Аэробное и анаэробное дыхание микроорганизмов. Дыхание микробов

Дыхание микроорганизмов – сопряженный окислительно-восстановительный процесс, при котором происходит перенос электронов и протонов от окисляемого вещества до восстанавливаемого, в результате образуется АТФ – универсальный аккумулятор химической энергии.

Все физиологические процессы – питание, рост, размножение, образование спор, капсул, выработка токсинов – осуществляются при постоянном притоке энергии. Микробы добывают энергию за счет окисления различных химических соединений: углеводов (чаще глюкозы), спиртов, органических кислот, жиров. Основную роль в дыхании большинства микроорганизмов играет цикл трикарбоновых кислот, где органические вещества как источник энергии окисляются до углекислого газа и воды, а отнятый от них пиридиновыми и флавиновыми ферментами электрон передается по дыхательной цепи активированному кислороду. Освободившаяся в результате этих процессов энергия закрепляется в АТФ или других органических фосфатах. У микроорганизмов, кроме цикла трикарбоновых кислот, может проходить цикл дикарбоновых кислот, пентозофосфатный шунт.

По типу дыхания все микроорганизмы разделяются на:

1) облигатные (строгие) аэробы ,

2) облигатные анаэробы ,

3) факультативные (необязательные) анаэробы ,

4) микроаэрофилы.

Строгие аэробы (Pseudomonas aeruginosa, Bordetella pertussis ) не могут жить и размножаться в отсутствие молекулярного кислорода, так как они его используют в качестве акцептора электронов. Молекулы АТФ образуются ими при окислительном фосфорилировании с участием оксидаз и флавинзависимых дегидрогеназ с дальнейшим включением в цикл трикарбоновых кислот. При этом, если конечным акцептором электронов является молекулярный кислород, выделяется значительное количество энергии.

Облигатные анаэробы (Сlostridium tetani, Сlostridium botulinum, Сlostridium perfringens, бактероиды) способны жить и размножаться только в отсутствии свободного кислорода воздуха. Они могут образовывать АТФ в результате окисления углеводов, белков, липидов путем субстратного фосфорилирования до пирувата (пировиноградной кислоты). При этом выделяется небольшое количество энергии. Акцептором водорода или электронов у анаэробов может быть сульфат. Если донорами и акцепторами водорода являются органические соединения, то такой процесс называется брожением . По конечному продукту расщепления углеводов различают спиртовое, молочнокислое, уксуснокислое, муравьинокислое, маслянокислое и пропионовокислое брожение. Наличие свободного кислорода для строгих анаэробов является губительным, так как у них нет ферментов (каталаз), способных расщеплять Н 2 О 2 ; понижен окислительно-восстановительный (редокс) потенциал; отсутствуют цитохромы.



Факультативные анаэробы могут расти и размножаться как в присутствии кислорода, так и без него (стафилококки, кишечная палочка). Они образуют АТФ при окислительном и субстратном фосфорилировании. Факультативные анаэробы могут осуществлять анаэробное дыхание, которое называется нитратным. Нитрат, являющийся акцептором водорода, восстанавливается до молекулярного азота и аммиака. Среди факультативных анаэробов различают аэротолерантные бактерии , которые растут при наличии молекулярного кислорода, но не используют его.

Микроаэрофилы растут при сниженном парциальном давлении кислорода. Различают микроаэрофильные аэробы (например, гонококки), которые лучше культивируются при уменьшенном содержании О 2 (около 5%), и микроаэрофильные анаэробы , которые способны расти в анаэробных и микроаэрофильных условиях, но не культивируются в обычной воздушной среде или в СО 2 .

Выделяют также капнофильные микроорганизмы . Они представляют собой бактерии, растущие в присутствии повышенных концентраций углекислого газа (3-5%). К ним относятся бактероиды, фузобактерии, гемофильные бактерии и др.

Методы культивирования строгих анаэробов :

1) Посев уколом в высокий столбик сахарного агара, который сверху заливается слоем вазелинового масла.

2) Посев на среду Китта-Тароцци (МПБ, глюкоза, кусочки печени или мяса в качестве редуцирующих веществ, сверху среда залита слоем вазелинового масла).

3) Удаление воздуха из среды механическим путем. Используют анаэростаты, из которых выкачивается воздух.

4) Замена воздуха другим индифферентным газом, например азотом, аргоном, водородом.

5) Механическая защита от кислорода воздуха (метод Виньяль-Вейона). Берут стеклянную трубку, один конец которой вытягивают в капилляр, расплавляют агар, в него засевают культуру и затем насасывают агар в стерилизованную трубку, затем капилляр запаивают и трубку помещают в термостат. В среде вырастают колонии, которые можно извлечь, распилив трубку.

6) Химическое поглощение кислорода воздуха, например щелочным раствором пирогаллола.

7) Биологический метод – комбинированный посев культур анаэробов и аэробов. Посев производят на чашку с толстым слоем кровяного агара с глюкозой, разделенную пополам небольшой дорожкой, вырезанной посередине чашки прокаленным скальпелем. На одной половине чашки делают посев культуры аэробов, а на другой – анаэробов. Края чашки смазывают парафином для герметизации и помещают в термостат. Сначала происходит рост аэробов, когда они исчерпывают из чашки кислород, начинается рост анаэробов.

Микроорганизмам, как и всем живым существам, присущи процессы питания, дыхания, роста и размножения . Однако эти процессы у микробов характеризуются своеобразием и рядом особенностей. Микробы занимают особое место среди других живых существ: они способны использовать в качестве питательных веществ как неорганические, так и разнообразные органические соединения ; могут существовать и размножаться в аэробных и анаэробных условиях; длительно сохраняются во внешней среде с помощью спор ; обладают исключительной приспособляемостью к меняющимся факторам окружающей среды.

Дыхание бактерий

Сущность процесса дыхания бактерий заключается в совокупности биохимических реакций, в ходе которых идет образование АТФ, без которого невозможен процесс метаболизма, протекающего с затратой энергии. АТФ является универсальным переносчиком химической энергии между процессами, выделяющими энергию, и реакциями, их использующими. При дыхании - процессе биологического окисления бактерий - потребляются те же соединения, что и на построение отдельных структурных компонентов клетки, но в первую очередь - сахара, спирты, органические кислоты, жиры и т. д.

