Классификация методов интеллектуального анализа данных. Интеллектуальный анализ данных (Data Mining). Большие объемы данных

По сути, интеллектуальный анализ данных - это обработка информации и выявление в ней моделей и тенденций, которые помогают принимать решения. Принципы интеллектуального анализа данных известны в течение многих лет, но с появлением больших данных они получили еще более широкое распространение.

Большие данные привели к взрывному росту популярности более широких методов интеллектуального анализа данных, отчасти потому, что информации стало гораздо больше, и она по самой своей природе и содержанию становится более разнообразной и обширной. При работе с большими наборами данных уже недостаточно относительно простой и прямолинейной статистики. Имея 30 или 40 миллионов подробных записей о покупках, недостаточно знать, что два миллиона из них сделаны в одном и том же месте. Чтобы лучше удовлетворить потребности покупателей, необходимо понять, принадлежат ли эти два миллиона к определенной возрастной группе, и знать их средний заработок.

Эти бизнес-требования привели от простого поиска и статистического анализа данных к более сложному интеллектуальному анализу данных. Для решения бизнес-задач требуется такой анализ данных, который позволяет построить модель для описания информации и в конечном итоге приводит к созданию результирующего отчета. Этот процесс иллюстрирует .

Рисунок 1. Схема процесса

Процесс анализа данных, поиска и построения модели часто является итеративным, так как нужно разыскать и выявить различные сведения, которые можно извлечь. Необходимо также понимать, как связать, преобразовать и объединить их с другими данными для получения результата. После обнаружения новых элементов и аспектов данных подход к выявлению источников и форматов данных с последующим сопоставлением этой информации с заданным результатом может измениться.

Инструменты интеллектуального анализа данных

Интеллектуальный анализ данных ― это не только используемые инструменты или программное обеспечение баз данных. Интеллектуальный анализ данных можно выполнить с относительно скромными системами баз данных и простыми инструментами, включая создание своих собственных, или с использованием готовых пакетов программного обеспечения. Сложный интеллектуальный анализ данных опирается на прошлый опыт и алгоритмы, определенные с помощью существующего программного обеспечения и пакетов, причем с различными методами ассоциируются разные специализированные инструменты.

Например, IBM SPSS®, который уходит корнями в статистический анализ и опросы, позволяет строить эффективные прогностические модели по прошлым тенденциям и давать точные прогнозы. IBM InfoSphere® Warehouse обеспечивает в одном пакете поиск источников данных, предварительную обработку и интеллектуальный анализ, позволяя извлекать информацию из исходной базы прямо в итоговый отчет.

В последнее время стала возможна работа с очень большими наборами данных и кластерная/крупномасштабная обработка данных, что позволяет делать еще более сложные обобщения результатов интеллектуального анализа данных по группам и сопоставлениям данных. Сегодня доступен совершенно новый спектр инструментов и систем, включая комбинированные системы хранения и обработки данных.

Можно анализировать самые разные наборы данных, включая традиционные базы данных SQL, необработанные текстовые данные, наборы "ключ/значение" и документальные базы. Кластерные базы данных, такие как Hadoop, Cassandra, CouchDB и Couchbase Server, хранят и предоставляют доступ к данным такими способами, которые не соответствуют традиционной табличной структуре.

В частности, более гибкий формат хранения базы документов придает обработке информации новую направленность и усложняет ее. Базы данных SQL строго регламентируют структуру и жестко придерживаются схемы, что упрощает запросы к ним и анализ данных с известными форматом и структурой.

Документальные базы данных, которые соответствуют стандартной структуре типа JSON, или файлы с некоторой машиночитаемой структурой тоже легко обрабатывать, хотя дело может осложняться разнообразной и переменчивой структурой. Например, в Hadoop, который обрабатывает совершенно "сырые" данные, может быть трудно выявить и извлечь информацию до начала ее обработки и сопоставления.

Основные методы

Несколько основных методов, которые используются для интеллектуального анализа данных, описывают тип анализа и операцию по восстановлению данных. К сожалению, разные компании и решения не всегда используют одни и те же термины, что может усугубить путаницу и кажущуюся сложность.

Рассмотрим некоторые ключевые методы и примеры того, как использовать те или иные инструменты для интеллектуального анализа данных.

Ассоциация

Ассоциация (или отношение), вероятно, наиболее известный, знакомый и простой метод интеллектуального анализа данных. Для выявления моделей делается простое сопоставление двух или более элементов, часто одного и того же типа. Например, отслеживая привычки покупки, можно заметить, что вместе с клубникой обычно покупают сливки.

Создать инструменты интеллектуального анализа данных на базе ассоциаций или отношений нетрудно. Например, в InfoSphere Warehouse есть мастер, который выдает конфигурации информационных потоков для создания ассоциаций, исследуя источник входной информации, базис принятия решений и выходную информацию. приведен соответствующий пример для образца базы данных.

Рисунок 2. Информационный поток, используемый при подходе ассоциации

Классификация

Классификацию можно использовать для получения представления о типе покупателей, товаров или объектов, описывая несколько атрибутов для идентификации определенного класса. Например, автомобили легко классифицировать по типу (седан, внедорожник, кабриолет), определив различные атрибуты (количество мест, форма кузова, ведущие колеса). Изучая новый автомобиль, можно отнести его к определенному классу, сравнивая атрибуты с известным определением. Те же принципы можно применить и к покупателям, например, классифицируя их по возрасту и социальной группе.

