Атомное ядро: строение, масса, состав. Состав ядра атома. Расчет протонов и нейтронов

§1 Заряд и масса, атомных ядер

Важнейшими характеристиками ядра являются его заряд и масса М .

Z - заряд ядра определяется количеством положительных элементарных зарядов сосредоточенных в ядре. Носителем положительного элементарного заряда р = 1,6021·10 -19 Кл в ядре является протон. Атом в целом нейтрален и заряд ядра определяет одновременно число электронов в атоме. Распределение электронов в атоме по энергетическим оболочкам и подоболочкам суще-ственно зависит от их общего числа в атоме. Поэтому заряд ядра в значительной мере определяет распределение электронов по их состояниям в атоме и положение элемента в периодической системе Менделеева. Заряд ядра равен q я = z · e , где z -зарядовое число ядра, равное порядковому номеру элемента в системе Менделеева.

Масса атомного ядра практически совпадает с массой атома, потому что масса электронов всех атомов, кроме водородного, составляет примерно 2,5· 10 -4 массы атомов. Массу атомов выражают в атомных единицах массы (а.е.м.). За а.е.м. принята1/12 масса атома углерода .

1 ае.м. =1,6605655(86)·10 -27 кг.

m я = m a - Z m e .

Изотопами, называются разновидности атомов данного химического элемента, обладающие одинаковым зарядом, но различающееся массой.

Целое число ближайшее к атомной массе, выраженной в а.е. м . называется массовым число м и обозначается буквой А . Обозначение химического эле-мента: А - массовое число, X - символ химического элемента, Z -зарядовое чис-ло - порядковый номер в таблице Менделеева ():

Бериллий ; Изотопы: , ", .

Радиус ядра:

где А - массовое число.

§2 Состав ядра

Ядро атома водорода называется протоном

m протона = 1,00783 а.е.м. , .

Схема атома водорода

В 1932 г. была открыта частица названная нейтроном, обладающая мас-сой близкой к массе протона (m нейтрона = 1,00867 а.е.м.) и не имеющая электрического заряда. Тогда же Д.Д. Иваненко сформулировал гипотезу о протонно - нейтроном строении ядра: ядро состоит из протонов и нейтронов и их сумма равна массовому числу А . 3арядовое число Z определяет число протонов в ядре, число нейтронов N =А - Z .

Элементарные частицы - протоны и нейтроны, входящие в состав ядра , получили общее название нуклонов. Нуклоны ядер находятся в состояниях , существенно отличающихся от их свободных состояний. Между нуклонами осуществляется особое я де р ное взаимодействие. Говорят, что нуклон может находиться в двух «зарядовых состояниях» - протонном с зарядом + е , и ней-тронном с зарядом 0.

§3 Энергия связи ядра. Дефект массы. Ядерные силы

Ядерные частицы - протоны и нейтроны - прочно удерживаются внутри ядра, поэтому между ними действуют очень большие силы притяжения, спо-собные противостоять огромным силам отталкивания между одноименно за-ряженными протонами. Эти особые силы, возникающие на малых расстояниях между нуклонам, называются ядерными силами. Ядерные силы не являются электростатическими (кулоновскими).

Изучение ядра показало, что действующие между нуклонами ядерные силы обладают следующими особенностями:

а) это силы короткодействующие - проявляющееся на расстояниях порядка 10 -15 м и резко убывающие даже при незначительном увеличения рас-стояния;

б) ядерные силы не зависят от того, имеет ли частица (нуклон) заряд - за-рядовая независимость ядерных сил. Ядерные силы, действующие между нейтроном и протоном, между двумя нейтронами, между двумя протонами равны. Протон и нейтрон по отношению к ядерным силам одинаковы.

Энергия связи является мерой устойчивости атомного ядра. Энергия связи ядра равна работе, которую нужно совершить для расщепления ядра на со-ставляющие его нуклоны без сообщения им кинетической энергии

М Я < Σ(m p + m n )

Мя - масса ядра

Измерение масс ядер показывает, что масса покой ядра меньше, чем сумма масс покоя составляющих его нуклонов.

Величина

служит мерой энергия связи и называется дефектом массы.

Уравнение Эйнштейна в специальной теории относительности связывает энергию и массу покоя частицы.

В общем случае энергия связи ядра может быть подсчитана по формуле

где Z - зарядовое число (число протонов в ядре);

А - массовое число (общее число нуклонов в ядре);

m p , , m n и М я - масса протона, нейтрона а ядра

Дефект массы (Δm ) равны.й 1 а.е. м. (а.е.м. - атомная единица массы) со-ответствует энергий связи (Е св), равной 1 а.е.э. (а.е.э. - атомная единица энер-гии) и равной 1а.е.м.·с 2 = 931 МэВ.