Большая часть бактерий использует в процессе дыхания свободный кислород. Такие микроорганизмы получили название аэробные (от аег - воздух). Аэробный тип дыхания характеризуется тем, что окисление органических соединений происходит при участии кислорода воздуха с освобождением большого количества калорий. Молекулярный кислород выполняет роль акцептора водорода, образующегося при аэробном расщеплении этих соединений.

Примером может служить окисление глюкозы в аэробных условиях, которое приводит к выделению большого количества энергии:

С 6 Н 12 О 6 + 60 2 6С0 2 +6Н 2 0 + 688,5 ккал.

Процесс анаэробного дыхания микробов заключается в том, что бактерии получают энергию при окислительно-восстановительных реакциях, при которых акцептором водорода является не кислород, а неорганические соединения - нитрат или сульфат.

Многие бактерии могут существовать в аэробных и анаэробных условиях. Такие микроорганизмы получили название факультативных (необязательных) анаэробов.

Например, стафилококки, кишечная палочка и другие факультативные анаэробы имеют полный набор дыхательных ферментов, обеспечивающих им существование как в кислородной, так и в бескислородной среде. Факультативные анаэробы обладают так называемым нитратным дыханием , так как образующийся при окислении органических соединений нитрат (акцептор водорода) восстанавливается до молекулярного азота и аммиака.

Обязательные анаэробы

Облигатные (обязательные) анаэробы могут существовать лишь в строго анаэробных условиях. Среди патогенных - это возбудители столбняка, газовой гангрены, ботулизма. Облигатные анаэробы при окислении органических соединений образуют сульфат, который восстанавливается до сероводорода, поэтому облигатное дыхание называют еще сульфатным.

Для нейтрализации токсичных форм кислорода микроорганизмы, способные существовать в его атмосфере, имеют защитные механизмы. У облигатных аэробов и факультативных анаэробов накоплению закисного радикала О 2 - препятствует фермент супероксиддисмутаза, расщепляющая закисный радикал на перекись водорода и молекулярный кислород. Перекись водорода у этих бактерий разлагается каталазой на воду и молекулярный кислород.

В присутствии кислорода рост облигатных анаэробов прекращается. Это связано с тем, что жизнь в аэробных условиях приводит к тому, что конечным продуктом окисления органических соединений оказывается перекись водорода, а поскольку анаэробы не продуцируют фермент каталазу, расщепляющую перекись водорода, то она накапливается и оказывает токсическое действие на анаэробные бактерии.

При выращивании анаэробов в лабораторных условиях используют специальные приборы - анаэростаты, из которых кислород воздуха удаляется или заменяется другим инертным газом. Бескислородные условия можно создать также кипячением среды или химическими веществами, активно поглощающими кислород из пространства, куда помещены чашки и пробирки с посевами.

Образование энергии (АТФ) наблюдается также при процессах брожения , осуществляемых разнообразными микроорганизмами. Особенность брожения заключается в том, что органические соединения одновременно служат как донаторами электронов (при их окислении), так и акцепторами (при их восстановлении). Брожение происходит в отсутствие кислорода, в строго анаэробных условиях. Основными соединениями брожения являются углеводы. В зависимости от участия определенного микроба и от конечных продуктов расщепления углеводов различают спиртовое, молочнокислое, уксуснокислое, маслянокислое и другие виды брожения.

Освобождение энергии при анаэробных процессах значительно меньшее, например, при брожении глюкозы дрожжами образуется спирт и всего 31,2 ккал.

Спиртовое брожение встречается, в основном, у дрожжей. Конечными продуктами являются этанол и СО 2 . Сбраживание глюкозы происходит в анаэробных условиях. При доступе кислорода процесс брожения ослабевает, на смену ему приходит дыхание. Подавление спиртового брожения кислородом называется эффектом Пастера . Спиртовое брожение используется в пищевой промышленности: хлебопекарной, виноделии.

Молочнокислое брожение. Различают два типа: гомоферментативное и гетероферментативное.

При гомоферментативном типе расщепление глюкозы происходит гликолитическим распадом (ФДФ-путь) Водород от восстановленного НАД передается на пируват при помощи лактатдегидрогеназы , при этом образуется молочная кислота. Гомоферментативное брожение происходит у S.pyogenes, E.faecalis, S.salivarius у некоторых видов рода Lactobacillus.

Гетероферментативное молочнокислое брожение присутствует у бактерий, у которых отсутствуют ферменты ФДФ-пути: альдолаза и триозофосфатизомераза. Расщепление глюкозы происходит с образованием фосфоглицеринового альдегида (ПФ-путь), который превращается в пируват по ФДФ-пути и в последующем восстанавливается в лактат. Дополнительными продуктами этого типа брожения являются также этанол, уксусная кислота. Гетероферментативное молочнокислое брожение встречается у представителей родов Lactobacillus и Bifidobacterium.

Муравьинокислое (смешанное) брожение встречается у представителей семейств Enterobacteriaceae, Vibrionaceae. В зависимости от продуктов брожения, различают два типа процессов:

    Расщепление пирувата с образованием ацетилкофермента А и муравьиной кислоты, которая в свою очередь, может расщепляться на двуокись углерода и молекулярный водород. Другими продуктами брожения, образующимися через цепь реакций, являются этанол, янтарная и молочная кислота. Сильное кислотообразование можно выявить реакцией с индикатором метил-рот, который меняет окраску в сильно кислой среде.

    Образуется целый ряд кислот, однако главным продуктом брожения являются ацетоин и 2,3-бутандиол. Ацетоин образуется из двух молекул пирувата с последующим двукратным декарбоксилированием. При последующем восстановлении ацетоина образуется 2,3-бутандиол. Эти вещества при взаимодействии с а-нафтолом в щелочной среде вызывают образование окраски бурого цвета, что выявляется реакцией Фогеса-Проскауэра, используемой при идентификации бактерий.

Маслянокислое брожение. Масляная кислота, бутанол,ацетон,изопропанол и ряд других органических кислот, в часности уксусная, капроновая, валерьяновая, пальмитиновая, являются продуктами сбраживания углеводов сахаролитическими строгими анаэробами.

Аэротолерантные микроорганизмы не используют кислород для получения энергии, но могут существовать в его атмосфере. К этой группе относятся молочно-кислые бактерии, получающие энергию гетероферментативным молочнокислым брожением.

Химический состав микробов

Клетки микробов состоят из воды, белков, углеводов, жиров и минеральных веществ.