Кроме того, классификацию можно использовать в качестве входных данных для других методов. Например, для определения классификации можно применять деревья принятия решений. Кластеризация позволяет использовать общие атрибуты различных классификаций в целях выявления кластеров.

Исследуя один или более атрибутов или классов, можно сгруппировать отдельные элементы данных вместе, получая структурированное заключение. На простом уровне при кластеризации используется один или несколько атрибутов в качестве основы для определения кластера сходных результатов. Кластеризация полезна при определении различной информации, потому что она коррелируется с другими примерами, так что можно увидеть, где подобия и диапазоны согласуются между собой.

Метод кластеризации работает в обе стороны. Можно предположить, что в определенной точке имеется кластер, а затем использовать свои критерии идентификации, чтобы проверить это. График, изображенный на , демонстрирует наглядный пример. Здесь возраст покупателя сравнивается со стоимостью покупки. Разумно ожидать, что люди в возрасте от двадцати до тридцати лет (до вступления в брак и появления детей), а также в 50-60 лет (когда дети покинули дом) имеют более высокий располагаемый доход.

Рисунок 3. Кластеризация

В этом примере видны два кластера, один в районе $2000/20-30 лет и другой в районе $7000-8000/50-65 лет. В данном случае мы выдвинули гипотезу и проверили ее на простом графике, который можно построить с помощью любого подходящего ПО для построения графиков. Для более сложных комбинаций требуется полный аналитический пакет, особенно если нужно автоматически основывать решения на информации о ближайшем соседе .

Такое построение кластеров являет собой упрощенный пример так называемого образа ближайшего соседа . Отдельных покупателей можно различать по их буквальной близости друг к другу на графике. Весьма вероятно, что покупатели из одного и того же кластера разделяют и другие общие атрибуты, и это предположение можно использовать для поиска, классификации и других видов анализа членов набора данных.

Метод кластеризации можно применить и в обратную сторону: учитывая определенные входные атрибуты, выявлять различные артефакты. Например, недавнее исследование четырехзначных PIN-кодов выявили кластеры чисел в диапазонах 1-12 и 1-31 для первой и второй пар. Изобразив эти пары на графике, можно увидеть кластеры, связанные с датами (дни рождения, юбилеи).

Прогнозирование

Прогнозирование ― это широкая тема, которая простирается от предсказания отказов компонентов оборудования до выявления мошенничества и даже прогнозирования прибыли компании. В сочетании с другими методами интеллектуального анализа данных прогнозирование предполагает анализ тенденций, классификацию, сопоставление с моделью и отношения. Анализируя прошлые события или экземпляры, можно предсказывать будущее.

Например, используя данные по авторизации кредитных карт, можно объединить анализ дерева решений прошлых транзакций человека с классификацией и сопоставлением с историческими моделями в целях выявления мошеннических транзакций. Если покупка авиабилетов в США совпадает с транзакциями в США, то вполне вероятно, что эти транзакции подлинны.

Последовательные модели

Последовательные модели, которые часто используются для анализа долгосрочных данных, ― полезный метод выявления тенденций, или регулярных повторений подобных событий. Например, по данным о покупателях можно определить, что в разное время года они покупают определенные наборы продуктов. По этой информации приложение прогнозирования покупательской корзины, основываясь на частоте и истории покупок, может автоматически предположить, что в корзину будут добавлены те или иные продукты.

Деревья решений

Дерево решений, связанное с большинством других методов (главным образом, классификации и прогнозирования), можно использовать либо в рамках критериев отбора, либо для поддержки выбора определенных данных в рамках общей структуры. Дерево решений начинают с простого вопроса, который имеет два ответа (иногда больше). Каждый ответ приводит к следующему вопросу, помогая классифицировать и идентифицировать данные или делать прогнозы.

Рисунок 5. Подготовка данных

Источник данных, местоположение и база данных влияют на то, как будет обрабатываться и объединяться информация.

Опора на SQL

Наиболее простым из всех подходов часто служит опора на базы данных SQL. SQL (и соответствующая структура таблицы) хорошо понятен, но структуру и формат информации нельзя игнорировать полностью. Например, при изучении поведения пользователей по данным о продажах в модели данных SQL (и интеллектуального анализа данных в целом) существуют два основных формата, которые можно использовать: транзакционный и поведенческо-демографический.

При работе с InfoSphere Warehouse создание поведенческо-демографической модели в целях анализа данных о покупателях для понимания моделей их поведения предусматривает использование исходных данных SQL, основанных на информации о транзакциях, и известных параметров покупателей с организацией этой информации в заранее определенную табличную структуру. Затем InfoSphere Warehouse может использовать эту информацию для интеллектуального анализа данных методом кластеризации и классификации с целью получения нужного результата. Демографические данные о покупателях и данные о транзакциях можно скомбинировать, а затем преобразовать в формат, который допускает анализ определенных данных, как показано на .

Рисунок 6. Специальный формат анализа данных

Например, по данным о продажах можно выявить тенденции продаж конкретных товаров. Исходные данные о продажах отдельных товаров можно преобразовать в информацию о транзакциях, в которой идентификаторы покупателей сопоставляются с данными транзакций и кодами товаров. Используя эту информацию, легко выявить последовательности и отношения для отдельных товаров и отдельных покупателей с течением времени. Это позволяет InfoSphere Warehouse вычислять последовательную информацию, определяя, например, когда покупатель, скорее всего, снова приобретет тот же товар.