§ 4 Ядерные реакции

Изменения ядер при взаимодействии их с отдельными частицами и друг с другом принято называть ядерными реакциями.

Различают следующие, наиболее часто встречающиеся ядерные реакции.

  1. Реакция превращения . В этом случае налетевшая частица остается в ядре, но промежуточное ядро испускает какую-либо другую частицу, поэто-му ядро - продукт отличается от ядра-мишени.
  1. Реакция радиационного захвата . Налетевшая частица застревает в ядре, но возбужденное ядро испускает избыточную энергию, излучая γ- фотон (используется в работе ядерных реакторов)

Пример реакции захвата нейтронов кадмием

или фосфором


  1. Рассеяние . Промежуточное ядро испускает частицу, тождественную

с налетевшей, причем может быть:

Упругое рассеяние нейтронов углеродом (используется в реакторах для замедления нейтронов):

Неупругое рассеяние :

  1. Реакция деления . Это реакция, идущая всегда с выделением энергии. Она является основой для технического получения и использования ядерной энергии. При реакции деления возбуждение промежуточного составного ядра столь велико, что оно делится на два, примерно равных осколка, с выде-лением нескольких нейтронов.

Если энергия возбуждения невелика, то разделение ядра не происходит, а ядро, потеряв избыток энергии путем испускания γ - фотона или нейтрона, воз-вратится в нормальное состояние (рис. 1). Но если вносимая нейтроном энер-гия велика, то возбужденное ядро начинает деформироваться, в нем образуется перетяжка и в результате оно делится на два осколка, разлетающихся с ог-ромными скоростями, при этом испускается два нейтрона
(рис. 2).

Цепная реакция - саморазвивающаяся реакция деления. Для осуществ-ления её необходимо, чтобы из вторичных нейтронов, образующихся при од-ном акте деления, хотя бы один смог вызвать следующий акт деления: (так как некоторые нейтроны могут участвовать в реакциях захвата не вызывая деле-ния) . Количественно условие существования цепной реакции выражает коэффициент размножения

k < 1 - цепная реакция невозможна, k = 1 (m = m кр ) - цепная реакций с по-стоянным количеством нейтронов (в ядерном реакторе}, k > 1 (m > m кр ) - ядерные бомбы.

РАДИОАКТИВНОСТЬ

§1 Естественная радиоактивность

Радиоактивность представляет собой самопроизвольное превращение неустойчивых ядер одного элемента в ядра другого элемента. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существую-щих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных ре-акций.

Типы радиоактивности:

  1. α-распад.

Испускание ядрами некоторых химических элементов α-системы двух протонов и двух нейтронов, соединенных воедино (а-частица - ядро атома ге-лия )

α-распад присущ тяжелым ядрам с А > 200 и Z > 82. При движении в веще-стве α-частицы производят на своем пути сильную ионизацию атомов (иони-зация - отрыв электронов от атома), действуя на них своим электрическим полем. Расстояние, на которое пролетает α-частица в веществе до полной её остановки, называется пробегом частицы или проникающей способностью (обозначается R , [ R ] = м, см). . При нормальных условиях α- частица образует в воздухе 30000 пар ионов на 1 см пути. Удельной ионизаци-ей называется число пар ионов образующихся на 1 см длины пробега. α- частица оказывает сильное биологическое действие.

Правило смещения для α-распада:

2. β-распад.

а) электронный (β -): ядро испускает электрон и электронное антинейтрино

б) позитронный (β +):ядро испускает позитрон и нейтрино

Эта процессы происходят, путем превращения одного вида нуклона в яд-ре в другой: нейтрона в протон или протона в нейтрон.

Электронов в ядре нет, они образуются в результате взаимного превра-щения нуклонов.

Позитрон - частица, отличающаяся от электрона только знаком за-ряда (+е = 1,6·10 -19 Кл)

Из эксперимента следует, что при β - распаде изотопы теряют одинаковое количество энергии. Следовательно, на основании закона сохранения энергии В. Паули предсказал, что выбрасывается еще одна легкая частица, названная антинейтрино. Антинейтрино не имеет заряда и массы. Потери энергии β - частицами при прохождении их через вещество вызываются, главным обра-зом, процессами ионизации. Часть энергии теряется на рентгеновское излуче-ние при торможении β - частицы ядрами поглощающего вещества. Так как β - частицы обладают малой массой, единичным зарядом и очень большими скоростями, то их ионизирующая способность невелика, (в 100 раз меньше, чем у α - частиц), следовательно, проникающая способность (пробег) у β - частиц суще-ственно больше, чем у α - частиц.