Вода является основным по содержанию компонентом бактериальной клетки (до 80-90%). Она находится в свободном состоянии как самостоятельное соединение и связана с другими компонентами клетки. Свободная вода необходима бактериальной клетке для осуществления биохимических процессов . Она является универсальной дисперсионной средой для коллоидов и растворителем для кристаллоидов. Высушивание - удаление воды из клетки - ведет к замедлению жизненных процессов.

Белки составляют 40-80% сухой массы бактерий, большая часть которых представляет собой сложные белки - нуклеопротеиды, хромопротеиды. Бактерии могут содержать до 2000 различных белков, составляющих структуру клетки и участвующих в метаболических реакциях. Количественное и качественное разнообразие белковых соединений придает бактериям видовую специфичность , определяет отношение к окрашиванию , обеспечивает вирулентность , токсигенность, антигенные и иммуногенные свойства. Большая часть белков выполняет ферментативные функции клетки.

Нуклеиновые кислоты в бактериях выполняют те же функции, что и в клетках животного происхождения: молекула ДНК (нуклеоид) обеспечивает наследственные свойства, рибонуклеиновые кислоты (информационная, транспортная и рибосомальная) выполняют соответствующие функции. На долю последней приходится около 80% всей бактериалыюй РНК .

Углеводы в бактериальной клетке находятся в виде простых веществ (моно- и дисахариды) и комплексных соединений. Полисахариды выполняют пластическую функцию, входя в структуру клетки; играют основную роль в обеспечении энергией процессов клеточного метаболизма. Часть внутриклеточных полисахаридов - крахмал, гликоген и др. - являются запасными питательными веществами.

Липиды являются необходимыми компонентами цитоплазматической мембраны и клеточной стенки. В некоторых бактериях они выполняют роль запасных питательных веществ.

Органические вещества бактерий не находятся в клетке в виде отдельных компонентов, а представляют собой сложные соединения с большой молекулярной массой.

Минеральные вещества - фосфор, калий, магний, сера, железо, кальций, йод, цинк, молибден и др. - входят в состав различных клеточных структур бактерий. Они необходимы для регулирования осмотического давления, рН, окислительно-восстановительного потенциала, для активации ферментов. Общее содержание минеральных веществ составляет от 2 до 30% сухой массы бактериальной клетки.

В практических бактериологических лабораториях широко применяют микро- и экспресс-методы для ориентировочного изучения биохимических свойств микроорганизмов. Для этой цели существует множество тест-систем. Наиболее часто используют систему индикаторных бумаг (СИБ). СИБы представляют из себя диски фильтровальной бумаги, пропитанные растворами сахаров или других субстратов в сочетании с индикаторами. Такие диски опускают в пробирку с выросшей в жидкой питательной среде культурой. По изменению цвета диска с субстратом судят о работе фермента. Микро-тест системы для изучения идентификации энтеробактерий представлены одноразовыми пластиковыми контейнерами со средами, содержащими различные субстраты, с добавлением индикаторов. Посев чистой культуры микроорганизмов в такие тест-системы позволяет быстро выявить способность бактерий утилизировать цитраты, глюкозу, сахарозу, выделять аммиак, индол, разлагать мочевину, лизин, фенилаланин и т.д.

Питание бактерий

Своеобразие процесса питания бактерий состоит в том, что

    поступление питательных веществ в клетку происходит по всей поверхности, которая очень велика по сравнению с общей величиной бактерии.

    Второй особенностью является необыкновенная быстрота метаболических процессов

    третьей - высокая адаптация к меняющимся условиям среды.

Типы питания . Разнообразие условий существования микробов обусловливает различные типы питания. Они определяются на основании усвоения двух из четырех необходимых органогенов - углевода и азота. Источником водорода и кислорода служит вода.

По усвоению углерода бактерии можно разделить на два типа:

    аутотрофы (литотрофы)

    гетеротрофы. (органотрофы)

Аутотрофы (от autos - сам, trophe - пища) способны получать углерод из неорганических соединений и даже из углекислоты. Энергию, необходимую для синтеза органических веществ, аутотрофы получают при окислении минеральных соединений. К аутотрофным бактериям относятся нитрифицирующие (находящиеся в почве), серобактерии (живущие в теплых источниках с содержанием сероводорода), железобактерии (размножающиеся в воде с закисным железом) и др.

По способности усваивать азот бактерии делятся также на две группы:

    аминоаутотрофы (аминолитотрофы)

    аминогетеротрофы. (аминоорганотрофы)

Аминоаутотрофы используют молекулярный азот воздуха. Бактерии этой группы - азотфиксирующие почвенные и клубеньковые бактерии - единственные живые существа, усваивающие свободный азот, принимают активное участие в круговороте азота в природе.

Аминогетеротрофы получают азот из органических соединений - сложных белков. К аминогетеротрофам относятся все патогенные микроорганизмы и большинство сапрофитов.

В настоящее время для аутотрофов применяется также название литотрофы, а для гетеротрофов - органотрофы.

По источникам энергии различают

    фототрофы - бактерии, для которых источником энергии является солнечный свет,

    хемотрофы - бактерии, которые получают энергию за счет химического окисления веществ.

В зависимости от окисляемого субстрата среди хемотрофных организмов выделяют хемолитотрофы и хемоорганотрофы .

Однако далеко не все соединения, которые необходимы бактериям в биологических процессах, клетка может синтезировать сама. При составлении питательных сред необходимо добавлять вещества, получившие название факторов роста. Это различные витамины, аминокислоты (без которых невозможен синтез белка), пиридиновые и пиримидиновые основания (предшественники нуклеиновых кислот) и др.

Микроорганизмы, нуждающиеся в каком-то одном или нескольких факторах роста, называются ауксотрофными в отличие от прототрофных бактерий, которые в данных соединениях не нуждаются и способны сами их синтезировать.

Механизм питания бактерий

Поступление в бактериальную клетку питательных веществ представляет собой сложный физико-химический процесс, которому способствует ряд факторов: разница в концентрации веществ, величина молекул, их растворимость в воде или липидах, рН среды, проницаемость клеточных мембран и т. д. В проникновении питательных веществ в клетку различают четыре возможных механизма.