Из исходных данных можно создавать новые точки анализа данных. Например, можно развернуть (или доработать) информацию о товаре путем сопоставления или классификации отдельных товаров в более широких группах, а затем проанализировать данные для этих групп, вместо отдельных покупателей.

Рисунок 7. Структура MapReduce

В предыдущем примере мы выполнили обработку (в данном случае посредством MapReduce) исходных данных в документальной базе данных и преобразовали ее в табличный формат в базе данных SQL для целей интеллектуального анализа данных.

Для работы с этой сложной и даже неструктурированной информацией может потребоваться более тщательная подготовка и обработка. Существуют сложные типы и структуры данных, которые нельзя обработать и подготовить в нужном вам виде за один шаг. В этом случае можно направить выход MapReduce либо для последовательного преобразования и получения необходимой структуры данных, как показано на , либо для индивидуального изготовления нескольких таблиц выходных данных.

Рисунок 8. Последовательная цепочка вывода результатов обработки MapReduce

Например, за один проход можно взять исходную информацию из документальной базы данных и выполнить операцию MapReduce для получения краткого обзора этой информации по датам. Хорошим примером последовательного процесса является регенеририрование информации и комбинирование результатов с матрицей решений (создается на втором этапе обработки MapReduce) с последующим дополнительным упрощением в последовательную структуру. На этапе обработки MapReduce требуется, чтобы весь набор данных поддерживал отдельные шаги обработки данных.

Независимо от исходных данных, многие инструменты могут использовать неструктурированные файлы, CSV или другие источники данных. Например, InfoSphere Warehouse в дополнение к прямой связи с хранилищем данных DB2 может анализировать неструктурированные файлы.

Заключение

Интеллектуальный анализ данных - это не только выполнение некоторых сложных запросов к данным, хранящимся в базе данных. Независимо от того, используете ли вы SQL, базы данных на основе документов, такие как Hadoop, или простые неструктурированные файлы, необходимо работать с данными, форматировать или реструктурировать их. Требуется определить формат информации, на котором будет основываться ваш метод и анализ. Затем, когда информация находится в нужном формате, можно применять различные методы (по отдельности или в совокупности), не зависящие от требуемой базовой структуры данных или набора данных.

Использование данных является проблемой при составлении программ и разработке информационных систем. Прежде чем выполнить анализ большого объема данных и принять решение, гарантирующее достоверный и объективный результат, необходимо определить этот большой объем. Задача усложняется, если поток информации стремительно растет, а время на принятие решения ограничено.

Данные и их формализация

Современные информационные технологии гарантируют безопасный и надежный анализ, представление и обработку данных. Синтаксически и формально это верно. С точки зрения семантики задачи и объективности ожидаемого решения - результат зависит от опыта, знаний и умений программиста.

Языки программирования находятся в статусе надежного и безопасного инструмента. Знания и умения специалистов анализировать, представлять и обрабатывать данные пришли к уровню относительной универсальности.

Технологии интеллектуального анализа данных на этом уровне практически безупречны. Тип данных может быть известен к моменту операции над ними, а в случае несоответствия - будет автоматически приведен к нужному типу.

Развиты инструменты гипертекста, повсеместно используется распределенная обработка больших объемов данных. На этом уровне:

  • информационные задачи поддаются формализации;
  • потребности к интеллектуальному анализу удовлетворяются;
  • качество результата зависит от качества знаний и профессионализма программиста.

Ситуация в программировании информационных систем уровня предприятия характеризуется наличием реально работающих продуктов, обеспечивающих формирование больших объемов данных и проблему более высокого порядка.

Большие объемы данных

В 80-е годы, когда базы данных становились системами управления базами данных, повышение надежности аппаратного обеспечения и качество языков программирования оставляли желать лучшего.

В настоящее время накопилось большое количество баз данных, многие источники информации компьютеризированы, разработаны сложные системы сбора различной информации (финансы, погода, статистика, налоги, недвижимость, персональные данные, климат, политика...).

Некоторые источники данных характеризуются очевидными закономерностями и поддаются анализу математическими методами. Можно выполнить интеллектуальный анализ данных в Excel: очистить данные, построить модель, сформировать гипотезу, определить корреляции и т.д.

В некоторых данных и источниках закономерности трудно обнаружить. Во всех случаях программно-аппаратное обеспечение для обработки данных характеризуется надежностью и стабильностью. Задача интеллектуального анализа данных стала во главе угла во многих социально-экономических сферах.

Лидеры информационной отрасли, в частности Oracle, фокусируют свое внимание на спектре обстоятельств, характеризующих данные нового типа:

  • огромные потоки;
  • естественная информация (даже если она создана программно);
  • разнородные данные;
  • высочайшие критерии ответственности;
  • широкий спектр форматов представления данных;
  • совместимость интеграторов данных и их обработчиков.

Главная особенность данных нового типа: огромный объем и скорость нарастания этого объема. Классические алгоритмы не применимы для обработки данных нового типа даже с учетом быстродействия современных компьютеров и применения параллельных технологий.

От бэкапа к миграции и интеграции

Раньше была актуальна задача безопасного хранения информации (бэкап, резервное копирование). Сегодня актуальна проблема миграции множественных представлений данных (разные форматы и кодировки) и их интеграции в единое целое.