R β воздуха =200 м, R β Pb ≈ 3 мм

β - - распад происходит у естественных и искусственных радиоактивных ядер. β + - только при искусственной радиоактивности.

Правило смещения для β - - распада :

в) К - захват (электронный захват) - ядро поглощает один из электронов, находящихся на оболочке К (реже L или М ) своего атома, в результате чего один из протонов превращается а нейтрон, испуская при этом нейтрино

Схема К - захвата:

Место е электронной оболочке, освобожденное захваченным электроном, заполняется электронами из вышележащих слоев, в результате чего возникают рентгеновские лучи.

  • γ-лучи.

Обычно все типы радиоактивности сопровождаются испусканием γ- лучей. γ-лучи - это электромагнитное излучение, обладающее длинами волн от одного до сотых долей ангстрем λ’=~ 1-0,01 Å=10 -10 -10 -12 м. Энергия γ-лучей достигает миллионов эВ.

W γ ~ MэB

1эВ=1,6·10 -19 Дж

Ядро, испытывающее радиоактивный распад, как правило, оказывается возбужденным, н его переход в основное состояние сопровождается испуска-нием γ - фотона. При этом энергия γ-фотона определяется условием

где Е 2 и E 1 -энергия ядра.

Е 2 - энергия в возбужденном состоянии;

Е 1 - энергия в основном состоянии.

Поглощение γ-лучей веществом обусловлено тремя основными процессами:

  • фотоэффектом (при hv < l MэB);
  • образованием пар электрон - позитрон;

или

  • рассеяние (эффект Комптона) -

Поглощение γ-лучей происходит по закону Бугера:

где μ- линейный коэффициент ослабления, зависящий от энергий γ - лучей и свойств среды;

І 0 - интенсивность падающего параллельного пучка;

I - интенсивность пучка после прохождения вещества толщиной х см.

γ-лучи - одно из наиболее проникающих излучений. Для наиболее жест-ких лучей (hν max ) толщина слоя половинного поглощения равна в свинце 1,6 см, в железе - 2,4 см, в алюминии - 12 см, в земле - 15 см.

§2 Основной закон радиоактивного распада.

Число распавшихся ядер dN пропорционально первоначальному числу ядер N и времени распада dt , dN ~ N dt . Основной закон радиоактивного распада в дифференциальной форме:

Коэффициент λ называется постоянной распада для данного вида ядер. Знак “-“ означает, что dN должно быть отрицательным, так как конечное чис-ло не распавшихся ядер меньше начального.

следовательно, λ характеризует долю ядер, распадающихся за единицу време-ни, т е. определяет скорость радиоактивного распада. λ не зависит от внешних условий, а определяется лишь внутренними свойствами ядер. [λ]=с -1 .

Основной закон радиоактивного распада в интегральной форме

где N 0 - первоначальное число радиоактивных ядер при t =0;

N - число не распавшихся ядер в момент времени t ;

λ - постоянная радиоактивного распада.

О скорости распада на практике судят используя не λ, а Т 1/2 - период по-лураспада - время, за которое распадается половина первоначального количества ядер. Связь Т 1/2 и λ

Т 1/2 U 238 = 4,5·10 6 лет, Т 1/2 Ra = 1590 лет, Т 1/2 Rn = 3,825 сут. Число распадов в единицу времени А = - dN / dt называется активностью данного радиоактивного вещества.

Из

следует,

[А] = 1Беккерель = 1распад/1с;

[А] = 1Ки = 1Кюри= 3,7·10 10 Бк.

Закон изменения активности

где А 0 =λ N 0 - начальная активность в момент времени t = 0;

А - активность в момент времени t .

Ядро простейшего атома - атома водорода - состоит из одной элементарной частицы, называемой протоном. Ядра всех остальных атомов состоят из двух видов частиц-протонов и нейтронов. Эти частицы носят название нуклонов. Протон. Протон обладает зарядом и массой

Для сравнения укажем, что масса электрона равна

Из сопоставления (66.1) и (66.2) следует, что -Протон имеет спин, равный половине и собственный магнитный момент

Единица магнитного момента, называемая ядерным магнетоном. Из сравнения с (33.2) вытекает, что в 1836 раз меньше магнетона Бора . Следовательно, собственный магнитный момент протона примерно в 660 раз меньше, чем магнитный момент электрона.

