденсирующихся газов и возрастания их парциального давления уменьшается разрежение в аппарате. Поэтому для поддержания вакуума на требуемом уровне необходимо непрерывно отводить из конденсатора некон­денсирующиеся газы. Обычно эти газы откачивают с помощью вакуум-насо­са, который одновременно предотвращает колебания давления, обусловлен­ные изменением температуры охлаждающего агента.



    Конденсация происходит как в объеме пара, так и на охлаждаемой повер­хности теплообмена. В первом случае образование конденсата происходит самопроизвольно при значительном переохлаждении пара относительно температуры насыщения на холодных жидких или твердых частицах, вво­димых в пар. Конденсация пара осуществляется на границе с охлаждаемой поверхностью какого-либо тела или на каких-либо «центрах», способных конденсировать охлаждаемый пар в объеме (ионизированные молекулы газа, различные взвешенные частицы и т. п.).

    Если пар соприкасается со стенкой, температура которой ниже темпера­туры насыщения (t ст < t H), то пар конденсируется и конденсат оседает на стенке. При охлаждении пара на поверхности тела в зависимости от состоя­ния его поверхности и свойств поверхностного слоя может образоваться пленка конденсата с толщиной, намного превышающей расстояние эффек­тивного действия межмолекулярных сил (пленочная конденсация пара), или поверхность может быть покрыта отдельными каплями конденсата (ка­пельная конденсация пара) (рис.1).

    Рис.1. Конденсация на поверхности:

    а- пленочная; б-капельная

    Пленочной называется конденсация, когда жидкая конденсированная фаза образуется на поверхности теплообмена в виде устойчивой пленки. Пленочная конденсация имеет место, если конденсат смачивает данную по­верхность теплообмена. Если же конденсат не смачивает поверхность, то происходит капельная конденсация.

    Капельная конденсация наблюдается при пуске теплообменного аппара­та, когда на поверхностях стенок имеются различные, в том числе и масляные загрязнения, и в некоторых других случаях. Она может быть вызвана с помощью специальных веществ, называемых лиофобизаторами (при кон­денсации водяного пара - гидрофобизаторами). Эти вещества наносятся на поверхность теплообмена или вводятся в пар.

    Капельная конденсация водяного пара по сравнению с пленочной, при прочих одинаковых условиях, обеспечивает более интенсивную теплоотда­чу. Это объясняется тем, что пленка конденсата обладает большим терми-1еским сопротивлением передаче теплоты фазового перехода от поверхнос­ти конденсации к стенке. При капельной конденсации в силу разрыва Пленки это сопротивление гораздо меньше. В ходе конденсации пара на по­верхности охлаждаемой стенки осуществляется конвективный перенос пapa из окружающего пространства к месту конденсации. Для осуществления непрерывного процесса конденсации пара необходимо обеспечить соответствующий отвод освобождаемой энергии охлаждением поверхностного слоя жидкости. При этом перенос теплоты к охлаждаемой стенке в условиях пленочной конденсации пара осуществляется в основном теплопроводностью через пленку конденсата. Толщина его пленки на поверхности охлаждаемой стенки зависит от интенсивности конденсации пара и от ус­ловий стока жидкости. В промышленных теплообменных аппаратах чаще имеет место пленочная конденсация.

    Конденсация (позднелатинское condensatio - сгущение, от латинского condenso уплотняю, сгущаю) - переход вещества из газообразного состояния в жидкое или твёрдое вследствие его охлаждения или сжатия. Конденсация пара возможна только при температурах ниже критической для данного вещества. Конденсация, как и обратный процесс - испарение , является примером фазовых превращений вещества (фазовых переходов 1-го рода). При конденсации выделяется то же количество теплоты , которое было затрачено на испарение сконденсировавшегося вещества. Дождь, снег, роса, иней - все эти явления природы представляют собой следствие конденсации водяного пара в атмосфере.

    Виды конденсации

    Известны два режима поверхностной конденсации: плёночный и капельный. Первый наблюдается при конденсации на смачиваемой поверхности, он характеризуется образованием сплошной плёнки конденсата . На несмачиваемых поверхностях конденсат образуется в виде отдельных капель. При капельной конденсации интенсивность теплообмена значительно выше, чем при плёночной, т. к. сплошная плёнка конденсата затрудняет теплообмен .

    Скорость поверхностной конденсации тем выше, чем ниже температура поверхности по сравнению с температурой насыщения пара при заданном давлении . Наличие другого газа уменьшает скорость поверхностной конденсации, т. к. газ затрудняет поступление пара к поверхности охлаждения. В присутствии неконденсирующихся газов конденсация начинается при достижении паром у поверхности охлаждения парциального давления и температуры, соответствующих состоянию насыщения (росы точке).

    Конденсация может происходить также внутри объёма пара (парогазовой смеси). Для начала объёмной конденсации пар должен быть заметно пересыщен. Мерой пересыщения служит отношение давления пара p к давлению насыщенного пара ps , находящегося в равновесии с жидкой или твёрдой фазой, имеющей плоскую поверхность. Пар пересыщен, если p/ps > 1 , при p/ps = 1 пар насыщен. Степень пересыщения p/ps , необходимая для начала. Конденсация, зависит от содержания в паре мельчайших пылинок (аэрозолей), которые являются готовыми центрами, или ядрами, конденсации. Чем чище пар, тем выше должна быть начальная степень пересыщения. Центрами конденсации могут служить также электрически заряженные частицы, в частности ионизованные атомы . На этом основано, например, действие ряда приборов ядерной физики.

    Применение

    Конденсация широко применяется в технике: в энергетике (например, в конденсаторах паровых турбин), в химической технологии (например, при разделении веществ методом фракционированной конденсации), в холодильной и криогенной технике , в опреснительных установках и т. д. Жидкость, образующаяся при конденсации, носит название