Без технологии интеллектуального анализа данных многие задачи не решить. Здесь не идет речь о принятии решений, определении зависимостей, создании алгоритмов данных для последующей обработки. Слияние разнородных данных стало проблемой, и привести источники информации к единому формализованному основанию нет возможности.

Интеллектуальный анализ данных большого объема требует определения этого объема и создания технологии (алгоритма, эвристик, наборов правил) для получения возможности поставить задачу и решить ее.

Data mining: что копать

Понятие анализа данных в контексте интеллектуальных методов начало активно развиваться с начала 90-х годов прошлого века. Искусственный интеллект к этому времени не оправдал надежд, но необходимость в принятии обоснованных решений на основе анализа информации стала стремительно расти.

Машинное обучение, интеллектуальный анализ данных, распознавание образов, визуализация, теория баз данных, алгоритмизация, статистика, математические методы составили спектр задач новой, активно развивающейся область знаний, которую ассоциируют с англоязычным data minig.

На практике новая область знаний приобрела междисциплинарный характер и находится в стадии становления. Благодаря опыту и программной продукции от Oracle, Microsoft, IBM и других лидирующих компаний сложилось отчетливое представление о том, что такое интеллектуальный анализ данных, но вопросов еще очень много. Достаточно сказать, что линейка программных изделий от Oracle, посвященная исключительно большим объемам информации, их интеграции, совместимости, миграции и обработке - это более сорока позиций!

Что нужно, чтобы поставить задачу обработки больших данных правильно и получить обоснованное решение? Ученые и практики сходятся на обобщенном понимании фразы «поиск скрытых закономерностей». Здесь сочетаются три позиции:

  • неочевидность;
  • объективность;
  • практическая полезность.

Первая позиция означает, что обычными методами не определить, что нужно найти и как это сделать. Классическое программирование здесь не применимо. Нужен если не искусственный интеллект, то хотя бы программы для интеллектуального анализа данных. Термин «интеллектуального» представляет собой не меньшую проблему, чем задача определения достаточного объема данных для принятия начальных решений и формулировки исходных правил работы.

Объективность - своего рода гарантия, что выбранная технология, разработанная «интеллектуальная» методика или спектр «интеллектуальных» правил дадут основание считать полученные результаты правильными не только автору, но и любому другому специалисту.

Oracle в своих программных изделиях добавляет к понятию объективность статус безопасного, лишенного постороннего негативного вмешательства.

Практическая полезность - самый важный критерий для результата и алгоритма решения задачи интеллектуального анализа данных в конкретном применении.

Data mining: где копать

Бизнес-интеллект (Business Intelligence - BI) - основа современного, самого дорогого и востребованного программного обеспечения. Поставщики бизнес-решений считают, что нашли способ решения задач по обработке больших объемов данных, и их программные изделия могут обеспечить безопасное и стремительное развитие бизнеса компании любого размера.

Как в случае искусственного интеллекта в области средства интеллектуального анализа данных, не следует слишком сильно преувеличивать текущие достижения. Все только становится на ноги, но и отрицать реальные результаты тоже нельзя.

Вопрос сферы применения. Разработаны алгоритмы интеллектуального анализа данных в экономике, на производстве, в области информации о климате, о курсах на валютной бирже. Существуют интеллектуальные продукты по защите предприятия от негативного влияния уволенных сотрудников (область психологии и социологии - сильная тема), от вирусных атак.

Многие разработки реально выполняют функции, декларируемые их изготовителями. Фактически задача - что делать и где это делать - приобрела осмысленный и объективный контекст:

  • минимально возможная область применения;
  • максимально точная и четкая цель;
  • источники данных и данные, приведенные к одному основанию.

Только область применения и ожидаемая практическая полезность могут помочь сформулировать технологии, методики, правила и основы интеллектуального анализа данных в конкретной сфере, ради конкретной цели.

Информационные технологии сделали заявку на научную дисциплину, и не следует гнушаться небольшими шагами в новом, неизведанном направлении. Позарившись на святая святых - естественный интеллект, человек не может требовать от себя того, что сделать не в состоянии.

Решить, что делать и где это делать, на сегодняшний день крайне трудно. На конкретном бизнесе, в конкретной области человеческой деятельности можно очертить объем информации, подлежащей исследованию, и получить решение, которое будет характеризоваться какой-то долей достоверности и показателем объективности.

Data mining: как копать

Профессиональное программирование и собственный высококвалифицированный персонал - единственный инструмент для достижения желаемого.

Пример 1. Задача интеллектуального анализа данных не будет решена чистым применением Oracle Controller. Этот продукт заявлен как полнофункциональный и расширяемый инструмент тестирования нагрузки. Это крайне узкая задача. Только нагрузка! Ничего более, никаких высокоинтеллектуальных задач.

Однако задачи, на которых применяется данный продукт, могут поставить в тупик не только тестировщика, но и разработчика, при всех его регалиях лидера отрасли. В частности, тестирование - это требование функциональной полноты. Где гарантия, что Oracle Controller «в курсе», какие наборы данных могут поступать на вход тестируемого приложения, сервера, программно-аппаратного комплекса.

Пример 2. Oracle Business Intelligence Suite Foundation Edition for Oracle Applications - разработчик декларирует этот продукт как удачное сочетание используемого ПО с экспертными знаниями построения, развития и обеспечения крупного бизнеса.