Нейтрон. Нейтрон был открыт в 1932 г. английским физиком Д. Чедвиком. Электрический заряд его равен нулю, а масса

очень близка к массе протона.

Разность масс нейтрона и протона составляет 1,3 МэВ, т. е. .

Нейтрон обладает спином, равным половине и (несмотря на отсутствие электрического заряда) собственным магнитным моментом

(знак минус указывает на то, что направления собственных механического и магнитного моментов противоположны). Объяснение этого удивительного факта будет дано в § 69.

Отметим, что отношение экспериментальных значений с большой степенью точности равно -3/2. Это было замечено лишь после того, как такое значение было получено теоретически.

В свободном состоянии нейтрон нестабилен (радиоактивен) - самопроизвольно распадается, превращаясь в протон и испуская электрон и еще одну частицу, называемую антинейтрино (см. § 81). Период полураспада (т. е. время, за которое распадается половина первоначального количества нейтронов) равен примерно 12 мин. Схему распада можно написать следующим образом:

Масса антинейтрино равна нулю. Масса нейтрона больше массы протона на Следовательно, масса нейтрона превышает суммарную массу частиц, фигурирующих в правой части уравнения (66.7), на т. е. на 0,77 МэВ. Эта энергия выделяется при распаде нейтрона в виде кинетической энергии образующихся частиц.

Характеристики атомного ядра. Одной из важнейших характеристик атомного ядра является зарядовое число Z. Оно равно количеству протонов, входящих в состав ядра, и определяет его заряд, который равен Число Z определяет порядковый номер химического элемента в периодической таблице Менделеева. Поэтому его также называют атомным номером ядра.

Число нуклонов (т. е. суммарное число протонов и нейтронов) в ядре обозначается буквой А и называется массовым числом ядра. Число нейтронов в ядре равно

Для обозначения ядер применяется символ

где под X подразумевается химический символ данного элемента. Слева вверху ставится массовое число, слева внизу - атомный номер (последний значок часто опускают).

Иногда массовое число пишут не слева, а справа от символа химического элемента

Ядра с одинаковым Z, но разными А называются изотопами. Большинство химических элементов имеет по нескольку стабильных изотопов. Так, например, у кислорода имеется три стабильных изотопа: у олова - десять, и т. д.

Водород имеет три изотопа:

Протий и дейтерий стабильны, тритий радиоактивен.

Ядра с одинаковым массовым числом А называются изобарами. В качестве примера можно привести и Ядра с одинаковым числом нейтронов носят название изотонов Наконец, существуют радиоактивные ядра с одинаковыми Z и А, отличающиеся периодом полураспада. Они называются изомерами. Например, имеются два изомера ядра у одного из них период полураспада равен 18 мин, у другого - 4,4 часа.

Известно около 1500 ядер, различающихся либо Z, либо А, либо и тем и другим. Примерно 1/5 часть этих ядер устойчивы, остальные радиоактивны. Многие ядра были получены искусственным путем с помощью ядерных реакций.

В природе встречаются элементы с атомным номером Z от 1 до 92, исключая технеций и прометий Плутоний после получения его искусственным путем был обнаружен в ничтожных количествах в природном минерале - смоляной обманке. Остальные трансурановые (т. е. заурановые) элементы (с Z от 93 до 107) были получены искусственным путем посредством различных ядерных реакций.

Трансурановые элементы кюрий , эйнштейний , фермий ) и менделевий ) получили названия в честь выдающихся ученых П. и М. Кюри, А. Эйнштейна, Э. Ферми и Д. И. Менделеева. Лоуренсий назван в честь изобретателя циклотрона Э. Лоуренса. Курчатовий ) получил свое название в честь выдающегося советского физика И. В. Курчатова.

Некоторые трансурановые элементы, в том числе курчатовий и элементы с номерами 106 и 107, были получены в Лаборатории ядерных реакций Объединенного института ядерных исследований в Дубне советским ученым Г. Н. Флеровым и его сотрудниками.

Размеры ядер. В первом приближении ядро можно считать шаром, радиус которого довольно точно определяется формулой

(ферми - название применяемой в ядерной физике единицы длины, равной см). Из формулы (66.8) следует, что объем ядра пропорционален числу нуклонов в ядре. Таким образом, плотность вещества во всех ядрах примерно одинакова.