    Наиболее простой способ - пассивная диффузия , при которой поступление вещества в клетку происходит из-за различия градиента концентрации (разницы концентрации по обе стороны цитоплазматической мембраны). Решающее значение имеет величина молекулы. Очевидно, в мембране есть участки, через которые и возможно проникновение веществ небольших размеров. Одним из таких соединений является вода.

Большинство питательных веществ попадает в бактериальную клетку против градиента концентрации, поэтому в таком процессе должны принимать участие ферменты и может расходоваться энергия.

    Одним из таких механизмов является облегченная диффузия , которая происходит при большей концентрации вещества вне клетки, чем внутри. Облегченная диффузия - процесс специфический и осуществляется особыми мембранными белками, переносчиками, получившими название п е р м е а з , так как они выполняют функцию ферментов и обладают специфичностью. Они связывают молекулу вещества, переносят в неизмененном виде к внутренней поверхности цитоплазматической мембраны и высвобождают в цитоплазму. Так как перемещение вещества происходит от более высокой концентрации к более низкой, этот процесс протекает без затраты энергии.

    Третий возможный механизм транспорта веществ поучил название активного переноса . Этот прессе наблюдается при низких концентрациях субстрата в окружающей среде и перенос растворенных веществ также в неизмененном виде осуществляется против градиента концентрации. В активном переносе веществ участвуют пермеазы . Поскольку концентрация вещества в клетке может в несколько тысяч раз превышать ее во внешней среде, активный перенос обязательно сопровождается затратой энергии . Расходуется аденозинтрифосфат (АТФ), накапливаемый бактериальной клеткой при окислительно-восстановительных процессах.

    при четвертом возможном механизме переноса питательных веществ наблюдается транслокация радикалов - активный перенос химически измененных молекул, которые в целом виде не способны проходить через мембрану. В переносе радикалов участвуют пермеазы .

Синтезируемые в бактериальных клетках соединения выходят из них тремя путями:

    Фосфотрансферазная реакция. Происходит при фосфорилировании переносимой молекуды.

    Контрансляционная секреция. В этом случае синтезируемые молекулы должны иметь особую лидирующую последовательность аминокислот, чтобы прикрепиться к мембране и сформировать канал, через который молекулы белка смогут выйти в окружающую среду. Таким образом выходят из клетки соответствующих бактерий токсины столбняка, дифтерии и др. молекулы.

    Почкование мембраны. Молекулы, образующиеся в клетке, окружаются мембранным пузырьком, который отшнуровывается в окружающую среду.

Ферменты бактерий .

В бактериальной клетке происходят многочисленные реакции, как биосинтетические, направленные на синтез соединений, необходимых для организации структуры бактерии, так и производящие энергию, процессы ассимиляции и диссимиляции. Все эти реакции катализируются соответствующими ферментами. Ферменты являются белками и обладают специфичностью при распознавании соответствующего вещества и последующем превращении его. Большая часть ферментов связана с определенными структурами бактериальной клетки. Так, в цитоплазматической мембране находятся окислительно-восстановительные ферменты, которым принадлежит основная роль в дыхании клетки, ферменты, обеспечивающие доставку питательных веществ, и др. Ферменты, связанные с делением клетки, обнаруживаются в мезосомах, клеточной стенке, в месте образования перегородки.

У бактерий по характеру вызываемых ими превращений обнаруживаются следующие основные группы ферментов:

    г и д р о л а з ы, вызывающие расщепление протеинов, углеводов, липидов путем присоединения молекул воды;

    оксидоредуктазы , катализирующие окислительно-восстановительные реакции;

    трансфера з ы , осуществляющие перенос отдельных атомов, от молекулы к молекуле;

    л и а з ы , отщепляющие химические группы негидролитическим путем;

    изомеразы , участвующие в углеводном обмене;

    л и г а з ы , способствующие биосинтетическим реакциям клетки.

Ферменты бактерий классифицируются на экзоферменты и эндоферменты . Экзоферменты выделяются бактериальной клеткой в окружающую среду для внеклеточного переваривания. Этот процесс осуществляется с помощью гидролаз, которые расщепляют макромолекулы питательных веществ до простых соединений - глюкозы, аминокислот, жирных кислот. Такие соединения могут свободно проходить через оболочку клетки и с помощью пермеаз передаваться в цитоплазму клетки для участия в метаболизме, являясь источниками углерода и энергии. Некоторые экзоферменты выполняют защитную функцию , например, пенициллиназа, выделяемая многими бактериями, делает клетку недосягаемой для антибиотика - пенициллина.

Эндоферменты катализируют метаболические реакции, происходящие внутри клетки.

Ферменты бактерий классифицируются также на конститутивные и индуцибельные . Конститутивными называются такие ферменты, которые синтезируются клеткой независимо от наличия субстрата в среде, индуцибельные ферменты образуются бактериями только при наличии в среде соответствующего индуцирующего соединения, т. е. субстрата данного фермента. Например, в геноме кишечной палочки заложена способность разлагать лактозу, но только при наличии в среде лактозы клеткой синтезируется фермент, катализирующий ее гидролиз.

Известны также ферменты, которые получили название аллостерических. Кроме активного центра у них имеется регуляторный или аллостерический центр, который в молекуле фермента пространственно разделен с активным центром. Аллостерическим (от греч. allos - иной, чужой) он называется потому, что молекулы, связывающиеся с этим центром, по строению (стерически) не похожи на субстрат, но оказывают влияние на связывание и превращение субстрата в активном центре, изменяя его конфигурацию. Молекула фермента может иметь несколько аллостерических центров. Вещества, связывающиеся с аллостерическим центром, называют аллостерическими эффекторами. Они влияют через аллостерический центр на функцию активного центра: или облегчают ее, или затрудняют. Соответственно аллостерические эффекторы называются положительными (активаторы) или отрицательными (ингибиторы). Аллостерические ферменты играют важную роль в тонкой регуляции метаболизма бактерий. Поскольку практически все реакции в клетке катализируются ферментами, регуляция метаболизма сводится к регуляции интенсивности ферментативных реакций.

Патогенные бактерии обладают наряду с ферментами обмена также ферментами агрессии , являющимися факторами вирулентности. К таким ферментам относятся

    гиалуронидаза,

    дезоксирибонуклеаза,

    коллагеназа,

    н е й р а м и и и д аза, и др.