Бесспорно, опыт Oracle велик, но этого не достаточно для его трансформации через программно-экспертное изделие. На конкретном предприятии, в конкретном регионе Business Intelligence от Oracle может не сработать от решения налоговой службы или постановления местного муниципалитета.

Разумное применение современных технологий

Единственное правильное решение в области больших объемов информации, data mining и системы интеллектуального анализа данных в компании, государственном учреждении и в любой социально-экономической сфере - коллектив специалистов.

Знания и опыт квалифицированных специалистов - это единственно правильное решение, которое даст комплексный ответ на вопрос:

  • data mining: что копать, где это делать и как?

Приобрести приоритетные продукты соответствующего назначения лишним не будет, но прежде чем это делать, потребуется изучить область применения, сформулировать ориентировочное решение и поставить предварительную цель.

Только после того, как предметная область определена и цель примерно ясна, можно заняться поиском уже разработанных и проверенных практикой решений. Скорее всего, будет найден продукт, который позволит уточнить предметную область и цель.

Никакая программа сегодня не справится с реальной задачей. Проиграв в области искусственного интеллекта в начале 80-х годов прошлого века, человек-разумный еще не может рассчитывать, что способен написать программу, решающую интеллектуальные задачи.

Не следует надеяться, что ИИ придет сам, а купленная у Oracle, Microsoft или IBM программа скажет, что нужно было делать, как и какой результат считать правильным. В современном мире информационных технологий идет бурный прогресс. В нем можно принять эффективное участие, усилить позиции своего бизнеса или решить задачу, которую трудно было поставить. Но нужно принимать участие, а не рассчитывать на программу.

Программирование - это статический труд, его результат - жесткий алгоритм. Современное интеллектуальное правило или эвристика - это жестко поставленное решение, которое не сработает при первой попавшейся оказии.

Моделирование и тестирование

Интеллектуальный анализ больших данных - действительно востребованная и актуальная задача. Но область применения до обнаружения этой задачи худо-бедно, но жила и развивалась.

Необходимость в дальнейшем развитии бизнеса ставит новые задачи, которые позволяют концептуально очертить объемы подлежащих обработке больших данных. Это естественный процесс научно-технического и интеллектуального развития предприятия, компании, бизнеса. Это же можно отнести к интернет-технологиям, к задачам парсинга информации на просторах интернета.

Существует множество новых задач и приложений, которые востребованы, могут быть более-менее четко поставлены и характеризуются объективным параметром: в их решении есть востребованный интерес и есть понимание вероятной полезности.

Моделирование - достаточно разработанная область, которая оснащена множеством проверенных математических методов. Модель можно построить всегда, было бы время и желание.

Моделирование позволяет сфокусировать все имеющиеся знания в одну систему и совершенствовать ее на наборе тестовых данных циклически. Это классический путь развития, который также прошел проверку практикой.

Если не строить воздушных замков, а со стабильной уверенностью идти к поставленной цели, то можно определить и путь, и желаемое решение, и конечную цель.

Именно программирование в начале 80-х годов прошлого века подтолкнуло общественное сознание к рождению идей искусственного интеллекта, именно оно стало родоначальником data mining, и именно с него начались методы интеллектуального анализа данных.

В те далекие времена проблемы больших объемов данных не существовало. Сегодня есть не только большие объемы данных, но и результат развития систем управления базами данных - значительный опыт в реляционных отношениях, как основе основ для представления данных.

Реляционные отношения - это часть, но не целое. Есть еще понятие системности, иерархии и много того, чем владеет интеллект естественный, но не может реализовать интеллекте искусственный: в данном случае - в программировании.

Программирование не есть интеллект ни в каком смысле, но это реальный результат применения интеллекта на практике. В этом его смысл, и именно это можно использовать в достижении желаемых целей.

Активные знания и умения

Любая программа - это статика. Она представляет собой конструирование в рамках синтаксиса языка программирования.

Современные языки программирования - совершенный результат 80-х годов, и это отрицать никак нельзя. Нельзя также не заметить, что современные языки программирования дают возможность создавать свободные алгоритмы за пределами своего синтаксиса.

Если кто-либо когда-либо сможет написать программу, которая будет работать не по воле ее автора, а по воле приобретенных ею знаний и умений, проблема больших объемов данных и принятия интеллектуальных решений будет закрыта, и начнется новый виток развития знаний.

Английский термин «Data Mining» не имеет однозначного перевода на русский язык (добыча данных, вскрытие данных, информационная проходка, извлечение данных/информации) поэтому в большинстве случаев используется в оригинале. Наиболее удачным непрямым переводом считается термин «интеллектуальный анализ данных» (ИАД).

ИАД включает методы и модели статистического анализа и машинного обучения , дистанцируясь от них в сторону автоматического анализа данных. Инструменты ИАД позволяют проводить анализ данных предметными специалистами (аналитиками), не владеющими соответствующими математическими знаниями.

Задачи, решаемые ИАД

  1. Классификация - отнесение входного вектора (объекта, события, наблюдения) к одному из заранее известных классов.
  2. Кластеризация - разделение множества входных векторов на группы (кластеры) по степени «похожести» друг на друга.
  3. Сокращение описания - для визуализации данных, лаконизма моделей, упрощения счета и интерпретации, сжатия объемов собираемой и хранимой информации.
  4. Ассоциация - поиск повторяющихся образцов. Например, поиск «устойчивых связей в корзине покупателя» (англ. market basket analysis ) - вместе с пивом часто покупают орешки.
  5. Анализ отклонений - Например, выявление нетипичной сетевой активности позволяет обнаружить вредоносные программы.
  6. Визуализация

В литературе можно встретить еще ряд классов задач. Базовыми задачами являются первые три. Остальные задачи сводятся к ним тем или иным способом.