Спин ядра. Спины нуклонов складываются в результирующий спин ядра. Спин нуклона равен Поэтому квантовое число спина ядра l будет полуцелым при нечетном числе нуклонов А и целым или нулем при четном А. Спины ядер l не превышают нескольких единиц. Это указывает на то, что спины большинства нуклонов в ядре взаимно компенсируют друг друга, располагаясь антипараллельно. У всех четно-четных ядер (т. е. ядер с четным числом протонов и четным числом нейтронов) спин равен нулю.

Состав и характеристики атомного ядра

Атом – наименьшая часть химического элемента, способная к самостоятельному существованию и являющаяся носителем его свойств. Атом представляет собой электрически нейтральную систему, состоящую из положительно заряженного ядра и отрицательно заряженных электронов. Диаметр атома порядка 10 -10 м, диаметр ядра – 10-15 – 10 -14 м. Ядро атома имеет сложное строение. В 1932 г. В.Гейзенберг и Д.Иваненко предложили нуклонную модель строения ядра, согласно которой ядро атома состоит из протонов и нейтронов.

Протон [от греч. protos – первый] (символ ) – стабильная элементарная частица, ядро атома водорода. Время жизни протона > 10 31 лет. Масса 1,6726∙10 -27 кг 938,3 МэВ. Электрический заряд протона положительный: 1,6∙10 -19 Кл. Спин протона равен ½, поэтому он подчиняется статистике Ферми-Дирака. Число протонов в ядре – зарядовое число, определяет общий заряд ядра и порядковый номер элемента в таблице Менделеева. Заряд ядра определят число электронов в атоме, конфигурацию их электронных оболочек, величину и характер внутриатомного электрического поля. Число электронов в нейтральном атоме равно числу протонов в ядре, а их общий отрицательный заряд равен .

Характеристики протона, нейтрона, электрона
Характеристика Протон Нейтрон Электрон
Масса, МэВ 938.28 939.57 0.511
Электрический заряд (в единицах заряда электрона) +1 -1
Внутренний момент количества движения (в единицах ћ) 1/2 1/2 1/2
Четность +1 +1 +1
Статистика Ферми-Дирака
Магнитный момент (в единицах ядерного магнетона)
+2.79 -1.91
(в единицах магнетона Бора) 1.001
Время жизни >10 25 лет 887+ 2 с >4.3·10 23 лет
Тип распада pe - ν e

Нейтрон (символ n ) [от лат neuter – ни тот, ни другой] – элементарная частица с нулевым электрическим зарядом, массой покоя 1,6749∙10 -27 кг (939,565 МэВ). Наряду с протоном под общим названием нуклон входит в состав атомных ядер. Имеет спин ½, подчиняется статистике Ферми-Дирака (является фермионом). Открыт в 1932 г. Дж. Чедвиком. В свободном состоянии нейтрон нестабилен, самопроизвольно распадается, превращаясь в протон с испусканием электрона и антинейтрино: Время жизни нейтрона – 896 с.

Протон и нейтрон считаются двумя состояниями нуклона. Масса атома определяется в основном массой его ядра. Массовое число зависит от общего числа протонов и нейтронов в ядре: (ядро содержит протонов и нейтронов). Массу ядра атома выражают в атомных единицах массы. Атомная единица массы (а.е.м.) – единица массы, равная 1/12 массы изотопа углерода ; применяется в атомной и ядерной физике для выражения масс элементарных частиц, атомов, молекул. 1 а.е.м. = 1,6605655 · 10 -27 кг.

Для обозначения ядер атомов принята символика

где – символ химического элемента, – зарядовое число, – массовое число.

Изотопами называют ядра, имеющие одинаковый заряд , но различные массовые числа (т.е. различаются числом нейтронов). Например,

Ядра с одинаковыми , но разными называются изобарами . Например,

Ядра с одинаковым числом нейтронов, но разным числом протонов называются изотонами. Например,

Ядра с одинаковым числом протонов и нейтронов, но разными периодами полураспада называются изомерами. Например, существуют два вида ядер брома с периодами полураспада 4,4 часа и 18 мин.

В настоящее время известно более 2300 ядер, примерно 300 из них устойчивы, остальные нестабильны. В природе встречаются элементы с атомными номерами от 1 до 92 (кроме технеция и прометия ). Элементы с 93 получены искусственным путем, называются трансурановыми.

На рисунке показана N-Z диаграмма атомных ядер. Черными точками показаны стабильные ядра. Область расположения стабильных ядер обычно называют долиной стабильности. С левой стороны от стабильных ядер находятся ядра, перегруженные протонами (протоноизбыточные ядра), справа – ядра, перегруженные нейтронами (нейтроноизбыточные ядра). Протоноизбыточные ядра являются радиоактивными и превращаются в стабильные в основном в результате β + -распадов, протон, входящий в состав ядра при этом превращается в нейтрон. Нейтроноизбыточные ядра также являются радиоактивными и превращаются в стабильные в результате β - -распадов, с превращением нейтрона ядра в протон.