Гиалуронидаза стрептококков, например, расщепляет гиалуроновую кислоту в мембранах клеток соединительных тканей макроорганизма, что способствует распространению возбудителей и их токсинов в организме, обуславливая высокую инвазивность этих бактерий.

Плазмокоагулаза является главным фактором патогенности стафилококков, так как участвует в превращении протромбина в тромбин, который вызывает образование фибриногена, в результате чего каждая бактерия покрывается пленкой, предохраняющей ее от фагоцитоза.

Ферменты бактерий обладают высокой специфичностью , и именно это свойство широко используется при идентификации и определении видов микроорганизмов. Наибольшее значение имеет определение сахаролитических (ферментация сахаров) и протеолитических (разложение белков) свойств.

Споры

Одной из особенностей микроорганизмов является их способность к спорообразованию. Споры образуются при неблагоприятных условиях существования (высушивание, недостаток питательных веществ, изменение рН среды и т. д.), причем из одной клетки формируется только одна спора . Таким образом, образование спор не связано с процессом размножения, а является своеобразным приспособлением к переживанию в неблагоприятных условиях. По принятой номенклатуре спорообразующие аэробы носят название бацилл , а спорообразующие анаэробы - клостридии.

Процесс спорообразования проходит ряд стадий , в течение которых в определенном месте клетки цитоплазма, нуклеоид, рибосомы концентрируются, уплотняются, покрываются мембраной, а затем плотной, плохо проницаемой многослойной оболочкой, включающей кальциевые соли дипиколиновой кислоты, обусловливающей термоустойчивость спор . Споры длительное время могут сохраняться в покое, оставаясь жизнеспособными. Так, в почве споры патогенных микроорганизмов (возбудителя сибирской язвы, столбняка и др.) могут сохраняться десятками лет. При попадании в благоприятную среду споры очень быстро прорастают - из 1 споры возникает 1 бактериальная клетка, которая начинает размножаться.

Спорообразование - видовое свойство палочек, а форма и расположение формирующейся споры по отношению к вегетативной части клетки является дифференциально-диагностическим признаком . Форма спор может быть овальной или круглой , расположение центральное (возбудитель сибирской язвы), субтерминальное - ближе к концу палочки (возбудители газовой гангрены, ботулизма) и терминальное - на конце (возбудитель столбняка).

В зрелой споре различимы: центральный, плохо окрашиваемый участок (спороплазма), двухслойная ЦПМ и оболочка споры.

Спороплазма (протопласт споры) включает цитоплазму, бактериальную хромосому, системы белкового синтеза и некоторые другие (например, анаэробного энергообразования).

Оболочка споры двухслойная: пространство между слоями заполняют гликопептидные полимеры, сходные с пептидогликанами, образующие сетчатую структуру (кортекс), проявляющую высокую чувствительность к лизоциму. Внутренний слой (стенка споры) образован пептидогликанами, аналогичными таковым \ вегетирующей клетки. Внешний слой (собственно оболочка) образуют кератиноподобные белковые структуры с низкой проницаемостью.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Аэробное дыхание – это окислительный процесс, в ходе которого расходуется кислород. При дыхании субстрат без остатка расщепляется до бедных энергией неорганических веществ с высоким выходом энергии. Важнейшими субстратами для дыхания служат углеводы. Кроме того, при дыхании могут расходоваться жиры и белки.Аэробное дыхание включает два основных этапа:

Бескислородный, в процессе, которого происходит постепенное расщепление субстрата с высвобождением атомов водорода и связыванием с коферментами (переносчиками типа НАД и ФАД);

Кислородный, в ходе которого происходит дальнейшее отщепление атомов водорода от производных дыхательного субстрата и постепенное окисление атомов водорода в результате переноса их электронов на кислород.

Анаэробное дыхание - биохимический процесс окисления органических субстратов или молекулярного водорода с использованием в дыхательной ЭТЦ в качестве конечного акцептора электронов вместо O2 других окислителей неорганической или органической природы. Как и в случае аэробного дыхания, выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ. Осуществляется прокариотами (в редких случаях - и эукариотами) в анаэробных условиях. При этом факультативные анаэробы используют акцепторы электронов с высоким окислительно-восстановительным потенциалом (NO3−, NO2−, Fe3+, фумарат, диметилсульфоксид и т. д.), у них это дыхание конкурирует с энергетически более выгодным аэробным и подавляется кислородом.

Большинство аэробных микроорганизмов окисляет органические питательные вещества в процессе дыхания до С02 и воды. Поскольку в молекуле СО 2 достигается высшая степень окисления углерода, в этом случае говорят о полном окислении и отличают этот тип дыхания от не полных окислений, при которых в качестве продуктов обмена выделяются частично окисленные органические соединения. Под «полным окислением» имеется в виду лишь то, что не происходит вы деления каких-либо органических веществ; но это вовсе не означает, что окисляется весь поглощенный субстрат. В каждом случае значительная часть субстрата (40-70%) ассимилируется, т.е. превращается в вещества клеток. Конечными продуктами «неполных окислений» могут быть уксусная, глюконовая, фумаровая, лимонная, молочная кислоты и ряд других со единений. Поскольку эти продукты сходны с теми, которые образуются при брожениях (пропионовая, масляная, янтарная, молочная кислоты и др.), а также в связи с тем, что при промышленных процессах брожения необходимы специальные технические устройства (ферментеры), неполные окисления называют также «окислительным брожением» или «аэробной ферментацией». Слова «брожение» и «ферментация» в этом случае отражают скорее технологический аспект.

В настоящее время известен ряд бактерий, способных окислять органические соединения или молекулярный водород в анаэробных условиях, используя в качестве акцепторов электронов в дыхательной цепи сульфаты, тиосульфаты, сульфиты, молекулярную серу. Этот процесс получил название диссимиляционной сульфатредукции, а бактерии, осуществляющие этот процесс - сульфатвосстанавливающих или сульфатредуцирующих.

Все сульфатвосстанавливающие бактерии - облигатные анаэробы. Сульфатвосстанавливающие бактерии получают энергию в процессе сульфатного дыхания при переносе электронов в электронтранспортной цепи. Перенос электронов от окисляемого субстрата по электронтранспортной цепи сопровождается возникновением электрохимического градиента ионов водорода с последующим синтезом АТФ. Подавляющее большинство бактерий этой группы хемоорганогетеротрофы. Источником углерода и донором электронов для них являются простые органические вещества - пируват, лактат, сукцинат, малат, а также некоторые спирты. У некоторых сульфатвосстанавливающих бактерий обнаружена способность к хемолитоавтотрофии, когда окисляемым субстратом является молекулярный водород.