Также можно использовать сводные задачи под основу

Алгоритмы обучения

Для задач классификации характерно «обучение с учителем », при котором построение (обучение) модели производится по выборке содержащей входные и выходные векторы.

Для задач кластеризации и ассоциации применяется «обучение без учителя », при котором построение модели производится по выборке, в которой нет выходного параметра. Значение выходного параметра («относится к кластеру …», «похож на вектор …») подбирается автоматически в процессе обучения.

Для задач сокращения описания характерно отсутствие разделения на входные и выходные векторы . Начиная с классических работ К. Пирсона по методу главных компонент , основное внимание здесь уделяется аппроксимации данных.

Этапы обучения

Можно выделить типичный ряд этапов решения задач методами ИАД:

  1. Формирование гипотезы;
  2. Сбор данных;
  3. Подготовка данных (фильтрация);
  4. Выбор модели;
  5. Подбор параметров модели и алгоритма обучения;
  6. Обучение модели (автоматический поиск остальных параметров модели);
  7. Анализ качества обучения, если неудовлетворительный переход на п. 5 или п. 4;
  8. Анализ выявленных закономерностей, если неудовлетворительный переход на п. 1, 4 или 5.

См. также

Литература

  • Паклин Н.Б., Орешков В.И. Бизнес-аналитика: от данных к знаниям (+ СD). . - СПб: Изд. Питер, 2009. - 624 с.
  • Айвазян С.А., Бухштабер В.М., Енюков Е.С., Мешалкин Л.Д. Прикладная статистика. Классификация и снижение размерности . - М.: Финансы и статистика, 1989. - 608 с.
  • Дюк В., Самойленко А. Data Mining: учебный курс (+CD).. - СПб: Изд. Питер, 2001. - 368 с.
  • Журавлёв Ю.И. , Рязанов В.В., Сенько О.В. "РАСПОЗНАВАНИЕ.Математические методы.Программная система.Практические применения", к книге прилагается компакт-диск с демоверсией программной системы «РАСПОЗНАВАНИЕ» . - М.: Изд. «Фазис», 2006. - 176 с. - ISBN 5-7036-0106-8
  • Зиновьев А. Ю. Визуализация многомерных данных . - Красноярск: Изд. Красноярского государственного технического университета, 2000. - 180 с.
  • Чубукова И. А. Data Mining: учебное пособие . - М.: Интернет-университет информационных технологий: БИНОМ: Лаборатория знаний, 2006. - 382 с. - ISBN 5-9556-0064-7

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Интеллектуальный анализ данных" в других словарях:

    В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка… … Википедия

    Топологический анализ данных новая область теоретических исследований для задач анализа данных (Data mining) и компьютерного зрения. Основные вопросы: Как из низкоразмерных представлений получать структуры высоких размерностей; Как… … Википедия

    Процесс получения высококачественной информации из текста на естественном языке. Как правило, для этого применяется статистическое обучение на основе шаблонов: входной текст разделяется с помощью шаблонов, затем производится обработка полученных… … Википедия

    интеллектуальный учет электроэнергии - [Интент] Учет электроэнергии Понятия «интеллектуальные измерения» (Smart Metering), «интеллектуальный учет», «интеллектуальный счетчик», «интеллектуальная сеть» (Smart Grid), как все нетехнические,… … Справочник технического переводчика

    У этого термина существуют и другие значения, см. Капитал (значения). Эта статья должна быть полностью переписана. На странице обсуждения могут быть пояснения … Википедия

    Обычный агент … Википедия

    Интеллектуальный анализ данных (англ. Data Mining) выявление скрытых закономерностей или взаимосвязей между переменными в больших массивах необработанных данных. Подразделяется на задачи классификации, моделирования и прогнозирования и другие.… … Википедия

    Для улучшения этой статьи по математике желательно?: Проставив сноски, внести более точные указания на источники. Исправить статью согласно стилистическим правилам Википедии. Переработать офо … Википедия

    Мониторинг сетей целенаправленное воздействие на сеть, осуществляемое для организации ее функционирования по заданной программе: включение и отключение системы, каналов передачи данных, терминалов, диагностика неисправностей, сбор… … Википедия

    Не следует путать с Извлечение информации. Data Mining (рус. добыча данных, интеллектуальный анализ данных, глубинный анализ данных) собирательное название, используемое для обозначения совокупности методов обнаружения в данных ранее… … Википедия

Книги

  • Интеллектуальный анализ данных в системах поддержки принятия решений. Моделирование слабоструктурированных временных рядов и нечеткая оценка инвестиционных проектов , Рамин Рзаев. Предлагаемая читателю книга посвящена решению проблем, направленных на разработку методов и алгоритмов решения задач прогнозирования и принятия решений в условиях неопределенности и комплекса…

Развитие информационных технологий привело к появлению интеллектуальных технологий анализа деловых данных, аналитических систем и систем интеллектуальной поддержки принятия решений на их базе. Новые информационные технологии позволили найти нетривиальные подходы к автоматизации управленческого труда и отказаться от старых методов управления.