N-Z диаграмма атомных ядер

Самыми тяжелыми стабильными изотопами являются изотопы свинца (Z = 82) и висмута (Z = 83). Тяжелые ядра наряду с процессами β + и β - - распада подвержены также -распаду и спонтанному делению, которые становятcя их основными каналами распада. Пунктирная линия очерчивает область возможного существования атомных ядер. Линия B p = 0 (B p - энергия отделения протона) ограничивает область существования атомных ядер слева (proton drip-line). Линия B n = 0 (B n - энергия отделения нейтрона) - справа (neutron drip-line). Вне этих границ атомные ядра существовать не могут, так как они распадаются за характерное ядерное время (~ 10 -23 c) с испусканием одного или двух нуклонов.

Плотность ядерного вещества 10 17 кг/м 3 .

Спины нуклонов образуют результирующий спин ядра, суммируясь по квантовым законам сложения моментов. При нечетном числе нуклонов спин ядра будет полуцелым, при четном числе нуклонов – нулем или целым числом. Спины большинства нуклонов в ядре взаимно компенсируют друг друга, располагаясь антипараллельно. Поэтому спины ядер не превышают нескольких единиц. У ядер с четным числом протонов и четным числом нейтронов (четно-четные ядра) спин равен нулю.

Атомное ядро
Atomic nucleus

Атомное ядро – центральная и очень компактная часть атома, в которой сосредоточена практически вся его масса и весь положительный электрический заряд. Ядро, удерживая вблизи себя кулоновскими силами электроны в количестве, компенсирующем его положительный заряд, образует нейтральный атом. Большинство ядер имеют форму близкую к сферической и диаметр ≈ 10 -12 см, что на четыре порядка меньше диаметра атома (10 -8 см). Плотность вещества в ядре – около 230 млн.тонн/см 3 .
Атомное ядро было открыто в 1911 г. в результате серии экспериментов по рассеянию альфа-частиц тонкими золотыми и платиновыми фольгами, выполненных в Кембридже (Англия) под руководством Э. Резерфорда . В 1932 г. после открытия там же Дж. Чедвиком нейтрона стало ясно, что ядро состоит из протонов и нейтронов
(В. Гейзенберг , Д.Д. Иваненко , Э. Майорана).
Для обозначения атомного ядра используется символ химического элемента атома, в состав которого входит ядро, причём левый верхний индекс этого символа показывает число нуклонов (массовое число) в данном ядре, а левый нижний индекс – число протонов в нём. Например, ядро никеля, содержащее 58 нуклонов, из которых 28 протонов, обозначается . Это же ядро можно также обозначать 58 Ni, либо никель-58.

Ядро – система плотно упакованных протонов и нейтронов, двигающихся со скоростью 10 9 -10 10 см/сек и удерживаемых мощными и короткодействующими ядерными силами взаимного притяжения (область их действия ограничена расстояниями ≈ 10 -13 см). Протоны и нейтроны имеют размер около 10 -13 см и рассматриваются как два разных состояния одной частицы, называемой нуклоном. Радиус ядра можно приближённо оценить по формуле R ≈ (1.0-1.1)·10 -13 А 1/3 см, где А – число нуклонов (суммарное число протонов и нейтронов) в ядре. На рис. 1 показано как меняется плотность вещества (в единицах 10 14 г/см 3) внутри ядра никеля, состоящего из 28 протонов и 30 нейтронов, в зависимости от расстояния r (в единицах 10 -13 см) до центра ядра.
Ядерное взаимодействие (взаимодействие между нуклонами в ядре) возникает за счёт того, что нуклоны обмениваются мезонами. Это взаимодействие – проявление более фундаментального сильного взаимодействиямежду кварками, из которых состоят нуклоны и мезоны (подобным образом силы химической связи в молекулах – проявление более фундаментальных электромагнитных сил).
Мир ядер очень разнообразен. Известно около 3000 ядер, отличающихся друг от друга либо числом протонов, либо числом нейтронов, либо тем и другим. Большинство из них получено искусственным путём.
Лишь 264 ядра стабильны, т.е. не испытывают со временем никаких самопроизвольных превращений, именуемых распадами. Остальные испытывают различные формы распада – альфа-распад (испускание альфа-частицы, т.е. ядра атома гелия); бета-распад (одновременное испускание – электрона и антинейтрино или позитрона и нейтрино, а также поглощение атомарного электрона с испусканием нейтрино); гамма-распад (испускание фотона) и другие.
Различные типы ядер часто называют нуклидами. Нуклиды с одинаковым числом протонов и разным числом нейтронов называют изотопами. Нуклиды с одинаковым числом нуклонов, но разным соотношением протонов и нейтронов называются изобарами. Лёгкие ядра содержат примерно равные количества протонов и нейтронов. У тяжёлых ядер число нейтронов примерно в 1,5 раза превышает число протонов. Самое лёгкое ядро – ядро атома водорода, состоящее из одного протона. У наиболее тяжелых известных ядер (они получены искусственно) число нуклонов ≈290. Из них 116-118 протонов.
Различные комбинации количества протонов Z и нейтронов соответствуют различным атомным ядрам. Атомные ядра существуют (т.е. их время жизни t > 10 -23 c) в довольно узком диапазоне изменений чисел Z и N. При этом все атомные ядра делятся на две большие группы - стабильные и радиоактивные (нестабильные). Стабильные ядра группируются вблизи линии стабильности, которая определяется уравнением