В качестве акцептора электронов может использоваться фумарат. Фумаратредуктаза сходна с нитритредуктазой: лишь вместо молибдоптерин содержащей субъединицы в её состав входит ФАД и гистидин содержащая субъединица. Трансмембранный протонный потенциал образуется аналогичным образом: перенос протонов не происходит, однако фумаратредуктаза связывает протоны в цитоплазме, а дегидрогеназы в начале ЭТЦ выделяют протоны в периплазму. Перенос электронов с дегидрогеназ на фумаратредуктазу происходит обычно через мембранный пул менохинонов. Фумарат, как правило, отсутствует в природных местообитаниях и образуется самими микроорганизмами из аспартата, аспарагина, сахаров, малата и цитрата. В виду этого большинство бактерий, способных к фумаратному дыханию содержат фумаразу, аспартат:аммиак-лиазу и аспарагиназу, синтез которого контролирует чувствительный к молекулярному кислороду белок Fnr. Фумаратное дыхание достаточно широко распространено среди эукариот, в частности у животных (среди животных, у которых оно описано - пескожил, мидии, аскарида, печеночная двуустка.

Дыхание Карбонатное дыхание карбонатное один из видов анаэробного дыхания, при котором в качестве терминального акцептора водорода выступает СО2, который восстанавливается до метана или уксусной кислоты; осуществляют, соответственно, метаногены и ацетогенные бактерии (ацетогены).

Прокариоты обладают возможностью использовать в качестве акцептора электрона в дыхательной электронтранспортной цепи вместо кислорода различные окисленные соединения азота. Ферментом, катализирующим финальную стадию транспорта электрона - его перенос на нитрат-анион - является нитратредуктаза. итратное дыхание встречается, хотя и редко, и среди эукариот. Так, нитратное дыхание, сопровождающееся денитрификацией и выделением молекулярного азота, недавно открыто у фораминифер.


Дыхание - метаболический процесс протекающий в клетках с освобождением энергии и генерированием АТФ, в котором конечным акцептором электронов (водорода) служат неорганические соединения. В зависимости от конечного акцептора электронов различают аэробное и анаэробное дыхание. При аэробном дыхании акцептором водорода является кислород, при анаэробном - неорганические окисленные соединения типа нитратов и сульфатов.
Аэробное дыхание. В качестве энергетического субстрата для дыхательного метаболизма микроорганизмы используют широкий круг природных соединений. Независимо от сложности структуры окисляемого субстрата потребление его в качестве источника энергии основано на одном и том же принципе: постепенное расщепление до образования простых соединений, способных вступать в реакции цикла трикарбоновых кислот. Таким соединением основных метаболических путей является пируват.
Окисление пирувата при аэробном дыхании осуществляется в цикле Кребса, в который он поступает при посредстве ацетил-КоА. Полное окисление его приводит к освобождению двух молекул углекислоты и восьми атомов водорода. Акцептором водорода, как указано выше, у аэробных бактерий является кислород. Передача

водорода (электронов) на кислород осуществляется через последовательную цепь молекул-переносчиков, так называемую дыхательную цепь, или цепь транспорта электронов:
Субстрат gt; НАД* Н2 gt; Флавопротеид gt; Кофермент О
gt; Цитохром с gt; Цитохром аа3 gt; 02
Дыхательная цепь представляет собой систему пространственно организованных молекул-переносчиков, осуществляющих перенос электронов от окисляемого субстрата к акцептору. Она развита у аэробов и факультативных анаэробов, только у последних терминальным акцептором электронов, кроме кислорода, являются нитраты и сульфаты.
Компонентами дыхательной цепи, локализованными в мембране, являются такие переносчики белковой природы, как флавопротеиды, FeS-белки, цитохромы, и небелковой природы - хиноны (убихиноны, менахиноны). НАД(Ф)-зависимые дегидрогеназы, отщепляющие водород от окисляемого субстрата - растворимые ферменты; флавопротеидные дегидрогеназы могут находиться либо в мембране, либо в растворимой форме в цитоплазме.
хиноны осуществляют перенос атомов и цитохромы - электронов. Так как содержащие переносчики электронов, погружены в цитоплазму, то имеется прямое взаимодействие между дыхательной цепью, с одной стороны, и окисляемым субстратом, АДФ и неорганическим фосфатом цитоплазмы - с другой. Такое свободное взаимодействие дыхательной цепи с цитоплазмой определяет отличительные особенности функционирования дыхательного аппарата прокариот от эукариот. Так, дыхательные цепи прокариот менее стабильны по сотаву переносчиков электронов и энергетически менее эффективны. В дыхательной цепи эукариот имеются три участка, где происходит выброс протонов и
А/л + , у большинства прокариот - только один- н
два участка, т. е. суммарный выход энергии у прокариот ниже.

Функционирование дыхательной цепи осуществляется
следующим образом. Водород окисляемого субстрата,
освобожденный в реакциях цикла Кребса или мобилизованный непосредственно НАД (Н2)-зависимыми дегидрогеназами передается в дыхательную цепь на флавиновые дегидрогеназы, затем на убихиноны. Здесь атом водорода расщепляется на протон и электрон. Протон выделяется в среду, электрон передается на систему цитохромов до цитохромоксидазы. Она передает электрон на кислород-терминальный акцептор, который активизируется и соединяется с водородом, образуя воду и перекиси. Последние разлагаются каталазой на воду и кислород. Перенос электронов приводит к значительному изменению свободной энергии в клетке.
Расчеты энергетического баланса показали, что при расщеплении глюкозы гликолитическим путем и через цикл традсарбоновых кислот с последующим окислением в дыхательной цепи до С02 и Н20 на каждый моль глюкозы образуется 38 молей АТФ. Причем максимальное количество АТФ образуется в дыхательной цепи - 34 моля; 2 моля - в ЭПМ-пути и 2 - в ЦТК.
Ввиду большого разнообразия ферментных систем, входящих в дыхательную цепь, окисляемых субстратов и терминальных акцепторов у бактерий существует большое количество разнообразных дыхательных цепей. Так, в дыхательной цепи уксусно-кислых бактерий отсутствуют цитохромы а + аз: дегидрогеназы -*С -gt;Cj -gt;Aj -gt;02. Еще меньший набор компонентов имеет дыхательная цепь Agrobacterium tumefaciens: НАДН дегидрогеназа -»Q -»С -Ю2. Дыхательная цепь клубеньковых бактерий и азотобактера характеризуется наличием разнообразных цитохромов: дегидрогеназы -gt; Ь-gt; с-> а-gt; аз -gt;02. Укороченные дыхательные цепи характерны для многих бактерий. В энергетическом обмене они менее полезны для бактерий из-за низкого выхода АТФ.
Биолюминесценция. У некоторых бактерий существует ответвление от основнорй дыхательной цепи. Электроны от НАД передаются не на ФАД а на ФМН (флавомононуклеотид). Последний реагирует с ферментом люциферазой, кислородом и альдегидом пальмитиновой кислоты. Люцифераза (Л) катализирует