Технологии интеллектуального анализа данных обеспечивают формирование аналитических данных посредством выполнения операции очищения данных локальных баз организации, применения статистических методов и других сложных алгоритмов. Появлению аналитических систем способствовало осознание руководящим звеном предприятий факта, что в базах данных содержится не только информация, но и знания (скрытые закономерности). Последние позволяют охарактеризовать процесс управления предприятием и дать интеллектуальную информацию для более обоснованного принятия решений.

Можно выделить следующие технологии интеллектуального анализа данных:

  • · Оперативный анализ данных посредством OLAP-систем;
  • · Поиск и интеллектуальный выбор данных Data Mining;
  • · Деловые интеллектуальные технологии BIS;
  • · Интеллектуальный анализ текстовой информации.

Аналитические системы OLAP (On-Line Analytical Processing) предназначены для анализа больших объемов информации в интерактивном режиме для создания интеллектуального капитала (аналитических данных), позволяющего руководителю принять обоснованное решение. Они обеспечивают:

  • · Агрегирование и детализацию данных по запросу.
  • · Выдачу данных в терминах предметной области.
  • · Анализ деловой информации по множеству параметров (например, поставщик, его местоположение, поставляемый товар, цены, сроки поставки и т. д.).
  • · Многопроходный анализ информации, который позволяет выявить не всегда очевидные тенденции в исследуемой предметной области.
  • · Произвольные срезы данных по наименованию, выбираемых из разных внутренних и внешних источников (например, по наименованию товара).
  • · Выполнение аналитических операций с использованием статистических и других методов.
  • · Согласование данных во времени для использования в прогнозах, трендах, сравнениях (например, согласование курса рубля).

Концепция технологии OLAP была сформулирована Эдгаром Коддом в 1993 году. Она стала ключевым компонентом организации данных в информационных хранилищах и их применении. Эта технология основана на построении многомерных наборов данных - OLAP-кубов. Целью использования технологий OLAP является анализ данных и представление этого анализа в виде, удобном для восприятия и принятия решений.

Основные требования, предъявляемые к приложениям для многомерного анализа:

  • · Предоставление пользователю результатов анализа за приемлемое время (не более 5 сек.).
  • · Осуществление логического и статистического анализа, его сохранение и отображение в доступном для пользователя виде.
  • · Многопользовательский доступ к данным.
  • · Многомерное представление данных.
  • · Возможность обращаться к любой информации независимо от места ее хранения и объема.

Многомерный анализ может быть реализован средствами анализа данных офисных приложений и распределенными OLAP -системами. Наибольший эффект достигается при использовании многомерных кубов.

Рассмотрим на примерах понятие многомерного куба.

< страны>» можно построить одномерный набор агрегатных значений (агрегат - суммарная стоимость заказов):

Посредством запроса «Какова суммарная стоимость заказов, сделанных клиентами < страны> в < году > и доставленных < компанией>» получаем трехмерный куб (рис.4.1).

Рис. 4.1

Если учесть, что в каждой стране может существовать несколько клиентов, то добавляется четвертое измерение.

Вообще под измерением понимается один из ключей данных, в разрезе которого можно получать, фильтровать, группировать и отражать информацию о фактах. Примеры измерений: страна, клиент, товар, поставщик. Факт - это число, значение. Факты можно суммировать вдоль определенного измерения. Их можно группировать, выполнять над ними другие статистические операции. Агрегатное данное - суммарное, среднее, минимальное, максимальное и другое значение, полученное посредством статистических операций.

Измерения могут иметь иерархическую структуру. Например, в стране может быть несколько городов, в городе - несколько клиентов, их могут обслуживать различные поставщики из тех же или других городов и стран. Для отображения иерархии измерений используются различные модели иерархий. Модели иерархий служат основой построения многомерных баз данных и метаданных в информационных хранилищах.

Многомерный анализ данных может быть произведен посредством клиентских приложений и серверных OLAP-систем.

Клиентские приложения, содержащие OLAP-средства, позволяют вычислять агрегатные данные. Агрегатные данные размещаются в кэш внутри адресного пространства такого OLAP-средства. Кэш - быстродействующий буфер большой емкости, работающий по специальному алгоритму. При этом если исходные данные находятся в реляционной базе, вычисления производятся OLAP-средствами клиентского приложения. Если исходные данные размещаются на сервере баз данных, то OLAP-средства приложений посылают SQL-запросы на сервер баз данных и получают агрегатные данные, вычисленные сервером.

Примерами клиентских приложений, содержащими OLAP-средства, являются приложения статистической обработки данных SEWSS (Statistic Enterprise - Wide SPS System) фирмы StatSoft и MS Excel 2000. Excel позволяет создать и сохранить небольшой локальный многомерный OLAP-куб и отобразить его двух или трехмерные сечения.

Многие средства проектирования позволяют создавать простейшие OLAP-средства. Например, Borland Delphi и Borland C++ Builder.

Отметим, что клиентские приложения применяются при малом числе измерений (не более шести) и небольшом разнообразии значений этих измерений.

Серверные OLAP-системы развили идею сохранения кэш с агрегатными данными.

В них сохранение и изменение агрегатных данных, поддержка содержащего их хранилища осуществляется отдельным приложением (процессом), называемым OLAP-сервером . Клиентские приложения делают запросы к OLAP-серверу и получают требуемые агрегатные данные.