Рис. 2. NZ- диаграмма атомных ядер.

На рис. 2 показана NZ-диаграмма атомных ядер. Черными точками показаны стабильные ядра. Область расположения стабильных ядер обычно называют долиной стабильности. С левой стороны от стабильных ядер находятся ядра, перегруженные протонами (протонноизбыточные ядра), справа – ядра, перегруженные нейтронами (нейтронноизбыточные ядра). Цветом выделены атомные ядра, обнаруженные в настоящее время. Их около 3.5 тысяч. Считается, что всего их должно быть 7 – 7.5 тысяч. Протоноизбыточные ядра (малиновый цвет) являются радиоактивными и превращаются в стабильные в основном в результате β + -распадов, протон, входящий в состав ядра при этом превращается в нейтрон. Нейтроноизбыточные ядра (голубой цвет) также являются радиоактивными и превращаются в стабильные в результате - -распадов, с превращением нейтрона ядра в протон.
Самыми тяжелыми стабильными изотопами являются изотопы свинца (Z = 82) и висмута (Z = 83). Тяжелые ядра наряду с процессами β + и β - -распада подвержены также α-распаду (желтый цвет) и спонтанному делению, которые становятся их основными каналами распада. Пунктирная линия на рис. 2 очерчивает область возможного существования атомных ядер. Линия B p = 0 (B p – энергия отделения протона) ограничивает область существования атомных ядер слева (proton drip-line). Линия B n = 0 (B n – энергия отделения нейтрона) – справа (neutron drip-line). Вне этих границ атомные ядра существовать не могут, так как они распадаются за характерное ядерное время (~10 -23 – 10 -22 c) с испусканием нуклонов.
При соединении (синтезе) двух лёгких ядер и делении тяжёлого ядра на два более лёгких осколка выделяется большая энергия. Эти два способа получения энергии – самые эффективные из всех известных. Так 1 грамм ядерного топлива эквивалентен 10 тоннам химического топлива. Синтез ядер (термоядерные реакции) является источником энергии звёзд. Неуправляемый (взрывной) синтез осуществляется при подрыве термоядерной (или, так называемой, “водородной”) бомбы. Управляемый (медленный) синтез лежит в основе перспективного разрабатываемого источника энергии – термоядерного реактора.
Неуправляемое (взрывное) деление происходит при взрыве атомной бомбы. Управляемое деление осуществляется в ядерных реакторах, являющихся источниками энергии в атомных электростанциях.
Для теоретического описания атомных ядер используется квантовая механика и различные модели.
Ядро может вести себя и как газ (квантовый газ) и как жидкость (квантовая жидкость). Холодная ядерная жидкость обладает свойствами сверхтекучести. В сильно нагретом ядре происходит распад нуклонов на составляющие их кварки. Эти кварки взаимодействуют обменом глюонами. В результате такого распада совокупность нуклонов внутри ядра превращается в новое состояние материи – кварк-глюонную плазму

Исследуя прохождение α-частицы через тонкую золотую фольгу (см. п. 6.2), Э. Резерфорд пришёл к выводу о том, что атом состоит из тяжёлого положительного заряженного ядра и окружающих его электронов.

Ядром называется центральная часть атома , в которой сосредоточена практически вся масса атома и его положительный заряд .