реакцию восстановительного альдегида (АН2) с АТФ (продукт этой реакции при последующем окислении испускает видимый свет):

Эта реакция получила название «светлячковой» из-за ее наличия у светлячка Photinus piralis. Ее используют для количественного определения АТФ, потому что интенсивность свечения находится в прямой зависимости от количества АТФ.
Механизм биолюминесценции состоит в том, что в результате взаимодействия ФМН с люциферазой, кислородом и альдегидом электроны в некоторых молекулах переходят в возбужденное состояние и возвращение их на основной уровень сопровождается испусканием света. Образования АТФ при люминесценции не происходит. Поэтому эффективность функционирования дыхательной цепи снижается, т. е. клетка не получает всей энергии, заключенной в окисляемом субстрате, так как часть ее превращается в световую.
Свечение бывает тем интенсивнее, чем лучше условия аэрации культуры. Светящиеся бактерии являются весьма чувствительными индикаторами молекулярного кислорода. М. Бейеринк применял светящиеся бактерии в качестве индикатора для обнаружения кислорода при бактериальном фотосинтезе (в те времена не было известно, что бактериальный фотосинтез протекает без выделения кислорода).
Способностью к биолюминесценции обладают факультативно-анаэробные морские бактерии, объединенные в род Photobacterium (светящиеся бактерии).В аэробных условиях они окисляют органические субстраты с испусканием лунно-голубого света. Биолюминесценция рассматривается как приспособление некоторых микроорганизмов к защите от вредного действия кислорода.
Неполное окисление. Большинство аэробных микроорганизмов в процессе дыхания осуществляют полное окисление углеводов до углекислоты и водь*. При этом

высвобождается вся энергия, заключенная в субстрате. Примером может служить окисление глюкозы пекарскими дрожжами:

Однако окисление может быть и неполным. Это зависит от видовой принадлежности микробов и условий развития. Обычно неполное окисление наблюдается при избытке в среде углеводов и недостатке кислорода. Конечными продуктами неполного окисления являются органические кислоты, такие как уксусная, лимонная, фумаровая, глюконовая и др. Типичным примером неполного окисления является образование уксусной кислоты из спирта бактериями рода Acetobacter:

Этот окислительный процесс используется микроорганизмами для получения энергии. При неполном окислении образование макроэргических фосфатных связей происходит в процессе переноса электронов. Однако общий выход энергии при этом значительно меньший, чем при полном окислении. Часть энергии окисляемого исходного субстрата сохраняется в образующихся органических кислотах. В связи с тем, что сходные кислоты (янтарная, молочная) образуются при брожении углеводов, неполное окисление называют «окислительным брожением». Отличительной особенностью неполного окисления является участие кислорода в реакциях. Поэтому аэрация - необходимое условие образования органических кислот микроорганизмами. Установлено, что образование а- глутаминовой кислоты бактериями (Corynebacterium glutamicum) происходит только в строго аэробных условиях. Причем выход данной аминокислоты может быть очень высоким - 0,6 моля глутамина на 1 моль использованной глюкозы.
Микроорганизмы, развивающиеся за счет энергии неполного окисления, используются в микробиологической промышленности для получения органических кислот, в том числе и аминокислот.
Анаэробное дыхание. В анаэробных условиях, т. е при отсутствии молекулярного кислорода, некоторые микроорганизмы,
такие как Micrococcus denitrificans и бактерии родов Desulfovibrio и Desulfotomaculum в качестве акцептора водорода используют окисленные минеральные соединения - нитраты, сульфаты, которые легко отдают кислород, превращаясь в восстановленные формы. Продуктами восстановления нитратов служит нитрит и молекулярный азот; сульфаты восстанавливаются до сероводорода и других соединений. Образовавшиеся восстановленные продукты выделяются из клетки. Окисление органического вещества в анаэробных условиях происходит путем дегидрогенирования Отщепляемый водород поступает в дыхательную цепь и переносится на соответствующий акцептор. Конечная реакция катализируется нитратредуктазой. Последняя в анаэробных условиях функционирует как цитохромоксидаза.
Нитратредуктаза является индуцибельным ферментом. Синтез ее происходит только в анаэробных условиях при наличии нитрата. Кислород ингибирует синтез нитратредуктазы. При наличии нитратредуктазы в клетке (если бактерии из анаэробных условий переносятся в аэробные) кислород конкурирует с нитратом за электроны в дыхательной цепи, подавляя тем самым функции данного фермента. Вот почему нитратное и сульфатное дыхание осуществляется только в анаэробных условиях.
Способность микроорганизмов использовать в качестве акцепторов электронов нитраты и сульфаты позволяет производить им полное окисление субстрата и получать таким путем необходимое количество энергии. Так, денитрифицирующие бактерии при нитратном дыхании производят полное окисление органических субстратов, выход энергии при этом только на 10% ниже, чем при аэробном дыхании. Образование АТФ происходит в результате фосфор ил ирова ния в дыхательной цепи.

Путем дыхания микроорганизмы добывают энергию. Дыхание- биологический процесс переноса электронов через дыхательную цепь от доноров к акцепторам с образованием АТФ. В зависимости от того, что является конечным акцептором электронов, выделяют аэробное и анаэробное дыхание. При аэробном дыхании конечным акцептором электронов является молекулярный кислород (О 2), при анаэробном- связанный кислород (-NO 3 , =SO 4 , =SO 3).

Аэробное дыхание донор водородаH 2 O

Анаэробное дыхание

нитратное окислениеNO 3

(факультативные анаэробы) донор водородаN 2

сульфатное окислениеSO 4

(облигатные анаэробы) донор водородаH 2 S

По типу дыхания выделяют четыре группы микроорганизмов.

1.Облигатные (строгие) аэробы . Им необходим молекулярный (атмосферный) кислород для дыхания.

2.Микроаэрофилы нуждаются в уменьшенной концентрации (низком парциальном давлении) свободного кислорода. Для создания этих условий в газовую смесь для культивирования обычно добавляют CO 2 , например до 10- процентной концентрации.

3.Факультативные анаэробы могут потреблять глюкозу и размножаться в аэробных и анаэробных условиях. Среди них имеются микроорганизмы, толерантные к относительно высоким (близких к атмосферным) концентрациям молекулярного кислорода - т.е. аэротолерантные, а также микроорганизмы которые способны в определенных условиях переключаться с анаэробного на аэробное дыхание.

4.Строгие анаэробы размножаются только в анаэробных условиях т.е. при очень низких концентрациях молекулярного кислорода, который в больших концентрациях для них губителен. Биохимически анаэробное дыхание протекает по типу бродильных процессов, молекулярный кислород при этом не используется.

Аэробное дыхание энергетически более эффективно (синтезируется большее количество АТФ).

В процессе аэробного дыхания образуются токсические продукты окисления (H 2 O 2 - перекись водорода, -О 2 - свободные кислородные радикалы), от которых защищают специфические ферменты, прежде всего каталаза, пероксидаза, пероксиддисмутаза . У анаэробов эти ферменты отсутствуют, также как и система регуляции окислительно- восстановительного потенциала (rH 2 ).

Основные методы создания анаэробных условий для культивирования микроорганизмов.

1.Физический - откачивание воздуха, введение специальной газовой безкислородной смеси (чаще - N 2 - 85%, CO 2 - 10%, H 2 - 5%).

2.Химический - применяют химические поглотители кислорода, используют газрегенирирующие пакеты.

3.Биологический - совместное культивирование строгих аэробов и анаэробов (аэробы поглощают кислород и создают условия для размножения анаэробов).

4.Смешанный - используют несколько разных подходов.

Необходимо отметить, что создание оптимальных условий для строгих анаэробов- очень сложная задача. Очень непросто обеспечить постоянное поддержание безкислородных условий культивирования, необходимы специальные среды без содержания растворенного кислорода, поддержание необходимого окислительно- восстановительного потенциала питательных сред, взятие и доставка, посев материала в анаэробных условиях.

Существует ряд приемов, обеспечивающих более подходящие условия для анаэробов- предварительное кипячение питательных сред, посев в глубокий столбик агара, заливка сред вазелиновым маслом для сокращения доступа кислорода, использование герметически закрывающихся флаконов и пробирок, шприцев и лабораторной посуды с инертным газом, использование плотно закрывающихся эксикаторов с горящей свечой. Используются специальные приборы для создания анаэробных условий- анаэростаты. Однако в настоящее время наиболее простым и эффективным оборудованием для создания анаэробных и микроаэрофильных условий является система “Газпак” со специальными газорегенерирующими пакетами, действующими по принципу вытеснения атмосферного воздуха газовыми смесями в герметически закрытых емкостях.

В процессе метаболизма выделяют два вида обмена: 1) пластический (конструктивный): анаболизм (с затратами энергии), катаболизм (с выделением энергии); 2) энергетический обмен (протекает в дыхательных мезосомах): дыхание; брожение.

В зависимости от акцепторов протонов и электронов среди бактерий различают аэробы, факультативные анаэробы и облигатные анаэробы. Для аэробов акцептором является кислород. Факультативные анаэробы в кислородных условиях используют процесс дыхания, в бескислородных – брожение. Для облигатных анаэробов характерно только брожение, в кислородных условиях наступает гибель микроорганизмов из-за образования перекисей, идет отравление клетки.

Облигатные аэробы (бруцеллы, легионеллы, псевдомонады, микобактерии, возбудитель сибирской язвы) растут и размножаются только в присутствии кислорода. Используют кислород для получения энергии путем кислородного дыхания. Они подразделяются на: 1) строгие аэробы (менингококки, бордетеллы), которые растут при парциальном давлении атмосферы воздуха; 2) микроаэрофилы (листерии) растут при пониженном парциальном давлении атмосферного возхдуха.

Облигатные анаэробы (бифидобактерии, лактобактерии, клостридии)не используют кислород для получения энергии. Тип метаболизма у них бродильный. Они подразделяются на: 1) строгие анаэробы – микроорганизмы для которых молекулярный кислород токсичен; он либо убивает микроорганизмы, либо ограничивает их рост. Энергию строгие анаэробы получают маслянокислым брожением; 2) аэротолерантные микроорганизмы (молочнокислые бактерии) используют кислород для получения энергии, но могут существовать в его атмосфере. Энергию получают гетероферментативным молочнокислым брожением.

Факультативные анаэробы (пневмококки, энтерококки, энтеробактерии, коринебактерии, франциселлы)способны расти и размножаться как в присутствии кислорода, так и в отсутствии его. Они обладают смешанным типом метаболизма. Процесс получения энергии у них может происходить кислородным дыханием в присутствии кислорода, а в его отсутствии переключаться на брожение. Различное физиологическое отношение микроорганизмов к кислороду связано с наличием у них ферментных систем, позволяющих существовать в атмосфере кислорода. В окислительных процессах, протекающих в атмосфере кислорода образуются токсические продукты: перекись водорода Н 2 О 2 и закисный радикал кислорода О 2 - . Для нейтрализации токсичных форм кислорода, микроорганизмы, способные существовать в его атмосфере, имеют защитные механизмы.

У облигатных аэробов и факультативных анаэробов накоплению закисного радикала кислорода препятствует фермент супероксиддисмутаза.

У аэротолерантных микроорганизмов накоплению закисного радикала кислорода препятствует высокая концентрация ионов марганца, перекись водорода разрушается ферментом пероксидазой.

У строгих анаэробов наличие фермента супероксиддисмутазы коррелирует с их устойчивостью к кислороду. Для культивирования строгих анаэробов создаются условия, позволяющие удалять атмосферный кислород: использование анаэростатов, добавление в питательные среды редуцирующих кислород веществ, например тиогликолята натрия, использование поглоттелей кислорода.