Применение OLAP-серверов сокращает трафик сети, время обслуживания запросов, сокращает требования к ресурсам клиентских приложений.

В масштабе предприятия обычно используются OLAP-серверы типа Oracle Express Server, MS SQL Server 2000 Analysis Services и др.

Заметим, что MS Excel 2000 позволяет делать запросы к OLAP-серверам.

Как исходные, так и агрегатные данные могут храниться либо в реляционных, либо в многомерных базах данных MDD (MultiDimensional Data). В настоящее время применяются три способа хранения многомерных баз данных:

  • · Системы оперативной аналитической обработки многомерных баз данных MOLAP (Multidimensional OLAP) - исходные и агрегатные данные хранятся в многомерной базе данных. Многомерные базы данных представляют собой гиперкубы или поликубы. В гиперкубах все измерения имеют одинаковую размерность. В поликубе каждое измерение имеет свою размерность. Многомерная база данных оказывается избыточной, так как она полностью содержит исходные данные реляционных баз.
  • · Системы оперативной аналитической обработки реляционных баз данных ROLAP (Relational OLAP) - исходные данные остаются в реляционной базе, агрегатные данные размещаются в кэш той же базы.
  • · Гибридные системы оперативной аналитической обработки данных HOLAP (Hybrid OLAP) - исходные данные остаются в реляционной базе, а агрегатные данные хранятся в многомерной базе данных (MDD).

Серверных OLAP-системы на базе информационных хранилищ поддерживают эти способы хранения данных.

Аналитическая система обеспечивает выдачу агрегатных данных по запросам клиентов. Сложность аналитических систем вызвана реализацией сложных интеллектуальных запросов. Интеллектуальные запросы осуществляют поиск по условию или алгоритму вычисления ответа. Например, выбрать для выпуска изделия, приносящие максимальную прибыль. Само условие может доопределяться в ходе формирования ответа, что усложняет алгоритм формирования ответа. Данные для формирования ответа могут находиться в разных внутренних и внешних базах. Существующий язык запросов SQL расширяется возможностью построения интеллектуальных запросов. Пример такого запроса - сравнить данные о продажах в конкретные месяцы, но разные годы. Для таких запросов используются непроцедурные языки обращения к многомерным базам данных. Примером такого языка запросов является язык MDX (Multidimensional Expressions). Он позволяет формировать запрос и описывать алгоритм вычислений. Язык SQL используется для извлечения данных из локальных баз. Язык MDX служит для извлечения данных из многомерных баз и информационных хранилищ.

Аналитические данные используются в системах поддержки принятия решений.

Самые современные аналитические системы основываются на информационных хранилищах и обеспечивают весь спектр аналитической обработки. Доступ к информационным хранилищам реализован посредством транзакций. По интеллектуальным запросам OLAP -системы информационное хранилище выдает аналитические данные. По запросам, объединенным в транзакции, других систем информационное хранилище обеспечивает их обработку, выдачу ответов и отчетов, но не обеспечивает функцию анализа данных. Именно поэтому эти системы называются OLTP -системами (On-Line Transaction Processing) в отличии от OLAP -систем.

Примером OLAP-систем является Brio Query Enterprise корпорации Brio Technology. OLAP-средства включают в свои системы фирмы 1С, Парус и др.

Технологии Data Mining (добыча данных) разработаны для поиска и выявления в данных скрытых связей и взаимозависимостей с целью предоставления их руководителю в процессе принятия решений. Для этого используются статистические методы корреляции, оптимизации и другие, позволяющие находить эти зависимости и синтезировать дедуктивную (обобщающую) информацию. Технологии Data Mining обеспечивают:

  • · Поиск зависимых данных (реализацию интеллектуальных запросов);
  • · Выявление устойчивых бизнес - групп (выявление групп объектов, близких по заданным критериям);
  • · Ранжирование важности измерений при классификации объектов для проведения анализа;
  • · Прогнозирование бизнес - показателей (например, ожидаемые продажи, спрос);
  • · Оценка влияния принимаемых решений на достижение успеха предприятия;
  • · Поиск аномалий и т.д.

Интеллектуальные деловые технологии BIS (Business Intelligence Services) преобразуют информацию из внутренних и внешних баз в интеллектуальный капитал (аналитические данные). Главными задачами систем интеллектуального выбора данных является поиск функциональных и логических закономерностей в накопленных данных для подсказки обоснованных управленческих решений. Они основаны на применении технологий информационного хранилища и алгоритмов автоматизации деловых процессов (Workflow). Аналитические данные предоставляются руководству всех уровней и работникам аналитических служб организации по запросам в удобном виде.

Для интеллектуального анализа текстовой информации разработаны структурные аналитические технологии (САТ) . Они ориентированы на углубленную обработку неструктурированной информации. Реализуют уникальную способность человека интерпретировать (толковать) содержание текстовой информации и устанавливать связи между фрагментами текста. САТ реализованы на базе гипертекстовой технологии, лингвистических процессоров, семантических сетей. Структурные аналитические технологии предназначены для решения разнообразных задач аналитического характера на основе структуризации предварительно отобранной текстовой информации. Являются инструментом создания аналитических докладов, отчетов, статей, заметок для использования в информационно - аналитических службах организаций, отраслей, государственного управления, СМИ и т.д.