В состав атомного ядра входят элементарные частицы : протоны и нейтроны (нуклоны от латинского слова nucleus – ядро ). Такая протонно-нейтронная модель ядра была предложена советским физиком в 1932 г. Д.Д. Иваненко. Протон имеет положительный заряд е + =1,06·10 –19 Кл и массу покоя m p = 1,673·10 –27 кг = 1836m e . Нейтрон (n ) – нейтральная частица с массой покоя m n = 1,675·10 –27 кг = 1839m e (где масса электрона m e , равна 0,91·10 –31 кг). На рис. 9.1 приведена структура атома гелия по представлениям конца XX - начала XXI в.

Заряд ядра равен Ze , где e – заряд протона, Z – зарядовое число , равное порядковому номеру химического элемента в периодической системе элементов Менделеева, т.е. числу протонов в ядре. Число нейтронов в ядре обозначается N . Как правило Z > N .

В настоящее время известны ядра с Z = 1 до Z = 107 – 118.

Число нуклонов в ядре A = Z + N называется массовым числом . Ядра с одинаковым Z , но различными А называются изотопами . Ядра, которые при одинаковом A имеют разные Z , называются изобарами .

Ядро обозначается тем же символом, что и нейтральный атом , где X – символ химического элемента. Например: водород Z = 1 имеет три изотопа: – протий (Z = 1, N = 0), – дейтерий (Z = 1, N = 1), – тритий (Z = 1, N = 2), олово имеет 10 изотопов и т.д. В подавляющем большинстве изотопы одного химического элемента обладают одинаковыми химическими и близкими физическими свойствами. Всего известно около 300 устойчивых изотопов и более 2000 естественных и искусственно полученных радиоактивных изотопов .

Размер ядра характеризуется радиусом ядра, имеющим условный смысл ввиду размытости границы ядра. Ещё Э. Резерфорд, анализируя свои опыты, показал, что размер ядра примерно равен 10 –15 м (размер атома равен 10 –10 м). Существует эмпирическая формула для расчета радиуса ядра:

, (9.1.1)

где R 0 = (1,3 – 1,7)·10 –15 м. Отсюда видно, что объём ядра пропорционален числу нуклонов.

Плотность ядерного вещества составляет по порядку величины 10 17 кг/м 3 и постоянна для всех ядер. Она значительно превосходит плотности самых плотных обычных веществ.

Протоны и нейтроны являются фермионами , т.к. имеют спин ħ /2.

Ядро атома имеет собственный момент импульса спин ядра :

, (9.1.2)

где I внутреннее (полное ) спиновое квантовое число.

Число I принимает целочисленные или полуцелые значения 0, 1/2, 1, 3/2, 2 и т.д. Ядра с четными А имеют целочисленный спин (в единицах ħ ) и подчиняются статистике Бозе Эйнштейна (бозоны ). Ядра с нечетными А имеют полуцелый спин (в единицах ħ ) и подчиняются статистике Ферми Дирака (т.е. ядра – фермионы ).

Ядерные частицы имеют собственные магнитные моменты, которыми определяется магнитный момент ядра в целом. Единицей измерения магнитных моментов ядер служит ядерный магнетон μ яд:

. (9.1.3)

Здесь e – абсолютная величина заряда электрона, m p – масса протона.

Ядерный магнетон в m p /m e = 1836,5 раз меньше магнетона Бора, отсюда следует, что магнитные свойства атомов определяются магнитными свойствами его электронов .

Между спином ядра и его магнитным моментом имеется соотношение:

, (9.1.4)

где γ яд – ядерное гиромагнитное отношение .

Нейтрон имеет отрицательный магнитный момент μ n ≈ – 1,913μ яд так как направление спина нейтрона и его магнитного момента противоположны. Магнитный момент протона положителен и равен μ р ≈ 2,793μ яд. Его направление совпадает с направлением спина протона.

Распределение электрического заряда протонов по ядру в общем случае несимметрично. Мерой отклонения этого распределения от сферически симметричного является квадрупольный электрический момент ядра Q . Если плотность заряда считается везде одинаковой, то Q определяется только формой ядра. Так, для эллипсоида вращения

, (9.1.5)

где b – полуось эллипсоида вдоль направления спина, а – полуось в перпендикулярном направлении. Для ядра, вытянутого вдоль направления спина, b > а и Q > 0. Для ядра, сплющенного в этом направлении, b < a и Q < 0. Для сферического распределения заряда в ядре b = a и Q = 0. Это справедливо для ядер со спином, равным 0 или ħ /2.

Для просмотра демонстраций щелкните по соответствующей гиперссылке: